
Department of Electrical Engineering
School of Science and Engineering

EE514/CS535 Machine Learning

ASSIGNMENT 2 – SOLUTIONS

Due Date: 4:00 pm, Tuesday, April 11, 2023.
Format: 6 problems, for a total of 100 marks
Instructions:

• You are allowed to collaborate with your peers but copying your colleague’s solution is
strictly prohibited. This is not a group assignment. Each student must submit his/her own
assignment.

• Solve the assignment on blank A4 sheets and staple them before submitting.

• Submit in the dropbox labeled EE-514 outside the instructor’s office.

• Write your name and roll no. on the first page.

• Feel free to contact the instructor or the teaching assistants if you have any concerns.

• You represent the most competent individuals in the country, do not let plagiarism come
in between your learning. In case any instance of plagiarism is detected, the disciplinary
case will be dealt with according to the university’s rules and regulations.



Problem 1 (15 marks)

(a) [5 marks] Show that the cross-entropy function is a convex function.

Solution:

f(w) = −[y ∗ ln(ŷ) + (1− y) ∗ ln(1− ŷ)]

ŷ = σ(z), z = wTx

We find the 2nd derivative of f(w) and show that it is convex.

−f(w) = y ∗ ln( ew
T x

1 + ewT x
) + (1− y) ∗ ln( 1

1 + ewT x
)

simplifying this we get,

−f(w) = y ∗ ln(ewT x)− ln(1 + ew
T x)

f(w) = ln(1 + ew
T x)− wxy

df(w)

dw
=

1

1 + ewT x
ew

T xx− xy =
x

1 + e−wT x
− xy

d2f(w)

dw2
= x

d

dw
(

1

1 + e−wT x
) = x

d

dw
(σ(xTw))

= x(σ(xTw)((1− σ(xTw)))

= x2(
1

1 + e−xTw
)(

e−wT x

1 + e−wT x
)

x2e−wT x

(1 + e−wT x)2

All three terms are always ≥ 0. So d2f(w)
dw2 ≥ 0, and function is convex.

(b) [5 marks] Prove that softmax with 2 classes is the same as sigmoid

Solution: Let,

softmax(zi) =
ezi

Σezj

P (Yi = 1) = 1− P (Yi = 0) = 1− softmax(zi) = 1− ez0

ez0 + ez1
=

ez1

ez0 + ez1

Can be written as,

P (Yi = 1) =
1

1 + ez0−z1

Let −z = z0 − z1

P (Yi = 1) =
1

1 + e−z

Which is same as sigmoid.

Problem 2 (15 marks)
You have been given miniature training and test documents from the actual dataset of
movie reviews. The documents belong to either the positive, negative, or neutral class.

Dataset Sentiment Text
Training Positive great acting by everyone and amazing movie
Training Positive superb plot and cinematography
Training Neutral average acting but the storyline is good.
Training Negative lacks proper plot.
Training Negative the movie is an utter disaster.
Testing ? great acting by Leonardo and amazing storyline.
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You need to develop a multinomial Naive Bayes classifier for this problem by following the
steps below.

(a) [2 marks] A list of stop words is given to you.
Stop words = [as, if, at, by, and, the, an, but, is]

Apply preprocessing to the training and test data by removing stop words from them
and showing the documents after preprocessing.

Solution:
Dataset Sentiment Text

Training Positive great acting everyone amazing movie

Training Positive superb plot cinematography

Training Neutral average acting storyline good.

Training Negative lacks proper plot.

Training Negative movie utter disaster.

Testing ? great acting Leonardo amazing storyline.

(b) [3 marks] You need to work with the preprocessed documents from now onwards.
Construct vocabulary from the data and tell its size.

Solution: V = {great, acting, everyone, amazing, movie, superb, plot, cinematography,
average, storyline, good, lacks, proper, utter, disaster}
|V | = 15

(c) [3 marks] Construct prior probabilities.

Solution:

P (Positive) =
2

5

P (Negative) =
2

5

P (Neutral) =
1

5

(d) [4 marks] Compute the likelihoods of all the words in the training data using Laplace
add-one smoothing.

