
Department of Electrical Engineering
School of Science and Engineering

EE514/CS535 Machine Learning

ASSIGNMENT 3 – SOLUTIONS

Due Date: 5:00 pm, Thursday, May 03, 2023.
Format: 7 problems, for a total of 100 marks
Instructions:

• You are allowed to collaborate with your peers but copying your colleague’s solution is
strictly prohibited. This is not a group assignment. Each student must submit his/her own
assignment.

• Solve the assignment on blank A4 sheets and staple them before submitting.

• Submit in the dropbox labeled EE-514 outside the instructor’s office.

• Write your name and roll no. on the first page.

• Feel free to contact the instructor or the teaching assistants if you have any concerns.

• You represent the most competent individuals in the country, do not let plagiarism come
in between your learning. In case any instance of plagiarism is detected, the disciplinary
case will be dealt with according to the university’s rules and regulations.

Problem 1 (10 marks)
Consider a 3-layer neural network with linear activation functions. The first layer has two
input nodes, the second layer has three hidden nodes, and the third layer has one output
node.

Let the activation functions in the hidden layer and the output layer be linear i.e., f(x) = x.

(a) (i) Write down the mathematical expression for the output of the network given
input vector x = [x1, x2]. Represent the weights and biases of the network using
matrices W1, W2 and vectors b1, b2.

(ii) Calculate the output of the network for a given input vector x = [2, 3], assuming
the following weights and biases:

W1 =

1 0
0 −4
5 1

, b1 =
 3
−5
10

, W2 =
[
2 3 4

]
, b2 =

[
−1

]
.

(b) (i) Show that the 3-layer neural network can be reduced to a single-layer linear net-
work by combining the weight matrices and bias vectors. Derive the resulting
weight matrix W and bias vector b for the single-layer linear network.

Solution: Noting that the output is given by

y = W2 (W1x+ b1) + b2 = W2 W1x+W2b1 + b2,

we can relate output and input using a single matrix W = W2 W1 = [22 − 8] and a
bias vector b = W2b1 + b2 = 30.

(ii) Calculate the output of the reduced single-layer linear network for the same input
vector x = [2, 3], using the derived weight matrix W and bias vector b. Verify
that the output is the same as the output obtained in Part a (ii). Briefly explain
why this is so.

Solution: y = 50

Page 2

Problem 2 (10 marks)

(a) If you apply a filter of size k × k and stride s to an input of size n× n with padding
p, what will be the dimensions of the resulting feature map?

Solution: The dimension of the output feature map will be n−k+2p
s + 1× n−k+2p

s + 1.

(b) Consider a 3 × 3 matrix representing a patch of an image I, where each entry corre-
sponds to the gray scale color of a pixel. Additionally, you are given a 2× 2 convolu-
tional kernel K as follows:

I =

3 1 1
3 0 2
4 4 0


and

K =

[
1 0
0 1

]
Assuming a stride of 1 and no padding, what is the output of applying the filter to
the input?

Solution: The output is [
3 3
7 0

]

Page 3

Problem 3 (15 marks)
Suppose you have a simple neural network with one input layer, one hidden layer, and
one output layer. The input layer has 2 neurons, the hidden layer has 3 neurons, and the
output layer has 1 neuron. The activation function for all neurons is the sigmoid function.
The network has already been initialized with the following weights and biases:

Whidden =

0.3 0.8
0.5 0.1
0.9 0.7

 , bhidden =

0.20.4
0.5

 , Woutput =
[
0.3 0.5 0.9

]
, boutput =

[
0.2

]
(a) Given the input vector (0.5, 0.8), perform a forward pass through the network to

compute the output.

Solution: To perform a forward pass, we need to compute the activations of each layer.
Using the given weights and biases, we have:

σ

0.3 0.8
0.5 0.1
0.9 0.7

[
0.5
0.8

]
+

0.20.4
0.5

 = σ

0.990.73
1.51

 ≈

0.7290.675
0.819


Next, we compute the activation of the output layer:

aoutput = σ(Woutputahidden + boutput)

Using the given weights and biases, we have:

aoutput = σ

[
0.3 0.5 0.9

] 0.7290.675
0.819

+ 0.2

 ≈ 0.82

(b) Suppose the true output for the given input is 0.6. Compute the error between the
true output and the computed output.

