Machine Learning
EE514 — CS535

Linear Regression: Formulation, Solutions,
Polynomial Regression, Gradient Descent
and Regularization

Zubair Khalid

School of Science and Engineering
Lahore University of Management Sciences

EVOLUTION =

. ; https://www.zubairkhalid.org/ee514 2023.html

https://www.zubairkhalid.org/ee514_2023.html

Outline

- Regression Set-up

- Linear Regression

- Polynomial Regression

- Underfitting/Overfitting
- Regularization

- Gradient Descent Algorithm

e LUMS

A Not-for-Profit Uni

Regression

Regression: Quantitative Prediction on a continuous scale

- Given a data sample, predict a numerical value

X —p Process or System —_— Y

Input Observed
Output
, f(x)
Process or
S System y
Input Noise N Observed
Output

Example: Linear relationship

Here, PROCESS or SYSTEM refers to any underlying physical or logical
phenomenon which maps our input data to our observed and noisy output data.

LUMS

A Not-for-Profit University

Regression

Overview:
X —p Process or System —> Y
Input Observed
Output
One variable regression: Yy is ascalar
Multi-variable regression: y isavector)
= We will cover
Single feature regression: X isascalar

Multiple feature regression: X is a vector
e LUMS

A Not-for-Profit Uni

Regression

Examples:

Single Feature:

—

-—

Predict score in the course given the number of hours of effort per week.

Establish the relationship between the monthly e-commerce sales and the advertising costs.

Multiple Feature:

- Studying operational efficiency of machine given sensors (temperature, vibration) data.

- Predicting remaining useful life (RUL) of the battery from charging and discharging information.

—

Estimate sales volume given population demographics, GDP indicators, climate data, etc.
Predict crop yield using remote sensing (satellite images, gravity information).

Dynamic Pricing or Surge Pricing by ride sharing applications (Uber).

Rate the condition (fatigue or distraction) of the driver given the video.

Rate the quality of driving given the data from sensors installed on car or driving patterns.

LUMS

A Not-for-Profit University

Model Formulation and Setup:

True Model:

We assume there is an inherent

but unknown relationship between
input and output.

y = f(x)+n

Goal:

Given , we need to
estimate the unknown functional

relationship as accurately as possible.

e LUMS

A Not-for-Profit Unive

Regression

Process or
System

f(x)

y
Noise N | Observed

Output

Bl True unknown function
O Observations

Regression
Model Formulation and Setup:

| Process or f (X)

. ' X System Yy

- Single Feature Regression, Example: Input Noise N Observed
Output

Training Data

— —

> (O First Data Sample: {X(l),Y(l)}

L-

I ~~*© Second Data Sample: {x(2),y(2)!

.l.'.,/.l'.;. ______________________________________ _._.>D n‘th Data Sample {X(n), y(n)}

~— -

D = {(Xlayl)a (X2,3J2), SR} (Xn;yn)} C Xd XY

LUMS

A Not-for-Profit University

Model Formulation and Setup:

We have:

O First Data Sample:

O n-th Data Sample:

O Second Data Sample: <{311(2),)/(2)}

{x(n), »(n);

Regression

Input
Xﬁ

e For some input x, ¢y is our model output.

Process or f (X>
System
Noise |
) Model
y = f(x,0).

e Assume that our model is f (x,8), characterized by the parameter(s) 6.

e Model f(x,0) has

e A structure (e.g., linear, polynomial, inverse).

e Paramaters in the vector @ = [01,0-,...,05].

e Our model error is e = y — 4.

LUMS

A Not-for-Profit University

Observed Output
Yy

Error

~

c=Y—Y

~

Y

Model Output

Linear Regression

Overview:

- Second learning algorithm of the course
- Scalar output is a linear function of the inputs

- Different from KNN: Linear regression adopts a modular approach which we will use
most of the times in the course.
- Select a model
- Defining a loss function
- Formulate an optimization problem to find the model parameters such that a loss
function is minimized.

- Employ different techniques to solve optimization problem or minimize loss function.

