

Machine Learning EE514 – CS535

Perceptron Classifier

Zubair Khalid

School of Science and Engineering Lahore University of Management Sciences

https://www.zubairkhalid.org/ee514 2023.html

Outline

- Perceptron and Perceptron Classifier
- Perceptron Learning Algorithm
 - Geometric Intuition
- Perceptron Learning Algorithm Convergence

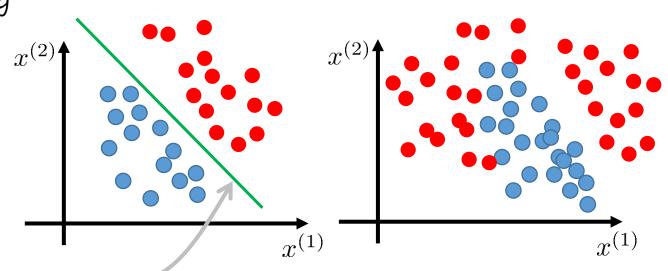
Linear Classifiers

Overview:

Linear Separability

Linearly Separable

NOT Linearly Separable



Linear Classifiers

$$h(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{x} + \theta_0$$

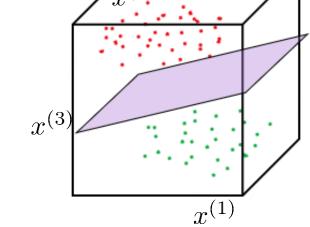
• line in 2D, plane in 3D, hyper-plane in higher dimensions.

We have studied three classifiers:

- kNN (Instance)

A Not-for-Profit University

- Naïve Bayes (Generative)
- Logistic Regression (Discriminative)



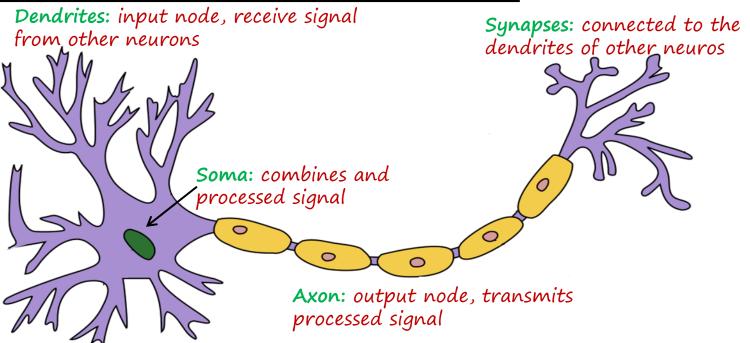
More Discriminative Classifiers:

- Perceptron
- Support Vector Machines

McCulloch-Pitts (MP) Neuron:

- McCulloch (neuroscientist) and Pitts (logician) proposed a computational model of the biological neuron in 1943.

Biological Neuron (Simplified illustration):



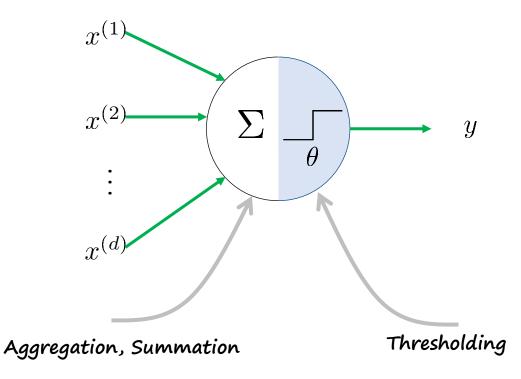
- Neuron is fired or transmits the signal when it is activated by the combination of input signals.

