Co luvans 0{
C ol wn Spoe '{A

Machine Learning
K EE514 — CS535

RewREssionN - Paediction ‘{ o vericble o covhalumes 8
___—._._-———’.' v

Classrest

- wWe kEnsw Neural NEtWOrkS
—_— S S‘qu\, Mod‘. i 5'|¢'hﬂ~
x* L(-a Praceas ‘ 3» J

_

Zubair Khalid

School of Science and Engineering
Lahore University of Management Sciences

»
EVOLUTION = e

https://www.zubairkhalid.org/ee514 2023.html

&

https://www.zubairkhalid.org/ee514_2021.html

Outline

- Neural networks connection with perceptron and logistic regression
- Neural networks notation

- Neural networks ‘Forward Pass’

- Activation functions

- Learning neural network parameters

- Back Propagation.

e LUMS

A Not-for-Profit Uni

Neural Networks

Connection with Logistic Regression and Perceptron:
e d number of real-valued inputs 21,z ... (¥ € R.

e Boolean output, y € {0, 1}.

Perceptron Model:

1 b
Activation Function
2(1) w1 _
>, - | —
T 0 : 7
2+(2) Wo w x+ b Y = L it wix+b>0
0 if wlix+b<0
RY 5 R

LUMS

A Not-for-Profit University

Neural Networks

Connection with Logistic Regression and Perceptron:
e d number of real-valued inputs 21,z ... (¥ € R.

e Boolean output, y € {0,1}.

Logistic Regression Model:

b Activation function is
Logistic/Sigmoid function

x(l) wl
> —> o()
e ws wix+ b
RY -5 R

Logistic Regression Model, aka Sigmoid Neuron
<% LUMS N 7 N

A Not-for-Profit University

Neural Networks
Connection with Logistic Regression and Perceptron:

Activation Function
vs Sigmoid Neuron

1- -
0.5
| | o | | |
—B —4 -2 0 2 4 5
Weighted sum of inputs + bias
wlix+ b

LUMS

A Not-for-Profit University

Neural Networks
Neuron Model:
Compact Representation:

1
(e
(2 g(w'x +b)

: g - activation function.
1 (d—

More Compact Representation:

(e

g(w'x +b)

(2

()

e Neuron model: Characterized by weights, bias and activation function.
o Weights w, bias b - model parameters e Activation function ¢ - hyperparameter
LUMS

A Not-for-Profit University

Neural Networks
Neural Networks - Infamous XOR Problem:

e (1969) Minsky and Papert showed that a perceptron cannot classify XOR

output.

xa
1 x9 XOR 0.1 (1.1)
0 0 0 ‘ ‘ ldea;
1 0 1 Learn AND and OR
0 1 1 boundaries.
1 1 0

@) ! - !
(0,0) (1,0) *i (0,0) (1,0)

e Classes are not linearly separable: linear classifier cannot be used.

e We can either transfrorm features or project the data to higher dimen-
sional space.

e We can however build a network of linear classifiers.

LUMS

A Not-for-Profit University

Neural Networks
Neural Networks - Infamous XOR Problem:

b=1

e This is a neural network; a network of perceptrons, aka multi-layer perceptron (MLP).

LUMS

A Not-for-Profit University

Neural Networks
Neural Networks

e A neural network is a set of neurons organized in layers.

- Output is a non-linear function
- n mbination
of a linear co binatio |
- of non-linear functions
- of a linear combination of inputs

Each unit in the network is called

N~ N~~~ N~ a neuron and the network of

Input layer Hidden layer Output layer neurons is called Neural Network.

e Given the input and parameters of the neurons, we can determine the

output by traversing layers from input to output. This is referred to as
LUMS

Forward Pass.
A Not-for-Profit University

Neural Networks
Neural Networks:

Example: 3-layer network, 2 hidden layers

(1) | . .
- Output is a non-linear function
- of a linear combination
+(2) - of non-linear functions
~ of linear combinations
- of non-linear functions
z(3) - of linear combinations of inputs

e We do not count the input layer because there are no parameters assoic-
taed with it.

e Neural networks with neurons are also referred to as MLPs but we will
refer to the network as MLP only when it is constructed using perceptrons.

Feedforward Neural Network: Output from one layer is an input to the next layer.