LUMS

A Not-for-Profit University

Linear Regression
Model:

We have D = {(x1,y1), (X2,%2),---» (Xn,yn)} C X4 x Y

Model is a linear function of the features, that is,

e [inear structure.

e Model Paramaters: 6y and @ = [01,60-,...,04].
e)y is bias or intercept.
e 0 =1[01,0s,...,04] represents the weights or slope.

e 0; quantifies the contribution of ¢-th feature z;.

LUMS

A Not-for-Profit University

Linear Regression
Model:

What is Linear?

Interpretation:
e d=1 f(X, 9) — 90 + 9139 Line.
o d=2 f(x, 0) = 0y + 0121 + O34 Plane. ‘
X
o d f(x, 0) = 0y + 01 x Hyper-plane in R%+! f(x) ry g_o
For different 0y and 0, we have different hyper-planes.
How do we find the ‘best’ line?
What do we mean by ‘best’? [T1
LUMS

A Not-for-Profit University xr 2

Linear Regression
Define Loss Function:

- Loss function should be a function of model parameters.

e For input x, our model errorise=y —y =y — f(x, 0) =y — 0y — 07 x.

e ¢ is also termed as residual error as it is the difference between observed
value and predicted value.

A

o d=1 f(x,0) = 60y + 01z

Observed values

Residual error

True unknown function:
O f(z) = 4.2 + 2.4z

LUMS

A Not-for-Profit University X

Linear Regression

Define Loss Function:
o For D = {(x1,y1), (X2,%2), .., (Xn,yn)} C X% x Y, we have

e; =1y; — 0y — GTXi, 1=1,2,....,n

e Using residual error, we can define different loss functions:
mn

L(00,6) = (yi — 00 — 07x:)" Least-squared error (LSE)
1=1

1
L(00,0) = - Z (yi — 60 — 6" x;)

1=1

2

Mean-squared error (MSE)

n “
1=1

L(0y,0) = J ! Zn: (y; — 60 — gTXi)2 Root Mean-squared error (RMSE)

- One minimizer for all loss functions.

e LUMS

A Not-for-Profit Univer:

Linear Regression

Define Loss Function: n

1
e We minimize the following loss function: £(6p,0) = 3 Z (yi — 6y — QTxi)2
S|

e We have an optimization problem: find the parameters which minimize
the loss function. We write optimization problem (with no constraints) as

.. 1 = 2

minimize L(6y,0) = = E — 0y — BTxi)
60,0 ~ 3 -
1=

How to solve?

e Analytically: Determine a critical point that makes the derivtive (if it
exists) equal to zero.

e Numerically: Solve optimization using some algorithm that iteratively
takes us closer to the critical point minimizing objective function.

LUMS

1
A Not-for-Profit University Fa’Ctor 9

5 1s added to make the formulation mathematically more convenient.

Define Loss Function:

Reformulation:

Here e = [e1, €2, .

T
e; =Y —bo— %7 0,

€1
€2

€En

Consequently:

LUMS

A Not-for-Profit University

£(907 9)

1=1,2,...,n
] .- -le
1

i B N B i
y'n 1 _Xr;T_
1
L(6,0) 5

1 2

L(w) = S|y = Xw)|

Linear Regression

n

1

1=1

.., en]t (column vector) where

p— 52(?},;—90— gT){i)2 =

]

Yo

| Yn_

§e

L 7

(S

Residual error

Model
Parameters

Linear Regression

Solve Optimization Problem: (Analytical Solution employing Calculus)

1
mingnize L(w) = 5”(3’ — XW)”%

- Very beautiful, elegant function we have here!

We first write the loss function as

1

L(w) =5y = Xw)" (y — Xw)
1

L(w) = 5 (yTy —yI'Xw —w!Xy + WTXTXW)
1

L(w) = 5 (yTy —owlXTy + WTXTXW)

e To further solve this, let us quickly talk about the concept of a gradient
of a function.

LUMS

A Not-for-Profit University
e

Linear Regression
Solve Optimization Problem: (Analytical Solution employing Calculus)

Gradient of a function: Overview

e For a function f(x) that maps x € R? to R, we define a gradient (direec-
tional derivative) with respect to x as

of af Af1" 4
V) = Ox1 Oxy’ ~ ~ Oxy <R

e Interpretation: Quantifies the rate of change along different directions.