McCulloch-Pitts (MP) Neuron:

- d number of boolean inputs $x^{(1)}, x^{(2)}, \dots, x^{(d)} \in \{0, 1\}.$
- Boolean output, $y \in \{0, 1\}$.
- If sum of inputs is less than θ , the output is zero and one otherwise.
- θ is a thresholding parameter that characterizes the neuron.
- Mathematically;

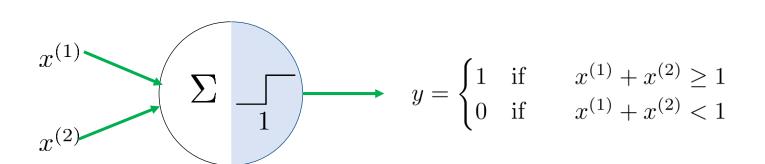
$$y = \begin{cases} 1 & \text{if} & \sum_{i=1}^{d} x^{(i)} \ge \theta \\ 0 & \text{if} & \sum_{i=1}^{d} x^{(i)} < \theta \end{cases}$$

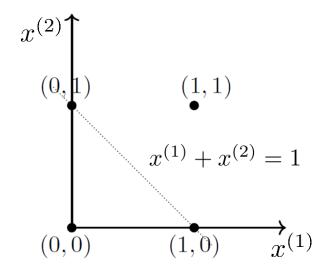
• Idea: Fire the nueron if at least θ number of inputs are active.



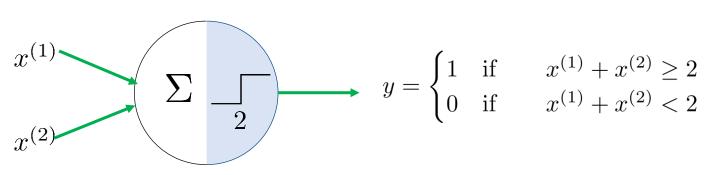
McCulloch-Pitts Neuron (MP) - Examples:

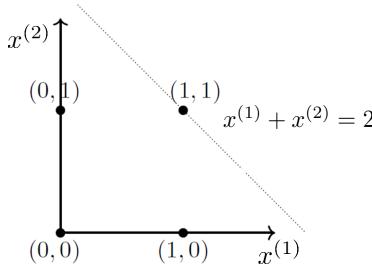
• OR of two inputs.





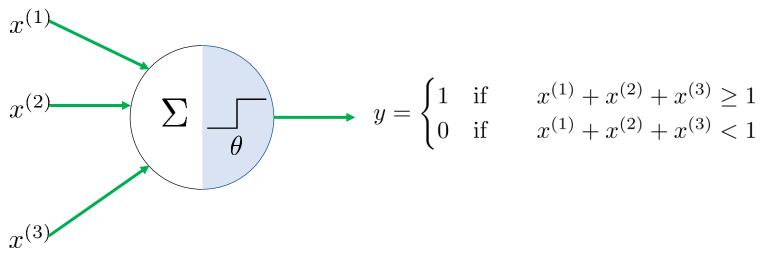
• AND of two inputs.



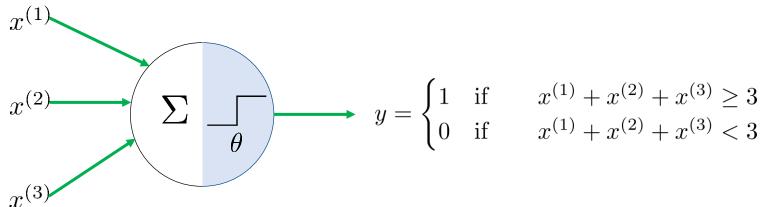


McCulloch-Pitts Neuron (MP) - Examples:

• OR of three inputs.



• AND of three inputs.

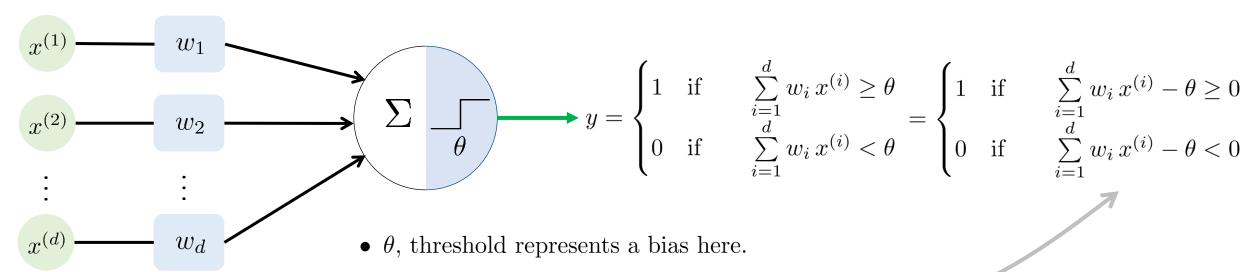


McCulloch-Pitts (MP) Neuron – Limitations:

- Can classify if inputs are linearly separable with respect to the output.
 - How to handle the functions/mappings that are not linearly separable e.g., XOR?
- Can handle only boolean inputs.
 - Gives equal or no weightage to the inputs
 - How can we assign different weights to different inputs?
- We hand-code threshold parameter
 - Can we automate the learning process of the parameter?
- To overcome these limitations, another model, known as perception model or perceptron, was proposed by Frank Rosenblatt (1958) and analysed by Minsky and Papert (1969).
 - Inputs real valued, weights used in aggregation
 - Learning of weights and threshold is possible.

Perceptron:

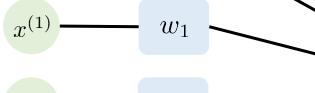
- d number of real-valued inputs $x^{(1)}, x^{(2)}, \ldots, x^{(d)} \in \mathbf{R}$. (Difference from MP Neuron)
- Boolean output, $y \in \{0, 1\}$.
- If sum of inputs is less than θ , the output is zero and one otherwise.
- Threshold θ and weights w_1, w_2, \ldots, w_d are model parameters. (Difference from MP Neuron)



- θ can be considered or absorbed as a weight.
- This will make aggregation/thresholding independent of any parameters.

Perceptron:

$$w_0 = -\theta$$

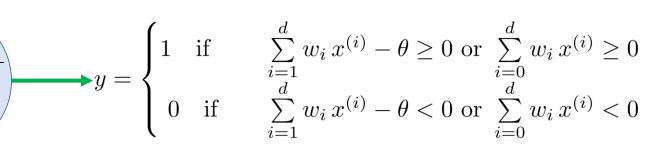


$$x^{(d)}$$
 w_d

Note:

Threshold is zero here.

Threshold has been absorbed as a model weight.



Alternative (Compact) Representation:

•
$$\mathbf{x} = [x^{(0)}, x^{(1)}, \dots, x^{(d)}]$$

•
$$\mathbf{w} = [w_0, w_1, \dots, w_d]$$

$$x^{(0)} = 1 \qquad w_0 = -\theta$$

$$x^{(1)} \qquad w_1$$

$$x^{(2)} \qquad w_2$$

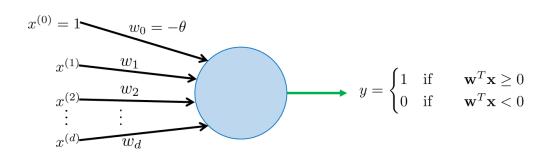
$$\vdots \qquad \vdots$$

$$x^{(d)} \qquad w_d$$

$$y = \begin{cases} 1 & \text{if } & \mathbf{w}^T \mathbf{x} \ge 0 \\ 0 & \text{if } & \mathbf{w}^T \mathbf{x} < 0 \end{cases}$$

Classification using Perceptron:

- Since $\mathbf{w}^T \mathbf{x} = 0$ represents a hyper-plane in the *d*-dimensional space, we can use perceptron as a binary classifier if the classes are linearly separable.
- How is this different from MP neuron?
 - Inputs are real-valued.
 - We have real-valued weights in the process of aggregation.
 - We can learn the weights.
- We have seen this before. We obtained exactly same output in logistic regression case before mapping using sigmoid. We refer to logistic regression classifier as an elementary neural network.
- We used logistic function to have differentiable loss function and squishing the output in $(-\infty, \infty)$ to (0,1) giving us probabilistic view of the classifier.
- How can we learn the weights for the case of perceptron? We note here that we cannot use gradient descent.