Solution: The error between the true output and the computed output is given by:

E =
1

2
(y − aoutput)

2

where y is the true output (which is 0.6 in this case). Substituting the values, we get:

E =
1

2
(0.6− 0.82)2 ≈ 0.02

(c) Perform a backward pass through the network using backpropagation to update the
weights and biases. Use a learning rate of 0.1, to determine the updated weights and
biases after one iteration of backpropagation.

Solution: To perform backpropagation, we first compute the error at the output layer
using the mean squared error loss function. Let the true output be y and the computed
output be ŷ, then the error is given by:

E = 1
2(y − ŷ)2

Substituting the values, we get:

E = 1
2(0.6− 0.82)2 = 0.02

To update the weights and biases, we need to compute the gradients of the error with
respect to each weight and bias. Let σ be the sigmoid function, then the gradient of the
error with respect to the output layer weights is:

∂E
∂Woutput

= (ŷ − y) · σ(zoutput) · σ(zhidden)
where zoutput = Woutput · ahidden + boutput is the input to the output layer, and ahidden =
σ(zhidden) is the output of the hidden layer. Substituting the values, we get:

Page 4

∂E
∂Woutput

= (0.866− 0.6) · σ(1.41) ·
[
0.731 0.524 0.622

]
=

[
0.035 0.025 0.030

]
Similarly, the gradient of the error with respect to the output layer bias is:

∂E
∂boutput

= (ŷ − y) · σ(zoutput)
To update the hidden layer weights and biases, we need to propagate the error back from
the output layer to the hidden layer. The gradient of the error with respect to the hidden
layer weights is:

∂E
∂Whidden

= ∂E
∂ahidden

· ∂ahidden
∂zhidden

· ainput
where ainput is the input to the hidden layer, and ∂E

∂ahidden
is the gradient of the error with

respect to the output of the hidden layer. Using the chain rule, we can express this as:
∂E

∂ahidden
= ∂E

∂zoutput
· ∂zoutput
∂ahidden

Page 5

Problem 4 (15 marks)
For the training data plotted below, find the weight vector and bias for the decision bound-
ary wTx− θ = 0 maximizing the classification margin. Also, indicate the support vectors
and compute the classification margin.

Solution: The support vectors are xb = (4, 5) and xr = (2, 3); we have used b and r to denote
blue and red support vectors respectivley. The decision boundary must be passing through
(3,4) and perpendicular to the line connecting the support vectors to maximize the classification
margin. This yields the decision boundary

x1 + x2 − 7 = 0.

If we compare this with the notation we adopt w1x1 + w2x2 − θ = 0, we obtain w1 = w2

In SVM formulation, we also require the following equations to hold

wTxb − θ = 1, 2w1 + 3w2 − θ = 1,

wTxr − θ = −1, 4w1 + 5w2 − θ = −1,

which yields w1 = w2 =
−1
2 , and θ = −7/2.

Classification margin is given by 2
∥w∥ = 2

√
2.

Page 6

Problem 5 (15 marks)
Given a dataset,

Data Point
x1 (2, 2)
x2 (2, 3)
x3 (3, 2)
x4 (8, 7)
x5 (7, 8)
x6 (5, 8)
x7 (4, 7)
x8 (5, 3)
x9 (11, 2)
x10 (11, 3)
x11 (10, 3)

we wish to partition this dataset into 3 clusters using the K-Means algorithm.

(a) Show that the K-Means algorithm always converges to a local minimum in a finite
number of steps. (Hint: Use the fact that the algorithm decreases the objective
function in each iteration.)

Solution: Let C1, C2, ..., Ck be the k clusters generated by the K-Means algorithm. Let
SSE(Ci) denote the sum of squared distances of all points in cluster Ci from the cluster
centroid. That is, SSE(Ci) =

∑
x∈Ci

||x− µi||2, where µi is the centroid of cluster Ci.