Examples:
Of()—a x =x'a Of(x)::xTx Of(X):XTPx
Vf(x)=a Vf(x)=2x Vf(x)=2Px

S LUMS

A Not-for-Profit Univer:

Linear Regression
Solve Optimization Problem: (Analytical Solution employing Calculus)
1

We have a loss function: L(w) = 5 (yTy —owl Xty + WTXTXW)
e Take gradient with respect to w as
1
VL(w) = 5(—2X"y +2X"Xw)
e Substituting it equal to zero yields
XT'Xw =Xy

= w=(X"X)"' X"y

e We have determined the weights for which LSE, MSE, RMSE or the norm
of the residual is minimized.

e This solution is referred to as least-squared solution as it minimizes the
squared error.

LUMS

A Not-for-Profit University

Linear Regression
So far and moving forward:

- We assumed that we know the structure of the model, that is, there is a linear
relationship between inputs and output.

- Number of parameters = dimension of the feature space + 1 (bias parameter)

- Formulated loss function using residual error.

- Formulated optimization problem and obtain analytical solution.

- Linear regression is one of the models for which we can obtain an analytical solution.

- We will shortly learn an algorithm to solve optimization problem numerically.

LUMS

A Not-for-Profit University

Outline

- Regression Set-up

- Linear Regression

- Polynomial Regression

- Underfitting/Overfitting
- Regularization

- Gradient Descent Algorithm

e LUMS

A Not-for-Profit Uni

Polynomial Regression

Overview:

~ If the relationship between the inputs and output is not linear,
we can use a polynomial to model the relationship.

- We will formulate the polynomial regression model for single
feature regression problem.

- Polynomial Regression is often termed as Non-linear
Regression or Linear in Parameter Regression.

- We will also revisit the concept of ‘over-fitting'.

LUMS

A Not-for-Profit University

Y

100

Is it linear ?

-100

=200

-300

-10

Polynomial Regression
Single Feature Regression:

Formulation:
e d =1, input x is a scalar.

e Model is a polynomial function of the input, that is,

e M is the degree of plynomial; characterized by M +1 coefficients 6y, 61, ...,0;.

e M is the Hyper-Parameter of the model and determines the complexity
of the model. For M = 1, we have a linear regression.

e We can use linear regression to find these coefficients by formulating the
input x and its powers using a vector-valued function given by

< LUMS g) = [1, 2, 2% -, 2]

A Not-for-Profit University

Single Feature Regression:

Formulation:

Polynomial Regression

e With this notation, we can formulate model as -

e Note that the model is linear in terms of parameters due to which Poly-
nomial Regression is termed as Linear in Parameter Regression.

e Note that g(z) can be any function of . For example, we can have g(x) = {

e For n data points (input, output), we can define residual error in a similar

way we computed for linear regression as follows:

LUMS

A Not-for-Profit University

€1
€2

]

Y2

y

1 = =%
1 xzy a3
1 x, 22

Yn |

1

2 x

—, sin(2mx), =, e* ...

T

We have seen
this before.

&

We are capable
to solve this!

Polynomial Regression

Single Feature Regression:

Example (Ref: CB. Section 1.1): Input f(x) Observed Output
X ey Process or Y
System
e Model is a polynomial function of degree M. Noise 71 Error
E=YyY—UY
e If M is not knwown, how do we choose it?
(Model]
Process f(x) = sin(27z) L y=10x0) J
Observations y=f(zx)+n Y
1 o 00
f(z)
o] 3 B 0o
Model flz,0) =00+ 01z + Oox® + ...+ 0,2 °f '
o]
O

e We take n = 10.