• Remark:

If classes are labeled as 1 and -1

$$y = \begin{cases} 1 & \text{if} & \mathbf{w}^T \mathbf{x} \ge 0 \\ -1 & \text{if} & \mathbf{w}^T \mathbf{x} < 0 \end{cases}$$

We often write output as

$$y = \operatorname{sign}(\mathbf{w}^T \mathbf{x})$$

sign(.) returns sign of the argument.

Outline

- Perceptron and Perceptron Classifier
- Perceptron Learning Algorithm
 - Geometric Intuition
- Perceptron Learning Algorithm Convergence

Perceptron Learning Algorithm:

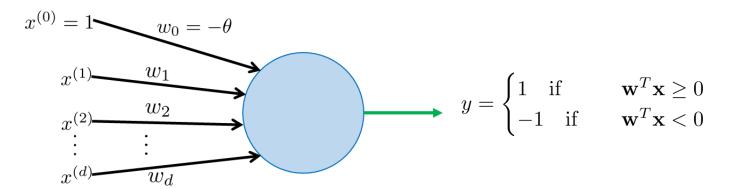
• Assuming that the classes are **linearly separable**, we want to learn w given the data.

$$D = \{(\mathbf{x_1}, y_1), (\mathbf{x_2}, y_2), \dots, (\mathbf{x_n}, y_n)\} \subseteq \mathcal{X}^d \times \mathcal{Y}$$

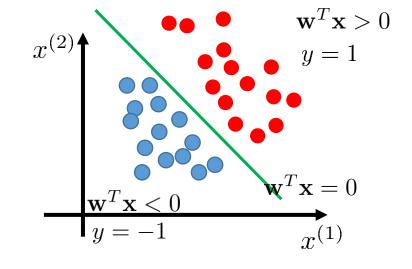
- $\mathcal{Y} = \{0, 1\}$ (without loss of generality) $\mathcal{Y} = \{-1, 1\}$

• Classifier:

• Data: Linearly separable.



- Key idea: Learn/find a hyperplane characterized by w such that
 - $y_i(\mathbf{w}^T\mathbf{x}_i) > 0$ for every $(\mathbf{x_i}, y_i) \in D$
 - $y_i(\mathbf{w}^T\mathbf{x}_i) > 0$ implies \mathbf{x}_i is on the correct side of hyperplane.



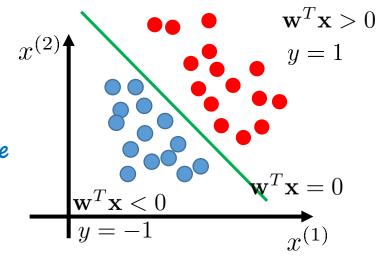
Perceptron Learning Algorithm:

```
Initialize \mathbf{w} = 0
while TRUE do
           m = 0
           for (\mathbf{x}_i, y_i) \in \mathcal{D} do
                  if y_i(\mathbf{w}^T\mathbf{x}_i) \leq 0
                         \mathbf{w} \leftarrow \mathbf{w} + y_i \mathbf{x}_i
                         m \leftarrow m + 1
                  end if
           end for
           if m=0
                   break
            end if
end while
```

(Count the number of misclassifications)

(misclassification for the chosen point)

(update weight vector: add a point if true label is 1 and subtract a point otherwise)



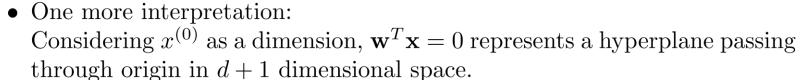
Perceptron Learning Algorithm – Intuition and Interpretation:

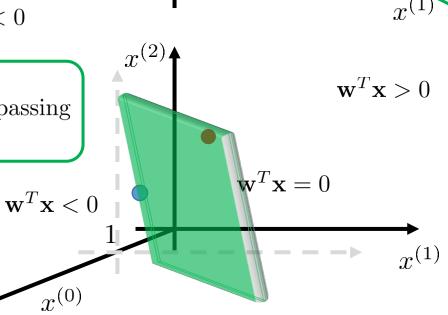
- Visualization of $\mathbf{w}^T \mathbf{x} = 0$:
 - $\mathbf{x} = [x^{(0)}, x^{(1)}, \dots, x^{(d)}]$ $x^{(0)} = 1$
 - $\mathbf{w} = [w_0, w_1, \dots, w_d]$

$$\sum_{i=1}^{d} w_i \, x^{(i)} = -w_0 \qquad \qquad \text{(Hyperplane in d-dimensional space)}$$

- Hyper-plane $\mathbf{w}^T \mathbf{x} = 0$ divides the space into two half-spaces.

 - Positive Half-space $\mathbf{w}^T \mathbf{x} > 0$ Negative Half-space $\mathbf{w}^T \mathbf{x} < 0$





 $\mathbf{w}^T \mathbf{x} < 0$

 $\mathbf{w}^T \mathbf{x} > 0$

 $\mathbf{w}^T\mathbf{x} = 0$

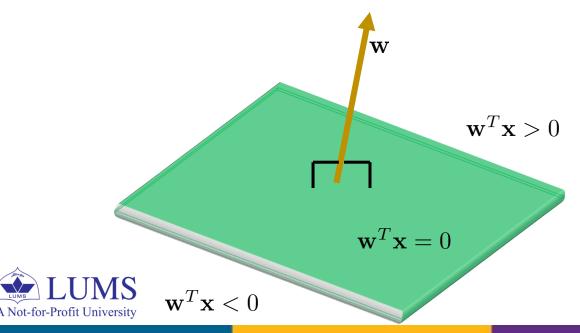
 $x^{(2)}$

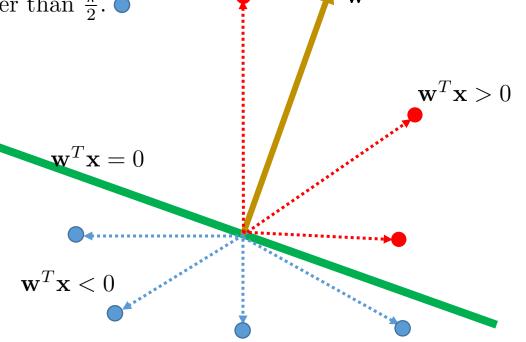
<u>Perceptron Learning Algorithm – Intuition and Interpretation:</u>

- For any point \mathbf{x}_i , $|\mathbf{w}^T\mathbf{x}_i|$ represents the distance of \mathbf{x} from the hyper-plane.
- Since every point on the hyper-plane satisfies $\mathbf{w}^T \mathbf{x} = 0$, what is the angle, α between \mathbf{w} and any \mathbf{x} ?

$$\cos \alpha = \frac{\mathbf{w}^T \mathbf{x}}{\|\mathbf{w}\|_2 \|\mathbf{x}\|_2} \Rightarrow \alpha = \frac{\pi}{2}.$$

- For any point in the psoitive half-space $\mathbf{w}^T\mathbf{x} > 0$: angle is less than $\frac{\pi}{2}$.
- For any point in the negative half-space $\mathbf{w}^T\mathbf{x} < 0$: angle is greater than $\frac{\pi}{2}$.





<u>Perceptron Learning Algorithm – Intuition and Interpretation:</u>

- We want to learn **w** such that $y_i(\mathbf{w}^T\mathbf{x}_i) > 0$ for each $(\mathbf{x}_i, y_i) \in \mathcal{D}$.
- In other words, we require $\mathbf{w}^T \mathbf{x}_i > 0$ for $y_i = 1$ and $\mathbf{w}^T \mathbf{x}_i < 0$ for $y_i = -1$

Algorithm:

```
Initialize \mathbf{w} = 0
while TRUE do
           m=0
           for (\mathbf{x}_i, y_i) \in \mathcal{D} do
                  if y_i(\mathbf{w}^T\mathbf{x}_i) \leq 0
                         \mathbf{w} \leftarrow \mathbf{w} + y_i \mathbf{x}_i
                         m \leftarrow m + 1
                   end if
           end for
           if m=0
                   break
            end if
end while
```