Solution:

P (great|Positive) =
1 + 1

8
, P (great|Negative) =

0 + 1

6
, P (great|Neutral) =

0 + 1

4

P (plot|Positive) =
1 + 1

8
, P (plot|Negative) =

1 + 1

6
, P (plot|Neutral) =

0 + 1

4

P (acting|Positive) =
1 + 1

8
, P (acting|Negative) =

0 + 1

6
, P (acting|Neutral) =

1 + 1

4
...

(e) [3 marks] Now, predict the sentiment of the test data and show your working.

Solution:

P (class|X) =
P (X|class)P (class)

P (X)

P (X) is same always so we can ignore. Here

X = [w1, w2, ..., wn] = [great, acting, Leonardo, amazing, storyline]

P (class = Positive|X) = P (X|class = Positive)P (class = Positive)

Using Naive assumption (indepence of words) Posterior becomes,

P (class = Positive|X) =
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P (great|Positive) ∗ P (acting|Positive) ∗ P (Leonardo|Positive)∗
P (amazing|Positive) ∗ P (storyline|Positive) ∗ P (Positive)

Similarly for Negative class,

P (class = Negative|X) =

P (great|Negative) ∗ P (acting|Negative) ∗ P (Leonardo|Negative)∗
P (amazing|Negative) ∗ P (storyline|Negative) ∗ P (Negative)

Plug in and you will find that

P (class = Positive|X) > P (class = Neutral|X) > P (class = Negative|X)

Hence we classify the test review as Positive class.
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Problem 3 (25 marks)
We often use regularization to reduce overfitting. In the case of ridge regression, we added
the following (square of Euclidean norm of the weights w)

λ||w||22

as the regularization term in the objective function to be minimized. In this question, we
extend this to logistical regression.

(a) [10 marks] Formulate a loss function for the logistic regression and add this regular-
ization term in the objective function. Compute the gradient of the new loss function
with respect to weights w.

Solution:

L(w) =

n∑
i=1

log(1 + exp(−yiw
Txi)) + λ||w||22,

where,
yi ∈ {1,−1}

dL(w)

dw
=

n∑
i=1

1

1 + exp(−yiwTxi)
exp(−yiw

Txi)(−yixi) + 2λw

= −
n∑

i=1

yi(1− ŷi)xi + 2λw

where,

ŷi =
1

1 + exp(−yiwTxi)

(b) [15 marks] Another way to minimize the objective function with regularization term
is to obtain Maximum A Posteriori (MAP) estimate given by

wMAP = max
n∏

i=1

P (yi | xi,w)P (w),

where yi is i-th label associated with the i-th input xi.

We make the following assumptions:

P (yi | xi,w) = 1/1 + exp(−yiw
Txi) for all i ∈ 1, 2, ...N,. w (Prior on w) is normally

distributed with zero mean and the covariance matrix is a multiple of the identity
matrix.

P (w) =
d∏

j=1

1√
2πσ

exp(−w2
j/2σ

2).

We require you to show that for a particular value of λ and σ, the MAP estimate
is the same as the w obtained by minimizing the objective function formulated for
regularized logistic regression.

Solution:

wMAP = argmax
n∏

i=1

P (yi|xi,w)P (w)

= argmax log
n∏

i=1

P (yi|xi,w)P (w)

= argmax

(
n∑

i=1

logP (yi|xi,w) + logP (w)

)
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= argmax

(
n∑

i=1

log
1

1 + exp(−yixT
i w)

+ log
1√
2πσ

d∏
i=1

e−
w2
j

2σ2

)

= argmax

 n∑
i=1

log
1

1 + exp(−yixT
i w)

+

d∑
j=1

log

(
1√
2πσ

e−
w2
j

2σ2

)
= argmax

 n∑
i=1

log
1

1 + exp(−yixT
i w)

+
d∑

j=1

(
−

w2
j

2σ2
− 1

2
log(2πσ2)

)
= argmax

−
n∑

i=1

log(1 + exp(−yix
T
i w))−

d∑
j=1

w2
j

2σ2


= argmax

(
−

n∑
i=1

log(1 + exp(−yix
T
i w))− ||w||22

2σ2

)

