
Machine Learning
EE514 – CS535

kNN Algorithm: Overview, Analysis,
Convergence and Extensions

Zubair Khalid

School of Science and Engineering
Lahore University of Management Sciences

https://www.zubairkhalid.org/ee514_2023.html

https://www.zubairkhalid.org/ee514_2023.html

Outline

- k-Nearest Neighbor (kNN) Algrorithm Overview

- Algorithm Formulation

- Distance Metrics

- Choice of k

- Algorithm Convergence

- Storage, Time Complexity Analysis

- Fast kNN

- The Curse of Dimensionality

Supervised Learning
Classification Algorithms or Methods

Predicting a categorical output is called classification

Classification

Frequency Table

Covariance Matrix

Similarity Function

Others

Bayesian Methods

Decision Trees

Linear Dis. Analysis

Logistic Regression

K Nearest Neighbor

Neural Network

Support Vector
Machine

k-Nearest Neighbor (kNN) Algorithm
Idea:

?

- Two classes, two features

- We want to assign label to

unknown data point?

- Label should be red.

Idea:

k-Nearest Neighbor (kNN) Algorithm

- We have similar labels for similar features.

- We classify new test point using similar training data points.

- Given some new test point x for which we need to predict the class y.

- Find most similar data-points in the training data.

- Classify x “like” these most similar data points.

- How do we determine the similarity?

- How many similar training data points to consider?

- How to resolve inconsistencies among the training data points?

Algorithm overview:

Questions:

1-Nearest Neighbor:

k-Nearest Neighbor (kNN) Algorithm

Simplest ML Classifier
Idea: Use the label of the closest known point

Label should be red.

Generalization:
Determine the label of k nearest neighbors and
assign the most frequent label

Label should be red

k=3

Label should be blue

k=7

Formal Definition:

k-Nearest Neighbor (kNN) Algorithm

Interpretation:

Formal Definition:

k-Nearest Neighbor (kNN) Algorithm

- Instance-based learning algorithm; easily adapt to unseen data

Decision Boundary:

k-Nearest Neighbor (kNN) Algorithm

Decision Boundary:

k-Nearest Neighbor (kNN) Algorithm

https://demonstrations.wolfram.com/KNearestNeighborKNNClassifier/

https://demonstrations.wolfram.com/KNearestNeighborKNNClassifier/

Characteristics of kNN:

k-Nearest Neighbor (kNN) Algorithm

- No assumptions about the distribution of the data

- Non-parametric algorithm

- No parameters

- Hyper-Parameters

- k (number of neighbors)

- Distance metric (to quantify similarity)

Characteristics of kNN:

k-Nearest Neighbor (kNN) Algorithm

- Complexity (both time and storage) of prediction increases with the size

of training data.

- Can also be used for regression (average or inverse distance weighted

average)

- For example,

- For binary classification problem, use odd value of k. Why?

- In case of a tie:

- Use prior information

- Use 1-nn classifier or k-1 classifier to decide

- Missing values in the data

- Average value of the feature.

Practical issues:

k-Nearest Neighbor (kNN) Algorithm

- k-Nearest Neighbor (kNN) Algroithm Overview

- Algorithm Formulation

- Distance Metrics

- Choice of k

- Algorithm Convergence

- Storage, Time Complexity Analysis

- Fast kNN

- The Curse of Dimensionality

Outline

We need to define distance metric to find the set of k

nearest neighbors, Sx

k-Nearest Neighbor (kNN) Algorithm

Distance Metric:

k-Nearest Neighbor (kNN) Algorithm

Norm of a vector

k-Nearest Neighbor (kNN) Algorithm

Properties of Norm

Distance Metric:

k-Nearest Neighbor (kNN) Algorithm

Distance Metric:

k-Nearest Neighbor (kNN) Algorithm

Properties of Distance Metrics:

Distance Metric:

k-Nearest Neighbor (kNN) Algorithm

Cosine Distance

k-Nearest Neighbor (kNN) Algorithm

What is the range of values of angular distance
and what is the interpretation of these values?

- Mismatch in the values of data

- Issue: Distance metric is mapping from d-dimensional

space to a scaler. The values should be of the same order

along each dimension.