- We make update when $y_i(\mathbf{w}^T\mathbf{x}_i) \leq 0$.
- For example, consider a point $(\mathbf{x}_i, 1)$ for which we have $y_i(\mathbf{w}^T\mathbf{x}_i) \leq 0 \Rightarrow \mathbf{w}^T\mathbf{x}_i \leq 0$.
- Angle α between **w** and \mathbf{x}_i is greater than $\pi/2$.
- But we require this angle to be less than $\pi/2$.
- Update: $\mathbf{w}_{\text{new}} = \mathbf{w} + \mathbf{x}_i$
- What about angle (α_{new}) bewteen \mathbf{w}_{new} and \mathbf{x}_i ?
- Since $\mathbf{w}_{\text{new}}^T \mathbf{x}_i = \mathbf{w}^T \mathbf{x}_i + \mathbf{x}_i^T \mathbf{x}_i \Rightarrow \mathbf{w}_{\text{new}}^T \mathbf{x}_i > \mathbf{w}^T \mathbf{x}_i$
- Since $\cos(\alpha_{\text{new}}) \propto \mathbf{w}_{\text{new}}^T \mathbf{x}_i$ and $\cos(\alpha) \propto \mathbf{w}^T \mathbf{x}_i$

$$\cos(\alpha_{\text{new}}) > \cos(\alpha)$$

• Consider a point $(\mathbf{x}_i, -1)$

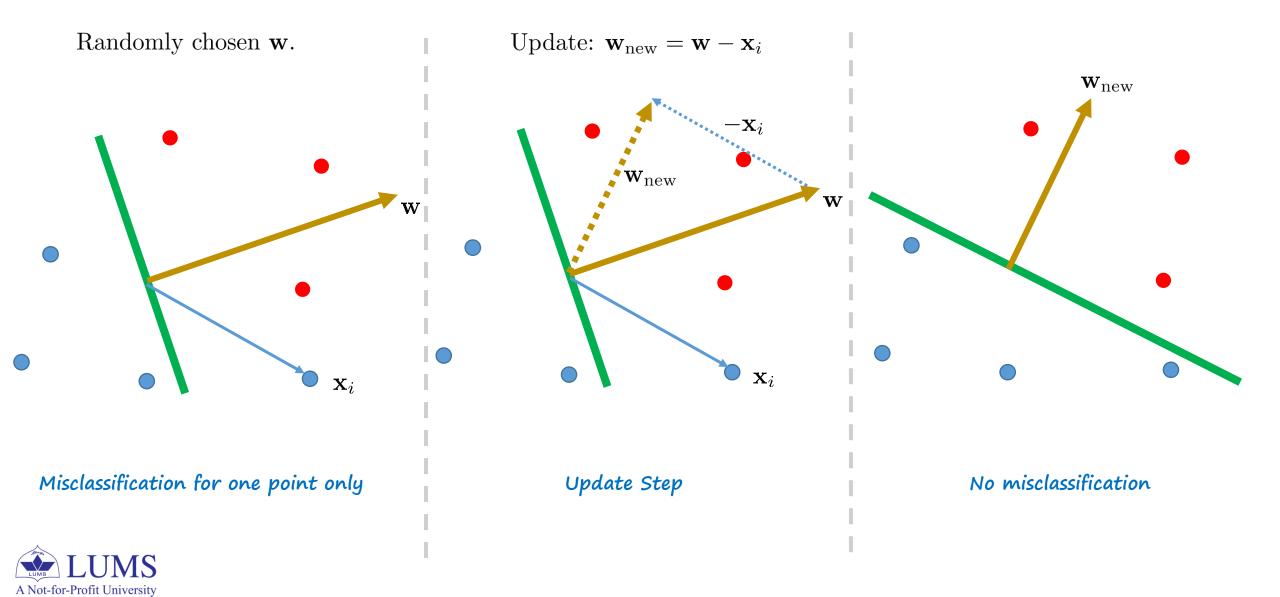
$$y_i(\mathbf{w}^T\mathbf{x}_i) \le 0 \Rightarrow \mathbf{w}^T\mathbf{x}_i \ge 0.$$

