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Regression: Quantitative Prediction on a continuous scale

- Given a data sample, predict a numerical value

Regression
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Example: Linear relationship

Here, PROCESS or SYSTEM refers to any underlying physical or logical 
phenomenon which maps our input data to our observed and noisy output data.



Regression
Overview:

One variable regression:            𝒚 is a scalar

Multi-variable regression:         പ𝐲 is a vector

Single feature regression:         𝐱 is a scalar

Multiple feature regression:     പ𝐱 is a vector
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We will cover   



Examples:

Single Feature:

- Predict score in the course given the number of hours of effort per week. 

- Establish the relationship between the monthly e-commerce sales and the advertising costs.

Multiple Feature:

- Studying operational efficiency of machine given sensors (temperature, vibration) data.  

- Predicting remaining useful life (RUL) of the battery from charging and discharging information.

- Estimate sales volume given population demographics, GDP indicators, climate data, etc. 

- Predict crop yield using remote sensing (satellite images, gravity information).

- Dynamic Pricing or Surge Pricing by ride sharing applications (Uber).

- Rate the condition (fatigue or distraction) of the driver given the video.

- Rate the quality of driving given the data from sensors installed on car or driving patterns.

Regression



Regression

True Model:  
We assume there is an inherent 
but unknown relationship between 
input and output.

True unknown function

Observations

𝐱

𝒚

Goal:
Given noisy observations, we need to 
estimate the unknown functional 
relationship as accurately as possible.

Model Formulation and Setup:

x y

Input Observed 
Output

Process or 
System

nNoise



Model Formulation and Setup:

- Single Feature Regression, Example:

Regression
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Training Data



We have:

Regression
Model Formulation and Setup:

Input Observed Output
Process or 

System

nNoise

Model

Error

Model Output



Overview:

- Second learning algorithm of the course

- Scalar output is a linear function of the inputs

- Different from KNN: Linear regression adopts a modular approach which we will use 

most of the times in the course.

- Select a model

- Defining a loss function

- Formulate an optimization problem to find the model parameters such that a loss 

function is minimized.

- Employ different techniques to solve optimization problem or minimize loss function.

Linear Regression



Model:

Linear Regression



Model:
Linear Regression

Interpretation:

What is Linear?

𝐨𝐫 𝒚

𝐨𝐫 𝒚



Define Loss Function:

- Loss function should be a function of model parameters.

Linear Regression

𝐱

Observed values

True unknown function:

𝒚
Residual error



Define Loss Function:

Linear Regression

- One minimizer for all loss functions.



Define Loss Function:

Linear Regression

How to solve?



Define Loss Function:

Linear Regression

Reformulation:

Consequently:

Residual error

Observations Inputs

Model 
Parameters



Solve Optimization Problem: (Analytical Solution employing Calculus)

Linear Regression

- Very beautiful, elegant function we have here!



Solve Optimization Problem: (Analytical Solution employing Calculus)

Linear Regression

Gradient of a function: Overview

Examples:



Solve Optimization Problem: (Analytical Solution employing Calculus)

Linear Regression



So far and moving forward:

- We assumed that we know the structure of the model, that is, there is a linear 

relationship between inputs and output.

- Number of parameters = dimension of the feature space + 1 (bias parameter)

- Formulated loss function using residual error.

- Formulated optimization problem and obtain analytical solution. 

- Linear regression is one of the models for which we can obtain an analytical solution.

- We will shortly learn an algorithm to solve optimization problem numerically.

Linear Regression
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Overview:

- If the relationship between the inputs and output is not linear,  

we can use a polynomial to model the relationship.

- We will formulate the polynomial regression model for single 

feature regression problem.

- Polynomial Regression is often termed as Non-linear 

Regression or Linear in Parameter Regression.

- We will also revisit the concept of ‘over-fitting’.

Polynomial Regression

Is it linear ?

𝐱

𝒚



Single Feature Regression:

Polynomial Regression

Formulation:



Single Feature Regression:

Polynomial Regression

Formulation:

We have seen 
this before.
&
We are capable 
to solve this!



Single Feature Regression:

Polynomial Regression

Example (Ref: CB. Section 1.1):



Single Feature Regression:

Polynomial Regression

Example:

Underfitting:
Model is too 
simple

Overfitting:
Model is too 
complex



Single Feature Regression:

Polynomial Regression

Example:
Overfitting

Good choice 
of M

Solution 1:



Single Feature Regression:

Polynomial Regression

Example:



Single Feature Regression:

- The polynomial degree M is the hyper-parameter of our model, like we had k in kNN, 

and controls the complexity of the model.

- If we stick with M=3 model, this is the restriction on the number of parameters.

- We encounter overfitting for M=9 because we do not have sufficient data.

How to Handle Overfitting?

Solution 2: Take more data points to avoid over-fitting.

Polynomial Regression

Solution 3: Regularization
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Regularization overview:

- The concept is broad but we will see in the context of linear regression or polynomial 

regression which we formulated as linear regression.

- Encourages the model coefficients to be small by adding a penalty term to the error.

- We had the loss function of the following form that we minimize to find the coefficients:

Regularization

- We add a ‘penalty term’, known as regularizer, in the loss function as

See linear regression 
formulation.

Regularized Loss function Regularizer



Regularization

- Since we require to discourage the model coefficients from reaching large values; we can 

use the following simple regularizer:

L2 Least-squares Regularization – Ridge Regression:

- For this choice, regularized loss function becomes

- This regularization term maintains a trade-off between ‘fit of the model to the data’  

and ‘square of norm of the coefficients’.

- If model is fitted poorly, the first term is large.

- If coefficients have high values, the second term (penalty term) is large.

Intuitive Interpretation: We want to minimize the error while 
keeping the norm of the coefficients bounded.



Regularization

- Regularized loss function is still quadratic, and we can find closed form solution.

L2 Least-squares Regularization – Ridge Regression:



Regularization
L2 Least-squares Regularization – Ridge Regression:
Example:

No regularization Too much regularization



Regularization
L2 Least-squares Regularization – Ridge Regression:
Example:



Regularization
L2 Least-squares Regularization – Ridge Regression:

Graphical Visualization:



Regularization
L1 Least-squares Regularization – Lasso Regression 

Graphical Visualization:



Regularization
Elastic Net Regression, L1 vs L2
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Gradient Descent Algorithm
Optimization and Gradient Descent - Overview



Gradient Descent Algorithm
Optimization and Gradient Descent - Overview



Gradient Descent Algorithm
Formulation:



Gradient Descent Algorithm
Algorithm:
Overall:

Pseudo-code:

Convergence and Step size:

Note: Simultaneous update.



Gradient Descent Algorithm
Linear Regression Case:

Gradient Descent:

Note:

Simultaneous update.



Gradient Descent Algorithm
Linear Regression Case:

Visualization:

Surface plot Contour plot



Gradient Descent Algorithm
Linear Regression Case:

Note:

Simultaneous update.

Gradient Descent:



Gradient Descent Algorithm
Notes:

Why?

Stochastic Gradient Descent:



Gradient Descent Algorithm
Stochastic Gradient Descent (SGD) - Rationale:



Gradient Descent Algorithm
Stochastic Gradient Descent (SGD):

Pros:



Gradient Descent Algorithm
SGD for Linear Regression Case:

Iteration Epoch



Gradient Descent Algorithm
Mini-batch Stochastic Gradient Descent (SGD) :

Batch Gradient Descent Stochastic Gradient Descent
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