At each iteration, the K-Means algorithm assigns each data point to the cluster with the
closest centroid and then updates the centroids of each cluster. Let St denote the sum of
squared distances of all points in their respective clusters at iteration t. That is, SSEt =∑k

i=1 S(Ci)t. We claim that SSEt is non-increasing and converges to a limit SSE∗ as t → ∞.

To prove this, note that at each iteration, the algorithm updates the centroids to minimize
St. Thus, we have SSEt+1 ≤ SSEt for all t. Furthermore, since St is non-negative, it follows
that SSEt is a decreasing sequence bounded below by 0, and therefore converges to some
limit SSE∗.

Since the number of ways to partition the data into k clusters is finite, it follows that there
exists some partition of the data that minimizes SSE(C1)+SSE(C2)+. . .+SSE(Ck) = SSE∗.
Therefore, the K-Means algorithm must converge to a local minimum of SSE∗ in a finite
number of steps.

(b) Even though it does converge every time, it is highly sensitive to the initialization of
centroids. Poor initialization can result in poor clustering.
To overcome this we decide to use K-means++. K-Means++ is a variant of the K-
Means algorithm that uses an improved initialization scheme. The algorithm first
selects one centroid uniformly at random from the data points and then selects subse-
quent centroids from the remaining data points with probability proportional to the
square of their distance from the nearest already chosen centroid.
Run the K-Means++ Algorithm on this dataset until convergence.

Solution: As indicated in the problem statement, the following steps in K-means++ al-
gorithms:

1. Initialize the first cluster center by randomly selecting one data point from the data
set.

Page 7

2. For each remaining data point, calculate its distance to the nearest cluster center that
has already been chosen. This can be done using the Euclidean distance formula.

3. Select the next cluster center by randomly choosing a data point from the remaining
data points, with the probability of a point being selected proportional to the square
of its distance to the nearest cluster center.

4. Repeat steps 2 and 3 until k cluster centers have been chosen.

5. Assign each data point to the nearest cluster center based on its distance.

6. Recalculate the cluster centers as the mean of the data points assigned to each cluster.

7. Repeat steps 5 and 6 until convergence (when the cluster assignments no longer
change).

For the given dataset, if we choose x1 as the first cluster center and calculate the distances
from each data point to x1, we select x4 as the next cluster center and then select x9 as
the final cluster center. Consequently, we have the the following clusters:

Cluster 1: x1, x2, x3, x8

Cluster 2: x4, x5, x6, x7

Cluster 3: x9, x10, x11

(c) Although K-Means++ requires more computations than K-Means for initialization, it
often results in quicker convergence to a better clustering solution. Why is this the
case?

Page 8

Problem 6 (15 marks)
Consider a binary classification problem with two inputs and the following labeled data-set
for training.

Label y Data Point (x(1), x(2))
1 (−3,−3)
1 (−3, 3)
1 (3, 3)
-1 (2, 2)
-1 (2,−2)
-1 (−2, 2)

(a) Plot the points on a 2D plane. Can we use hard SVM for this problem? Provide a brief
justification to support your answer.

Solution:

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

x(1)

x(2)

We cannot use hard SVM since the points are not linearly separable.

(b) Since the data is not linearly separable, we map the 2D feature space to 3D feature space
using the mapping function ϕ(x) to make it linearly separable. Determine the mapping
function that can enable us to use hard SVM in 3D feature space.

Solution: We can use a mapping function to transform the data to 3D space, where it becomes
linearly separable. One such function is the polynomial kernel function given by

ϕ(x(1), x(2)) = (x(1), x(2), (x(1))2 + (x(2))2)

This function maps each 2D data point to a 3D space, where the third dimension is the square
of the Euclidean distance of the data point from the origin. We can see that the data points
in the first two dimensions are the same as the original data, and the third dimension provides
additional information that makes the data linearly separable.

Using this mapping function, the transformed data becomes:

Label y Data Point ϕ(x(1), x(2))

1 (−3,−3, 18)

1 (−3, 3, 18)

1 (3, 3, 18)

-1 (2, 2, 8)

-1 (2,−2, 8)

-1 (−2, 2, 8)
Page 9

In the transformed 3D space, the data points with label 1 are clustered in a region separated
from the data points with label -1, and a linear separator can easily separate them.