LUMS

A Not-for-Profit University

0

Polynomial Regression

Single Feature Regression: [f(z)=sin(27x)
Example: f(z,0) =0 + 012 + 027 + ... + ;2™

It M=0 - 1}
f(z) /\\ ()
f(z,0) |7 >—o ol f(x,0),]
Underfitting: o
Model is too | _ il

simple
; —
()
nl
f(z)
f(x,0)0
Overfitting:
il Model is too
‘ LUMS complex

A Not-for-Profit Uni 0 1

Polynomial Regression
Single Feature Regression:

Example: g
e What’s happening with the increase in M7 Overﬁtting f(z)

e Model is fitting to the data, not the actual true function. f(@,0)o1

A

e For M =9, we have zero residual error, that is, y = f(z, 8).

e Is this a good solution?

e No! The model is oscillating wildly and is not close to the true function.

e In this toy example, we had informtion about !
the true function and therefore we can conclude
that M =9, is not a good model to fit the data.

——— Training
—— Validation

e How to choose model order M or How do we tell
if a model is overfitting when we do not have
knowledge about the true process/function?

Solution 1:
e Recall: Train-Validation Split. Overfitting causes
poor generalization performance, that is, large

Good choice

05 of M

FERrms

LUMS error on the testing or validation data. 0 3w 6 9

A Not-for-Profit University

Polynomial Regression
Single Feature Regression:

Example:

e Let’s pose another question!

e VM = 3 degree polynomial is a special case of M = 9 degree polynomial.

e Why M =9 gives us poor performance?

e Coefficients magnitude increases with M.

0.35

e M = 3 solution cannot be recovered from -1.27 7.99 232.37
M =9 soltuion by setting the remaining '%3 gg Aggéégi
weights equal to zero. - -231639’30

e 10 coefficients are tuned for 10 data-points 640042.26
when M = 9. -1061800.52

1042400.18
-557682.99
125201.43

LUMS

A Not-for-Profit University

Polynomial Regression
Single Feature Regression:

How to Handle Overfitting?

The polynomial degree M is the hyper-parameter of our model, like we had k in kNN,
and controls the complexity of the model.

If we stick with M=3 model, this is the restriction on the number of parameters.

We encounter overfitting for M=a because we do not have sufficient data.
Solution 2: Take more data points to avoid over-fitting.

0 L1 0 P

LUMS Solution 3: Regularization

A Not-for-Profit University

Outline

- Regression Set-up

- Linear Regression

- Polynomial Regression

- Underfitting/Overfitting
- Regularization

- Gradient Descent Algorithm

e LUMS

A Not-for-Profit Uni

Regularization

Regularization overview:

- The concept is broad but we will see in the context of linear regression or polynomial
regression which we formulated as linear regression.

- Encourages the model coefficients to be small by adding a penalty term to the error.

- We had the loss function of the following form that we minimize to find the coefficients:

1 See linear regression
Iy — X6)]13

minimize L£(0) = formulation.

0 2
- We add a ‘penalty term’, known as regularizer, in the loss function as
minimize L(0) = L£(0) + AR(0)

0 / ~

Regularized Loss function Regularizer

e)\ > 0 maintains the trade-off between regularizer and the original loss
function as it controls the relative importance of the regulrization term.

LUMS

A Not-for-Profit University

Regularization

L2 Least-squares Regularization — Ridge Regression:

Since we require to discourage the model coefficients from reaching large values; we can

use the following simple regularizer:
1
R(0) = 5”9”3 Known as L? or ¢? penalty
For this choice, regularized loss function becomes

.. 1 A
minimize Lreg(0) = §||(y — XQ)”% + 5”9”3

This regularization term maintains a trade-off between ‘fit of the model to the data’
and ‘square of norm of the coefficients’.
- If model is fitted poorly, the first term is large.

- If coefficients have high values, the second term (penalty term) is large.

e Large)\ penalizes coefficient values more.

Intuitive Interpretation: We want to minimize the error while

LUMS keeping the norm of the coefficients bounded.

A Not-for-Profit University

Regularization

L2 Least-squares Regularization — Ridge Regression:

- Regularized loss function is still quadratic, and we can find closed form solution.

1

A
We have a loss function: Lpeg(0) = §||(y —X0)||3 + §||9||§

e Take gradient with respect to @ as

VLieg(0) = =(—2X"y 4+ 2X" X6 + 2)0)

DO | =

e Substituting it equal to zero yields
X'X0+ 20 =X"y = (XTX+AI1)0 = X"y
= 0= (X"X+A1) X"y
e We have a solution of the ridge regression:

o(\) = (XTX +AI)

XTy

e)\ = (0, we have non-regularized solution. e)\ = 00, the solution is a zero vector.