LUMS

A Not-for-Profit University

Neural Networks

What kind of functions can be modeled by a neural network?

Intuition: XOR example

e LUMS

A Not-for-Profit Univer

Neural Networks

What kind of functions can be modeled by a neural network?

Intuition: Example (Sigmoid neuron)

_ ‘ Output o

(0.50/— (0.50/—
y =1 ¥ e y Y
’ : z=1 ’ w;l
e bias=0.5 indicated. e bias=0.5 indicated.
e weight for x is very large. e weight for y is very large.
e weight for y is zero. e weight for x is zero.
LUMS Source: http://neuralnetworksanddeeplearning.com/chap4.html

A Not-for-Profit University
e

http://neuralnetworksanddeeplearning.com/chap4.html

Neural Networks

What kind of functions can be modeled by a neural network?

Intuition: Example (Multi layer)

- N Weightled output from hidden layer
[z 0300 h=06

N ”‘N‘ |
. | P 0 4{} b — 0.30 Weightéld output from hidden layer

LY /_} 5 [1 7 0

1

-

N

=1

I rd _____.-' Lt z_.'
Weighted output from hidden layer | 3y [P
-k S—

P
| ' | —_
] T I h —
h,)
e A
- -L

,
“.‘\-\. .-";-
.-"-"-\.
,
.-':';
."/{.---) --.“’\‘.
|
i

Y j >[1 70

‘ LUMS

A Not-for-Profit University Source: http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

Neural Networks
What kind of functions can be modeled by a neural network?

Universal Approximation Theorem (Hornik 1991):

“A single hidden layer neural network with a linear output unit can approximate
any continuous function arbitrarily well, given enough hidden units.”

- The theorem results demonstrates the capability of neural network, but this does not
mean there is a learning algorithm that can find the necessary parameter values.

- Since each neuron represents non-linearity, we can keep on increasing the number of
neurons in the hidden layer to model the function. But this will also increase the
number of parameters defining the model.

- Instead of adding more neurons in the same layer, we prefer to add more hidden

layers because non-linear projections of a non-linear projection can model complex
functions relatively easy.

LUMS

A Not-for-Profit University

Outline

- Neural networks connection with perceptron and logistic regression
- Neural networks notation

- Neural networks ‘Forward Pass’

- Activation functions

- Learning neural network parameters

- Back Propagation.

e LUMS

A Not-for-Profit Uni

Neural Networks

Neural Networks — Notation:
Single Neuron:

(e

g(w'x +)
2(2)— Y z=wlx+b Pre-activation
- 9(2) Activation
p(d)—
e If we stack n training data in a matrix X of size d x n, that is, X = [x1,X2,...,X,]

e Using X and by defining 1 a row vector of ones of length n, we can define
‘pre-activatation’ operation w’x + b for all inputs compactly, denoted by

Z as c c c .
z=wlX + bl Pre-activation Linear transformation

(1 xn) (Ixd)(dxn)+(1xn) (Aggregation)
e Using activation function g, we obtain

a=g(z) Activation Non-linear transformation

e Activation function is operating on each entry of z.

LUMS e a-arow vector of length n; i-th entry represents an output for i-th input.

A Not-for-Profit University

Neural Networks
Neural Networks — Notation:

e [- number of layers.

e Number of nodes in the ¢-th layer, mlé]

o agg] denotes the output of i-th node in the ¢-th layer. o al‘) - vector of outputs of ¢-th node.
e al% = x input layer.
e alll =y output layer.
Example: 3-layer network, 2 hidden layers
*L=3 0
aq
2
PY m[l] — 4’ m[2] — 3’ m[S] =1 agO] .’13(1) a’[l]
qld]
2
J9 (2@ ay
ol
3
oL 73 agz}
ol
4

LUMS

A Not-for-Profit University

Neural Networks

Neural Networks — Notation:

° W,EE] and b,,[ig] denote the weight and bias associated with the i-th node in
the /-th layer respectively.

[] denote the weight and bias associated with the 7 — th input of the
i- th node in the /-th layer respectively.