(c) We have a linear decision boundary (hard SVM) in 3D space to separate the transformed
data in 3D (new feature space). Indicate this boundary as a (non-linear) decision boundary
on the plot obtained in part (a).

(d) Instead of mapping the data into 3D space and using hard SVM to learn the decision
boundary in 3D, we can use the kernel trick to learn a non-linear boundary you have plotted
in part (c) in the original 2D feature space. Formulate a kernel function associated with
the mapping function you used in part (b).

Solution: The mapping function we proposed earlier is: ϕ(x) = ϕ(x(1), x(2)) = (x(1), x(2), (x(1))2+
(x(2))2). To construct a kernel function associated with this mapping, we can use the following:

K(x, z = ϕ(x)Tϕ(z) = x(1)z(1) + x(2)z(2) +
(
x(1))2 + (x(2))2

)(
z(1))2 + (z(2))2

)

Page 10

Problem 7 (20 marks)
You are given the following dataset of emails with 4 features, that is, the presence of the
key word in the email: account, money, links, and password. The output variable is a
binary label indicating whether the email is spam (Yes).

account money links password spam

No No Yes No No
No No No No No
Yes Yes Yes Yes No
Yes No Yes Yes Yes
No Yes No No Yes
No No No Yes Yes
No No Yes Yes Yes
Yes Yes Yes No Yes

(a) What is the entropy of the target value ‘spam’ in the data?

Solution: Since we can model the target value as a random variable ‘spam’ with values
Yes and No. In decision trees, we estimate the probabilities of these from the data by
relative frequency. This gives us

P (spam = Yes) =
3

8

P (spam = No) =
5

8
and entropy is given by

H(‘spam′) = −5

8
log2

5

8
− 3

8
log2

3

8
≈ 0.9544

(b) Which attribute would the decision tree algorithm that minimizes entropy choose to
use for the root of the tree?

Solution: We’re considering the four features: account, money, links and password as
the first split in the tree. Since the entropy before the split is the same for all four, we can
ignore that and only look at which value gives us the lowest average entropy post-split.

The split after password=No is uniform, so that’s the highest in all 8 possible splits, but
the split password=Yes is the most uneven in all possible splits. Here, we have to calculate
to be sure, that is,

n1

n
H(R1) +

n2

n
H(R2),

where R1 and R2 correspond to the data points we obtain after splitting (Yes for R1) with
respect to ‘password’ and n1 = n2 = 4, that is,

4

8

(
3

4
log2

3

4
− 1

4
log2

1

4

)
+

4

8

(
2

4
log2

2

4
− 2

4
log2

2

4

)
≈ 0.9056

You can check that for all other features, we get
n1

n
H(R1) +

n2

n
H(R2) ≈ 0.9512,

and we therefore chose password as a feature for first split.

(c) Determine the information gain due to the split you chose in the previous question?

Solution: Information gain is given by

H(‘spam′)−
(n1

n
H(R1) +

n2

n
H(R2)

)
≈ 0.0487

Page 11

(d) Draw the full decision tree that would be learned for this data.

Solution: After splitting with respect to ‘password’, we obtain the following tables.

‘password’ = Yes

account money links password spam

Yes Yes Yes Yes No

Yes No Yes Yes Yes

No No No Yes Yes

No No Yes Yes Yes

‘password’ = No

account money links password spam

No No Yes No No

No No No No No

No Yes No No Yes

Yes Yes Yes No Yes

For splitting at depth level 1, we can take a shortcut. In both tables, the values of ‘money’
correspond exactly to one of the classes. After splitting on ‘money’, in all cases the resulting
subset of the data contains only one class. This means that the distribution on the classes
is 0/1 and the entropy is 0. This isn’t true for any of the other features, so ‘money’ must be
the best feature for both branches. Consequently, we will have a tree with four (completely
pure) leaves.

— End of Assignment —

Page 12