LUMS

A Not-for-Profit University

Regularization

L2 Least-squares Regularization — Ridge Regression:
Example: ¢ Too small \: no regularization. e Too large A\: no weightage to the data.

e In practice, we use very small value of A and therefore it is convenient to
work with In A\ and compute it as A\ = e!™*.

0 | 0 1

X T

No regularization Too much regularization

LUMS

A Not-for-Profit University

Regularization
L2 Least-squares Regularization — Ridge Regression:
Example:

e)\ restricts the coeflicients from exploding as we have included the square
of the norm of the coefficients in the loss function being minimized.

0.35 | . .
232.37 4.74 -0.03 Validation
-5321.83 0.77 -0.06 Test |
48568.31 31.97 -0.03
-231639.30 -3.89 -0.03 z
640042.26 5528 -0.02 S /
-1061800.52 41.32 -0.01
1042400.18 4595 -0.00
-557682.99 91.53 0.00
125201.43 72.68 0.01 0 (35 = — oy >

e)\ is a hypermater of the model and we learn it in practice using the
validation data.

LUMS

A Not-for-Profit University

Regularization

L2 Least-squares Regularization — Ridge Regression:
Graphical Visualization:

0 = [01,0>], we assume we have two coefficients: #; and 65.

We have a loss function: £,..(0) = 1||(y —X0)|5 +

—1|@
= 10113
e Good value of A helps us in avoiding overfitting.
e Irrelevant features get small but non-zero value

in the regularized solution.

e Ideally, we would like to assign zero weight
to the irrelevant features.

LUMS

A Not-for-Profit University

02 4

—|| y —X0)|3

@
N

Regularization

L1 Least-squares Regularization — Lasso Regression

e Use L' or ¢! penalty instead, that is, R(6) =[|0]; = Y _ |z;] Graphical Visualization:
; 05

e For this choice, regularized loss function becomes 1” (y — X9)||2
2 2

L 1
mlmemlze Lreg(0) = §||(y — X9)||§ + A|0])1

e This regularization is referred to as
least absolute shrinkage and selection operator (Lasso).

e The intersection is at the corners of the diamond.

e Lasso regression gives us sparse solution. /\
AN _

LUMS

A Not-for-Profit University

Regularization

Elastic Net Regression, L1 vs L?

Ridge: Error + X times (sum of squares of coefficients)
Lasso: Error + A times (sum of absolute values of the coefficients)

Lasso optimization: computationally expensive than ridge regression.

Due to the corners included in the solution, regularized solution will have
some weights qual to zero.

e Solution is sparse in general, and is therefore biased.

Elastic Net Regression: Hybrid version; both L; and Lo penalties.

.. 1 A
minimize Lreg(0) = §||(y —X0)||5 + M\i]|0]1 + 72||9||§

Ridge and Lasso are special cases of elastic net regression.

Combines the strength of both but require tuning of hyperparameters \q
and Ao using validation data.

LUMS

A Not-for-Profit University

Outline

- Regression Set-up

- Linear Regression

- Polynomial Regression

- Underfitting/Overfitting
- Regularization

- Gradient Descent Algorithm

e LUMS

A Not-for-Profit Uni

Gradient Descent Algorithm

Optimization and Gradient Descent - Overview

e Optimization refers to finding optimal value of your unknown variables
under some constraints on the variables.

e Optimal value: usually, maximizing or minimizing the objective function.

e Constraints: restricting the domain of our variable and are defined by
imposing eqality or inequality constraints on the function of the variable.

e An optimization problem of finding a variable @ is usually formulated as
minimize f,(0)
subject to fi(0) <0, i=1,2,...,m
hi(0) =0, ,j=1,2,...,p

fo(0) - Objective function f;(0) - Inequality constraint functions h;(@) - equality constraint functions
e.g., 3/l(y — X0)|3
-85 D) y 2

e In ML, various algorithms (e.g., linear regression, neural network etc.)
require us to solve an optimization problem.