- α less than $\pi/2$.
- Require α greater than $\pi/2$.
- Update: $\mathbf{w}_{\text{new}} = \mathbf{w} \mathbf{x}_i$
- $\bullet \ \mathbf{w}_{\mathrm{new}}^T \mathbf{x}_i < \mathbf{w}^T \mathbf{x}_i$

$$\cos(\alpha_{\rm new}) < \cos(\alpha)$$

This is exactly we require!

<u>Perceptron Learning Algorithm – Intuition and Interpretation:</u>



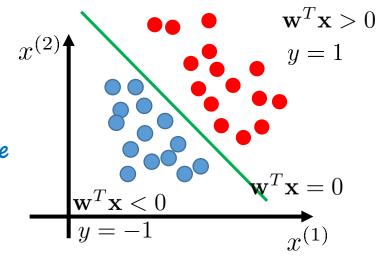
Perceptron Learning Algorithm:

```
Initialize \mathbf{w} = 0
while TRUE do
           m = 0
           for (\mathbf{x}_i, y_i) \in \mathcal{D} do
                  if y_i(\mathbf{w}^T\mathbf{x}_i) \leq 0
                         \mathbf{w} \leftarrow \mathbf{w} + y_i \mathbf{x}_i
                         m \leftarrow m + 1
                  end if
           end for
           if m=0
                   break
            end if
end while
```

(Count the number of misclassifications)

(misclassification for the chosen point)

(update weight vector: add a point if true label is 1 and subtract a point otherwise)



Outline

- Perceptron and Perceptron Classifier
- Perceptron Learning Algorithm
 - Geometric Intuition
- Perceptron Learning Algorithm Convergence

<u>Perceptron Learning Algorithm - Proof of Convergence:</u>

Assumptions:

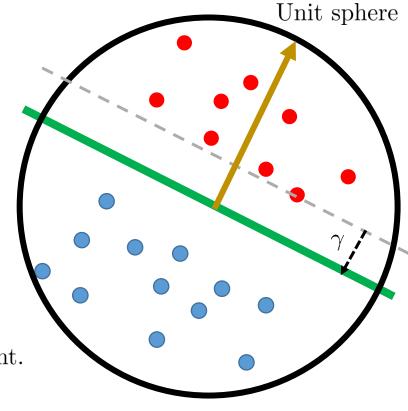
- Data is lineary separable: $\exists \mathbf{w}^* \text{ such that } y_i(\mathbf{x}_i^T \mathbf{w}^*) > 0 \ \forall (\mathbf{x}_i, y_i) \in D.$
- \bullet We rescale each data point and the \mathbf{w}^* such that

$$||\mathbf{w}^*|| = 1$$
 and $||\mathbf{x}_i|| \le 1$ $i = 1, 2, \dots, n$

- All inputs $\mathbf{x_i}$ live within the unit sphere
- w* lies on the unit sphere
- We define the margin of a hyper-plane, denoted by γ , as

$$\gamma = \min_{(\mathbf{x}_i, y_i) \in D} |\mathbf{x}_i^\top \mathbf{w}^*|$$

 \bullet γ is the distance from the hyperplane to the closest data point.



Perceptron Learning Algorithm - Proof of Convergence:

Theorem: Under these assumptions, the perceptron algorithm makes at most $1/\gamma^2$ misclassifications.