- Solution: Data Normalization

Practical issues in computing distance:

k-Nearest Neighbor (kNN) Algorithm

- k-Nearest Neighbor (kNN) Algroithm Overview

- Algorithm Formulation

- Distance Metrics

- Choice of k

- Algorithm Convergence

- Storage, Time Complexity Analysis

- Fast kNN

- The Curse of Dimensionality

Outline

- k=1
Sensitive to noise
High variance
Increasing k makes algorithm less sensitive to noise

- k=n
Decreasing k enables capturing finer structure of space

Idea: Pick k not too large, but not too small (depends on data)
How?

Choice of k:

k-Nearest Neighbor (kNN) Algorithm

Choice of k:

k-Nearest Neighbor (kNN) Algorithm

- Learn the best hyper-parameter, k using the data.

- Split data into training and validation.

- Start from k=1 and keep iterating by carrying out (5 or 10, for example)
cross-validation and computing the loss on the validation data using the
training data.

- Choose the value for k that minimizes validation loss.

- This is the only learning required for kNN.

- k-Nearest Neighbor (kNN) Algroithm Overview

- Algorithm Formulation

- Distance Metrics

- Choice of k

- Algorithm Convergence

- Storage, Time Complexity Analysis

- Fast kNN

- The Curse of Dimensionality

Outline

Error Convergence:

k-Nearest Neighbor (kNN) Algorithm

Learning Problem

k-Nearest Neighbor (kNN) Algorithm

Bayes Optimal Classifier

k-Nearest Neighbor (kNN) Algorithm

Error Rate:

Error Convergence:

k-Nearest Neighbor (kNN) Algorithm

Reference: Cover, Thomas, and, Hart, Peter. Nearest neighbor pattern
classification[J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27

Error Rate:

Error Convergence:

k-Nearest Neighbor (kNN) Algorithm

Error Rate:

Error Convergence:

k-Nearest Neighbor (kNN) Algorithm

Bound on Error Rate:

- k-Nearest Neighbor (kNN) Algroithm Overview

- Algorithm Formulation

- Distance Metrics

- Choice of k

- Algorithm Convergence

- Storage, Time Complexity Analysis

- Fast kNN

- The Curse of Dimensionality

Outline

Algorithm Computational and Storage Complexity:

k-Nearest Neighbor (kNN) Algorithm

Input/Output:

Steps:

Algorithm:

k-Nearest Neighbor (kNN) Algorithm

1. Find distance between given test point and feature vector of every point in D.

2. Find k points in D closest to the given test point vector to form a set SX.

3. Find the most frequent label in the set Sx and assign it to the test point.

Steps: Computational Complexity

Computational Complexity:

Space Complexity:

Outline

- k-Nearest Neighbor (kNN) Algroithm Overview

- Algorithm Formulation

- Distance Metrics

- Choice of k

- Algorithm Convergence

- Storage, Time Complexity Analysis

- Fast kNN

- The Curse of Dimensionality

Fast kNN:

k-Nearest Neighbor (kNN) Algorithm

- kNN Computational complexity: O(nd)

- How to make it faster?

- Dimensionality Reduction

- Feature Selection (to be covered later)

- PCA (to be covered later)

- Use efficient method to find nearest neighbors

- KD Tree

K-D Tree:

k-Nearest Neighbor (kNN) Algorithm

- k-Dimensional tree

- Extended version of binary search tree in higher dimension

- Pick the splitting dimension

- Randomly

- Large variance dimension

- Pick the middle value of the feature along the selected dimension after sorting along

that dimension.

- Use this value as the root node and construct a binary tree and keep going.

K-D Tree:

k-Nearest Neighbor (kNN) Algorithm

Example: Splitting dimension

K-D Tree:

k-Nearest Neighbor (kNN) Algorithm

Example:

K-D Tree:

k-Nearest Neighbor (kNN) Algorithm

Connection with kNN:
Finding nearest neighbor

Issue: May miss neighbors! Trick to handle this.

K-D Tree - Summary:

k-Nearest Neighbor (kNN) Algorithm

- Enables significant reduction in the time complexity to support

nearest neighbor algorithm.