LUMS

A Not-for-Profit University

Gradient Descent Algorithm

Optimization and Gradient Descent - Overview

e To solve the optimization problem, the gradient descent approach or al-
gorithm is the most commonly used method.

e Gradient descent algorithm is best used when tha unknown variables can-
not be determined analytically and need to be searched numerically.

e Gradient descent is an iterative algorithm in nature:
e Initially, chose the coefficients to be something reasonabe (e.g., all zeros).

e Iteratively update the coefficients in the direction of steepest descent until

convergence.
e Ensures that the new coefficients are better than the previous coefficients.
A
£(0) Learning Step
"
: Optimal 6
I
I
Initial 6 '
~ ., I
~ |
~ . |
‘@ LUMS DR SN
A Not-for-Profit University - : ! 2 9 =

Gradient Descent Algorithm

Formulation:

e Loss function, denoted by £(8), required to be minimized. Assume 8 € R,

e Interpretation of gé : Rate of change in the loss function with respect to 6;
° gé_ > (0: Increasing 6; increases L ° % < 0: Increasing 0; decreases L

e Noting this, the loss function is decreased with the following update:

0, +— 0; — « a >0

00;’

e This is the essence of gradient descent, that is, the L(0)
step size in the direction of negative of the derivative. \

e « is referred to as step size or learning rate.
e Too small a: gradient descent can be slow.

e Too large a: gradient descent can overshoot
the minimum and it may fail to converge.

o - e e

LUMS

A Not-for-Profit University

Gradient Descent Algorithm

Algorithm:
Overall:

e Start with some 8 € R? and keep updating to reduce the loss function
until we reach the minimum. Repeat until convergence

Pseudo-code:

e Initialize @ € R°.

e Repeat until convergence: Equivalently,
0, «+ 0; — O‘gg’ foreach i=1,2,...,d 0—0—aVL(O) Note: Simultaneous update.

Convergence and Step size:

e We stop updating 6 if VL(8) = 0 or difference between the loss function
in successive iterations is less than some threshold.

e We can have a constant step size « (typically 0.01, 0.05, 0.001) for each
iteration or adjust it adpatively on each iteration.

e Algorithm converges for constant fixed rate as well due to the automatic

smaller step size near the optimal solution.
LUMS

A Not-for-Profit University

Gradient Descent Algorithm

Linear Regression Case:
e We minimize mean-squared error (MSE) scaled by 1/2 factor:

1 T 2
L(6y,0) = on ; (90 + 07 X5 — yz)
e First we take a single feature regression; x is a scalar, x; = x;.
1 — 2
L(6g,01) = o Z; (00 + 012 — i)
e We define partial derivatives as =
oL 1 oL 1
aa — 0 Orr; — y; = = 0 Orr; — y;) x;
890 n;(0+ 1L y) 891 n;(0+ 1L y)CC
Gradient Descent:
e Repeat until convergence:
9<—9—l§:(9+9 — Yi) 9<—9—l§:(9+9 — Yi) T
0 0 an — 0 14 Yi 1 1 Ofn s 0 14 Yi) Ly

LUMS

A Not-for-Profit University

Note:

Simultaneous update.

Gradient Descent Algorithm

Linear Regression Case:

Visualization: L(0o,01)

200 -

150 4

100

50

0
10

10

0 10 410 p

Surface plot Contour plot
LUMS a =0.05, 0.2, 0.8, 1

A Not-for-Profit University
I

Gradient Descent Algorithm

Linear Regression Case:

e For a multiple feature regression; x is a vector, x; € R%.

1

n

L(60,0)=— (6o + 607x; — y)°
(05) m ; (0T X Y)

e We define partial derivatives as

oL 1 - 0L 1< - .

=) 0o+ 0" xi —y === (0o + 0" xi — y;)x;"V)

00 n;(o—l— Xi — Yi) 2, n;:;(onL Xi — Yi)X

where x;\9) denotes the j-th component of x;.
Gradient Descent:
e Repeat until convergence:
1 - 1 - Note:
o ¢ 6o = “n 2(90 67X~) Oc0-a n ;(90 T X~ yi)x Simultaneous update.