Proof:

- In our algorithm, when $y_i(\mathbf{w}^T\mathbf{x}_i) \leq 0$, we update as: $\mathbf{w}_{\text{new}} = \mathbf{w} + y_i\mathbf{x}_i$
- Consider the effect of an update on $\mathbf{w}_{\text{new}}^T \mathbf{w}^*$:

$$\mathbf{w}_{\text{new}}^T \mathbf{w}^* = (\mathbf{w} + y_i \mathbf{x})_i^T \mathbf{w}^* = \mathbf{w}^T \mathbf{w}^* + y_i (\mathbf{x}_i^T \mathbf{w}^*) \ge \mathbf{w}^T \mathbf{w}^* + \gamma$$
(1)

The inequality follows from the fact: \mathbf{w}^* , the distance from the hyperplane defined by \mathbf{w}^* to \mathbf{x}_i must be at least γ (i.e., $y_i(\mathbf{x}_i^T\mathbf{w}^*) = |\mathbf{x}_i^T\mathbf{w}^*| \geq \gamma$).

This means that for each update, $\mathbf{w}^T \mathbf{w}^*$ grows by at least γ .

• Consider the effect of an update on $\mathbf{w}_{\text{new}}^T \mathbf{w}_{\text{new}}$:

$$\mathbf{w}_{\text{new}}^T \mathbf{w}_{\text{new}} = (\mathbf{w} + y_i \mathbf{x}_i)^T (\mathbf{w} + y_i \mathbf{x}_i) = \mathbf{w}^T \mathbf{w} + 2y_i (\mathbf{w}^T \mathbf{x}_i) + y_i^2 (\mathbf{x}_i^T \mathbf{x}) \le \mathbf{w}^T \mathbf{w} + 1 \quad (2)$$

The inequality follows from the fact: $2y_i(\mathbf{w}^T\mathbf{x}_i) \leq 0$ as we had to make an update. $y_i^2(\mathbf{x}_i^T\mathbf{x}_i) \leq 1$ as $y_i^2 = 1$ and all $\mathbf{x}_i^T\mathbf{x}_i \leq 1$ (because $||\mathbf{x}_i|| \leq 1$).

This means that for each update, $\mathbf{w}^T \mathbf{w}$ grows by at most 1.

Perceptron Learning Algorithm – Proof of Convergence:

Proof (continued):

$$\mathbf{w}_{\text{new}}^T \mathbf{w}^* \ge \mathbf{w}^T \mathbf{w}^* + \gamma$$

(1)
$$\mathbf{w}^T \mathbf{w}^*$$
 grows by at least γ .

$$\mathbf{w}_{\text{new}}^T \mathbf{w}_{\text{new}} \leq \mathbf{w}^T \mathbf{w} + 1$$

(2)
$$\mathbf{w}^T \mathbf{w}$$
 grows by at most 1.

After M updates, we have:

•
$$M\gamma \leq \mathbf{w}^T\mathbf{w}^*$$

•
$$M\gamma \leq \mathbf{w}^T \mathbf{w}^* = |\mathbf{w}^T \mathbf{w}^*| \leq ||\mathbf{w}|| ||\mathbf{w}^*||$$

•
$$M\gamma \leq \|\mathbf{w}\| \|\mathbf{w}^*\| = \|\mathbf{w}\|$$

•
$$M\gamma \le \|\mathbf{w}\| = \sqrt{\mathbf{w}^T \mathbf{w}}$$

•
$$M\gamma \le \|\mathbf{w}\| = \sqrt{\mathbf{w}^T \mathbf{w}} \le \sqrt{M}$$

$$\bullet \ M\gamma \le \sqrt{M} \Rightarrow M^2\gamma^2 \le M \Rightarrow M \le \tfrac{1}{\gamma^2}.$$

Theorem is proved since the number of updates is equal to the number of misclassifications!

Summary:

- As can train perceptron to classify given data but cannot be used to estimate the probability of x or generate x given y, Perceptron classifier is discriminative.
- Assumes that the classes are linearly separable.
 - Does not make any assumptions about the data such as feature independence (required for Naïve Bayes).
- We can update the weights (model parameters) using one training data point, and therefore the perceptron classifier is an online learning algorithm.
- Learning Algorithm is based on the principle that it uses mistakes during learning to iteratively update the weights.
- Under certain assumptions, we showed the convergence of the learning algorithm.