- Search to O(logn).

- Trade-offs:

- Computational overhead to construct a tree O(n logn).

- Space complexity: O(n).

- May miss neighbors.

- Performance is degraded with the increase in the dimension of

future space (Curse of Dimensionality).

Outline

- k-Nearest Neighbor (kNN) Algroithm Overview

- Algorithm Formulation

- Distance Metrics

- Choice of k

- Algorithm Convergence

- Storage, Time Complexity Analysis

- Fast kNN

- The Curse of Dimensionality

The Curse of Dimensionality:

k-Nearest Neighbor (kNN) Algorithm

- Refers to the problems or phenomena associated with classifying,
analyzing and organizing the data in high-dimensional spaces that
do not arise in low-dimensional settings.

- For high-dimensional datasets, the size of data space is huge.

- In other words, the size of the feature space grows exponentially
with the number of dimensions (d) of the data sets.

- To ensure the points stay close to each other, the size (n) of the
data set must also have exponential growth. That means, we need a
very large dataset to maintain the density of points in the high
dimensional space.

k-Nearest Neighbor (kNN) Algorithm

The Curse of Dimensionality:

- For high-dimensional datasets, the size of data space is huge.

For an exponentially large number
of cells, we need an exponentially
large amount of training data to
ensure that the cells are not
empty.

Ref: CB

k-Nearest Neighbor (kNN) Algorithm

The Curse of Dimensionality:

k-Nearest Neighbor (kNN) Algorithm

The Curse of Dimensionality:

k-Nearest Neighbor (kNN) Algorithm
The Curse of Dimensionality (Another viewpoint):

D = 1 2 10 50 400 784

0.1 0.19 0.65 0.995 1.000 1.000

0.9 0.81 0.35 0.005 0.000 0.000

k-Nearest Neighbor (kNN) Algorithm
The Curse of Dimensionality (Another viewpoint):

D = 1 2 10 50 400 784

0.01 0.02 0.096 0.395 0.982 0.999

0.99 0.98 0.904 0.605 0.018 0.0004

The Curse of Dimensionality:

k-Nearest Neighbor (kNN) Algorithm

Connection with kNN:

- With the increase in the number of features or number of dimensions
of the feature space, data-points are never near to one another.

- kNN algorithm carries out predictions about the test point assuming
we have data-points near to the test point that are similar to the test
point.

- As we do not have neighbors in the high dimensional space, kNN
becomes vulnerable and sensitive to the Curse of Dimensionality.

The Curse of Dimensionality:

k-Nearest Neighbor (kNN) Algorithm

Why does kNN work?

Two related explanations;
- Real-world data in the higher dimensional space is confined to a region

with effective lower dimensionality.
- Dimensionality Reduction (to be covered later in the course)

- Real-world data exhibits smoothness that enables us to make
predictions exploiting interpolation techniques.

- For example,
- Data along a line or a plane in higher dimensional space
- detection of orientation of object in an image; data lies on effectively

1 dimensional manifold in probably 1million dimensional space.
- Face recognition in an image (50 or 71 features).
- Spam filter

k-Nearest Neighbor (kNN) Algorithm

Reference:

Overall:
• https://www.cs.cornell.edu/courses/cs4780/2018fa/

• CB: sec 1.1

• HTF: 13.3 up to end of 13.3.2

• The curse of dimensionality
• CB: 1.4
• KM: 1.4.3
• N. Kouiroukidis and G. Evangelidis, "The Effects of Dimensionality Curse in High Dimensional kNN

Search," 2011 15th Panhellenic Conference on Informatics, Kastonia, 2011, pp. 41-45, doi:
10.1109/PCI.2011.45.

https://www.cs.cornell.edu/courses/cs4780/2018fa/

Machine Learning
EE514 – CS535

Dimensionality Reduction: Feature Selection
and Feature Extraction (PCA)

Zubair Khalid

School of Science and Engineering
Lahore University of Management Sciences

https://www.zubairkhalid.org/ee514_2023.html

https://www.zubairkhalid.org/ee514_2023.html

Outline

- Dimensionality Reduction

- Feature Selection

- Feature Extraction - PCA

Dimensionality Reduction
Why?