= argmin

(
n∑

i=1

log(1 + exp(−yix
T
i w)) +

||w||22
2σ2

)
This is same as the loss function from part (a) with λ = 1

2σ2
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Problem 4 (10 marks)
You are in a noisy bar diligently studying for your midterm, and your friend is trying to get
your attention, using only a two-word vocabulary. She has said a sentence but you can’t
hear one of the words.

w1 = hi, w2 = yo, w3 = ?, w4 = hi

Assume that your friend was generating words from this first-order Markov model:

p(hi | hi) = 0.7, p(yo | hi) = 0.3
p(hi | yo) = 0.5, p(yo | yo) = 0.5

Given these parameters, what is the posterior probability of whether the missing word is
”hi” or ”yo”?

Solution: By the markov assumption,

P (w3|w1, w2, w4) = P (w3|w2, w4)

Using Bayes rule,

P (w3|w2, w4) = P (w3|w2)P (w4|w2, w3) = P (w3|w2)P (w4|w3)

P (w3 = hi|w2 = yo, w4 = hi) = P (w3 = hi|w2 = yo)P (w4 = hi|w3 = hi)

= (0.5)(0.7) = 0.35

P (w3 = yo|w2 = yo, w4 = hi) = P (w3 = yo|w2 = yo)P (w4 = hi|w3 = yo)

= (0.5)(0.5) = 0.25
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Problem 5 (20 marks)

(a) [5 marks] Please draw the directed graph corresponding to the following distribution:

P (A,B,C,D,E, F,G) = P (A)P (B)P (C)P (D | A)P (E | A)P (F | B,D)P (G | D,E)

Solution:

(b) [5 marks] Please write down the factorial joint distribution represented by the graph
below:

Solution: P (A,B,C,D,E, F,G) = P (A)P (B)P (C | A,B)P (D | B)P (E | C,D)P (F | E)

(c) [4 marks] Assume the random variables in the graph shown above are Boolean. How
many parameters are needed in total to fully specify the Bayesian network? Justify
your answer.

Solution: We need just 1 parameter for P(x), because P(x = True) = 1 - P(x = False)

• 1 for P(A)

• 1 for P(B)

• 4 for P(C | A, B) - 1 for each combination of values of A and B

• 2 for P(D | B)

• 4 for P(E | C, D)

• 2 for P(F | E)

Total parameters = 14
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(d) [6 marks] Based on the graph shown in part (b), state whether the following are true
or false: Where A ⊥⊥ B represents A is independent of B.

True/False
A ⊥⊥ B

A ⊥⊥ B | C
C ⊥⊥ D

C ⊥⊥ D | E
C ⊥⊥ D | B,F

F ⊥⊥ B
F ⊥⊥ B | C

F ⊥⊥ B | C,D
F ⊥⊥ B | E
A ⊥⊥ F

A ⊥⊥ F | C
A ⊥⊥ F | D

Solution:
True/False

A ⊥⊥ B True

A ⊥⊥ B | C False

C ⊥⊥ D False

C ⊥⊥ D | E False

C ⊥⊥ D | B,F False

F ⊥⊥ B False

F ⊥⊥ B | C False

F ⊥⊥ B | C,D True

F ⊥⊥ B | E True

A ⊥⊥ F False

A ⊥⊥ F | C False

A ⊥⊥ F | D False
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Problem 6 (15 marks)

Design a perceptron with the dashed line indicated in the figure as its (approximate) de-
cision boundary. You must draw a perceptron indication of inputs, output, weights, and
biases and provide a brief explanation of your design.
Hint: You might want to start with a perceptron that determines on which side of the
dashed boundary the data lies.

Solution:

x1

x2

∑
|5

∑
|5

∑
|2

w1 = 1

w2 = 0

w3 = 0

w4 = 1

w5 = 1

w6 = 1

Where,∑
|b

=

{
1 if,

∑
i x

(i)w(i) ≥ b

0 else.

— End of Assignment —
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