LUMS

A Not-for-Profit University

Gradient Descent Algorithm
Notes:
e As we have taken all n points for updating at each step, we refer to the

algorithm discussed here as Batch Gradient Descent.
e We also use the term ‘epoch’ to refer to one sweep of all the points in the

data-set. So far, iteration is same as epoch as we have taken all the points
at each step.

e We prefer to use gradient descent also for linear regression despite the fact
that we can find the optimal solution analytically. Why?

e Gradient descent is easy to implement than the analytical solution.

e Gradient descent is computationally more efficient:
e Closed-form (direct) solution: (XTX)_l X1y
e Size of X7 X is d x d, matrix inversion computational complexity is O(d?).
e Computational complexity of each update of gradient descent is O(n d).
e O(nd) is better than O(d>) when d > 1.

Stochastic Gradient Descent:

e For large data-sets such that the computation of gradient for all points in
the data-set takes too much time, we use stochastic gradient descent.

LUMS

A Not-for-Profit University

Gradient Descent Algorithm

Stochastic Gradient Descent (SGD) - Rationale:

e (Generalize the formulation by defining a loss function using model f (x5, W)
n

£w) = 50 3 (Foaw) =)" = 13" g, w0

1=1

where

A 2
(f (xi, W) — yz) Quantifies the prediction error for a single input.

DO | =

g(xia W, yz) —

e In Batch (or Full) Gradient Descent, we update in each iteration as

W w—aVL(w)

T e We are computing gradient for all n points.
3 2
wew—aQ—ZV(f(xi,w)—yi) | |
i e 1 can be very large in practice.
1 | e Computationally expensive.
wew—a%ZVg(xi,w,yi) P y exp
i

LUMS

A Not-for-Profit University

Gradient Descent Algorithm
Stochastic Gradient Descent (SGD):

e Stochastic gradient descent: update using one data point at each iteration

W w —a Vg(xi, W, y;)
e Also referred to as incremental or online gradient descent.

e This update tries to approximate the update of batch gradient descent.

e (): How do we choose 7 in each iteration?
e Stochastic selection: uniformly choose the index in each iteration.
e Cyclic selection: choose 1 =1,2,...,n,1,2,...,n,1,2,...

e Stochastic (random) selection, mostly used in practice, implies that SGD
is using an unbiased estimate of the true gradient at each iteration.

Pros:

e Computationally efficient: iteration cost is independent of n.

e True gradient approximation can help in escaping the local minimum.

LUMS

A Not-for-Profit University

Gradient Descent Algorithm

SGD for Linear Regression Case:

e Using cyclic selection, we have the following SGD:

r ™
e Initialize 6, € R and 0 € RY.

e Repeat until convergence:

fore=1,2,...n

90 < 90 — (1(90 + QTXi — yz) .
[teration Epocla

060 —af+ 0% —yi)x;

. end for)

e Even with cyclic seleciton, we shuffle the order in which we are using the
data points after each epoch. Otherwise, algorithm can get stuck with the
sequence of gradient updates that may cancel each other and conseqeuntly
hinder learning.

e For online learning when the data points are arriving in a stream, we need
to carry out predictions before we have all the data-points. In such a case,
we use SGD for learning.

LUMS

A Not-for-Profit University

Gradient Descent Algorithm

Mini-batch Stochastic Gradient Descent (SGD) :
Batch Gradient Descent Stochastic Gradient Descent

1 T
W(—W—@EZVQ(Xi,W,yi) w— w—aVg(xi,w, ;)
i=1

e Mini-batch Stochastic Gradient Descent: update using a subset of k£ data-points.

e From a set D of n points, we randomly select a subset, denoted by & C D
of £k < n points and use these k points to update the gradient as

k
1
— - — v 13 v Y1) i) Yi ES
W W ozn;:1 9(xi, W, y;), (Xi,vi)

e In one epoch, we divide the data into mini-batches and run mini-batch
SGD on each subset iteratively.

LUMS

A Not-for-Profit University

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