- Increasing the number of inputs or features does not
always improve accuracy of classification.

- Performance of classifier may degrade with the inclusion
of irrelevant or redundant features.

- Curse of dimensionality; “Intrinsic” dimensionality of the
data may be smaller than the actual size of the data.

- Improve the classification performance.

- Improve learning efficiency and enable faster classification.

- Better understanding of the underlying process mapping inputs to output.

Benefits:

Dimensionality Reduction
Feature Selection and Feature Extraction:

Given a set of features, reduce the number of features such that
“the learning ability of the classifier” is maximized.

Feature Selection:

Select a subset of the existing features.

Feature Extraction:

Transform existing features to obtain a set of
new features using some mapping function.

Feature Selection:

Dimensionality Reduction

Select a subset of the existing features.

Select the features in the subset that either
improves classification accuracy or maintain same
accuracy.

How many subsets do we have?

How do we choose this subset?

Data set:
- Five Boolean features
- y=x1 (or) x2

- x3 = (not) x2

- x4 = (not) x5

Optimal subset:
{x1, x2} or {x1, x3}

Optimization in space of all feature subsets
would have

Feature Selection:

Dimensionality Reduction

Example:

* Source: A tutorial on genomics by Yu (2004).

Can’t search over all possibilities and
therefore we rely on heuristic methods.

Feature Selection:

Dimensionality Reduction

How do we choose this subset?

- Filter Methods (unsupervised method)
- Evaluation is independent of the learning algorithm
- Consider the input only and select the subset that

has the most information

- Wrapper Methods (supervised method)
- evaluation is carried out using model selection the

machine learning algorithm
- Train on selected subset and estimate error on

validation dataset

- Feature selection can be considered as an optimization
problem that involves

- Searching of the space of possible feature subsets
- Choose the subset that is optimal or near-optimal with

respect to some objective function

Feature Subset Selection

Search subset

Objective Function

Feature
Subset

Goodness

Feature Selection:

Dimensionality Reduction

How do we choose this subset?

Filter Methods Wrapper Methods

Filter Feature Selection

Search subset

Objective Function

Feature
Subset

Information
Content

Wrapper Feature Selection

Search subset

Learning Algorithm

Feature
Subset

Prediction
Accuracy

Feature Selection:

Dimensionality Reduction

Filters Method:
- Univariate Methods

- Treats each feature independently of other features

- Calculate score of each feature against the label using the following metrics:
- Pearson correlation coefficient
- Mutual Information
- F-score
- Chi-square
- Signal-to-noise ratio (SNR), etc.

- Rank features with respect to the score

- Select the top k-ranked features (k is selected by the user)

Feature Selection:

Dimensionality Reduction

Filters Method – Ranking Metrics:

- Pearson correlation coefficient (measure of linear dependence)

- Signal-to-noise ratio (SNR)

Feature Selection:

Dimensionality Reduction

Wrappers Method:
- Forward Search Feature Subset Selection Algorithm (Super intuitive)

- Start with empty set as feature subset
- Try adding one feature from the remaining features to the subset
- Estimate classification or regression error for adding each feature
- Add feature to the subset that gives max improvement

- Backward Search Feature Subset Selection Algorithm (Super intuitive)

- Start with full feature set as subset
- Try removing one feature from the subset
- Estimate classification or regression error for removing each feature
- Remove/drop the feature that gives minimal impact on error or reduces the error

Outline

- Dimensionality Reduction

- Feature Selection

- Feature Extraction - PCA

Feature Extraction:

Dimensionality Reduction

Transform existing features to obtain a set of new features using some mapping function.

- The mapping function z=𝑓(x) can be linear or non-linear.

- Can be interpreted as projection or mapping of the data in the higher dimensional
space to the lower dimensional space.

- Mathematically, we want to find an optimum mapping z=𝑓(x) that preserves the
desired information as much as possible.

Feature Extraction:

Dimensionality Reduction

Idea:

- Finding optimum mapping is equivalent to optimizing an objective function.

- We use different objective functions in different methods;

- Minimize Information Loss: Mapping that represent the data as
accurately as possible in the lower-dimensional space, e.g., Principal
Components Analysis (PCA).

- Maximize Discriminatory Information: Mapping that best discriminates
the data in the lower-dimensional space, e.g., Linear Discriminant
Analysis (LDA).

- Here we focus on PCA, that is, a linear mapping.

- Why Linear: Simpler to Compute and Analytically Tractable.

Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

- Given features in d-dimensional space

- Project into lower dimensional space using the following linear transformation

- For example (can you tell me size of matrix W for the following cases),
- find best planar approximation to 4D data
- find best planar approximation to 100D data

- We want to find this mapping while preserving as much information as possible, and ensuring

- Objective 1: the features after mapping are uncorrelated; cannot be reduced further

- Objective 2: the features after mapping have large variance

Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Geometric Intuition:

Toy Illustration in two dimensions

Most contribution of each
class lies in this direction

First Principal ComponentSecond Principal
Component

Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Geometric Intuition:

Change of coordinates: Linear combinations
of features

Ignoring the Second Component/Feature

Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Mathematical Formulation:

Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Mathematical Formulation:

Steps to find Principal Components:

Step 1: Compute Sample Mean:

Step 2: Subtract Sample Mean:

Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Mathematical Formulation:

Step 3: Calculate the Covariance Matrix:

How do you interpret the entries of the
matrix? Spend some time and try to
understand this!

What is special about these vectors?

Zero mean; taken along all feature vectors

Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Special about the Covariance Matrix:

Step 4: Carry out Eigenvalue Decomposition of Covariance Matrix:

Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

- Q: How to select k out of d?

- A: Simple, select the ones corresponding to k largest eigenvalues.

Step 5: Dimensionality Reduction

Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Connection with the Objectives:

- Objective 1: the features after mapping are uncorrelated; cannot be reduced further

- Enabled by orthogonality of the principal components

- Objective 2: the features after mapping have large variance

- We have used covariance matrix to define the mapping and used eigenvectors with
largest eigenvalues, that is, those dimensions capturing the variations in the data.

- PCA maps the data along the directions where we have most of the
variations in the data.

Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

- It depends on the amount of information, that is variance, we want to preserve in the
mapping process.

- We can define a variable T to quantify this preservation of information

How do we choose k?

- T=1, when k=d; No reduction.

- T=0.8, interpreted as that 80% variation in the data has been preserved.

Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Example:
Step 1: Compute sample mean: Step 2: Subtract Sample Mean: Step 3: Calculate the Covariance Matrix:

2.5000 2.4000
0.5000 0.7000
2.2000 2.9000
1.9000 2.2000
3.1000 3.0000
2.3000 2.7000
2.0000 1.6000
1.0000 1.1000
1.5000 1.6000
1.1000 0.9000

0.6900 0.4900
-1.3100 -1.2100
0.3900 0.9900
0.0900 0.2900
1.2900 1.0900
0.4900 0.7900
0.1900 -0.3100
-0.8100 -0.8100
-0.3100 -0.3100
-0.7100 -1.0100

We have divided by n. Some authors
divide by n-1. It won’t change the
principal components

Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Example:

Step 4: Carry out Eigenvalue Decomposition of Covariance Matrix:

Step 5: Dimensionality Reduction 3.4591
0.8536
3.6233
2.9054
4.3069
3.5441
2.5320
1.4866
2.1931
1.4073

Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

- Data should be normalized before using PCA for dimensionality reduction.

- Usually, we normalize every feature by subtracting mean of that feature followed by
dividing with standard deviation of the feature.

- The covariance matrix of the reduced feature is projection along orthogonal components
(directions) and therefore features are uncorrelated to each other. In other words, PCA
decorrelates the features.

- Limitation:
- PCA does not consider the separation of data with respect to class label and

therefore we do not have a guarantee the mapping of the data along dimensions of
maximum variance results in the new features good enough for class discrimination.

Solution: Linear Discriminant Analysis (LDA) - Find mapping directions along which
the classes are best separated.

Practical Considerations and Limitations:

	Week-02a
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

	Week-02b
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