Example: 3-layer network, 2 hidden layers

Layer 1 output

T
a[ll] a[ll] = g(zgl]), zgl] — w[ll] X + b[ll]
(1) 2]
T ay T
4 ol = o). o) = i el
z(2) a[22] a[13]
1] 1] [_ ot 1]
a,g” ag- =g(z3°), 23 =Wy X+by
(3) [2]
X g T
" = g, o= i el

LUMS

A Not-for-Profit University

Neural Networks

Neural Networks — Notation:
Layer 1 output

1 1 1 11T 1
A= g, o1 = ,
ay
T
= gl =l
0]
2
T
agl] :g(zz[))l]), zgl] —ng] X—I—b:[gl] ;
L
T
o = gl A =
Ty " T T
wi] | A1
will” 7 7,
wlitl — 2 bl — by L1 — |*2
1] R LT
W3 . b 25
T T
_Wé[ll] | _bgl] _ _Zé[ll] |

LUMS

A Not-for-Profit University

ol
2(1) o’
ab"
Ne) ay!) ——
all
+(3) ol2
ay
alll — g(z[1), L — Wy 4 pll

21 — Wlilgol |yl

e W and bl are the parameters of the first layer.

Neural Networks
Neural Networks — Forward Pass:

alll = g(z11), 10 — Wiy 4 plt aj’
A (@ a?
zH = witlglol 4 pli ol
0 (2@ o2
e). What is the size of W17 2 1]
a3
A. No. of nodes x No. of inputs. 4 x 3 L0 2(3) agz]
3
No. of nodes x No. nodes in the previous layer. a’
e Q. Can we write output of second layer using the notation we have defined?
al2l — g(z[2]) 712 — W2l 4 pl2] e Q. What is the size of W[2I? 3 x4

e (). What is the size of W37 1x3
al¥l = g(zP?), 2B = WBIa2 4 plB]

e Using these equations, we can determine the output given input and pa-
LUMS

rameters of layers (Forward Pass).
A Not-for-Profit University

e W and bl are the parameters of the ¢-th layer.

Neural Networks

Neural Networks — Forward Pass Summary:

— 9@z, I = Witlx 4 pl]

21— Wilall 4 bl
Ax1)=4x3)3x1)+(4x1)

al? = g(z12)), 2 = Wizlall 4 bl
Bx1)=Bx4)(4x1)+(3x1)

al¥l — g(z1), 28 — Wl 4 BB

(I1x1)=(1x3)3x1)+(1x1)

e In general, we have
altl — g(z[ﬂ)’ 7l = wlldgle-1 4 plé

for ¢ =1,2,...,L, where al” = x.

LUMS

A Not-for-Profit University

a;

A (g al?
all!
2

algol z(?) 9[22]
ol
3

Qg)] z3) aE]
ol
4

e How many parameters do we have by the way?

e This formulation is for one input x.

e How can we extend this formulation n inputs?

Neural Networks
Neural Networks — Forward Pass — Incorporating all Inputs:

alll = g(zIM), gzl = wllx 4 pl! o @ el y
aq T Gy
ol
z1 = Wzl 4 pli o @B ’ o2 a¥h—s
(Ax1)=4x3)3x1)+(4x1) all
Recall: L (@@ " o
2 g(w'x +)
7(2) 2=wlx+b
: : () Al = gz, 7l — wilx 4 pll]
()—
7z — WAl 4 pli
e For single neuron, we developed the following formulation
incorporating all inputs simultaneously. (4xn)=(4x3)(3xn)+ (4 xn)
z=w!X +bl
a = g(z) e a - a row vector of length n;
LUMS i-th entry represents an output for i-th input.

A Not-for-Profit University
e

Neural Networks
Neural Networks — Forward Pass Summary — All Inputs:

Al = gzll)y, 7zl — wilx 4 plUl

7z — WAl 4 pli
(Axn)=(4x3)(3xn)+ (4 xn)

Al = gz, 718 = wkRIAD 4 pl
Bxn)=(3x4)(4xn)+(3xn)

AP = g(ZB)), 7Bl — WBIA[Zl | Bl

(Ixn)=(1x3)(3xn)+(1xn)

LUMS

A Not-for-Profit University

ay

Lo G0 a2
L
2

Lo @ 2 el —

N
3

2

ay) zt ay
L
4

e In general, we have

A = gzl ozl _ WAl fpl r=1,2,.. . L

Outline

- Neural networks connection with perceptron and logistic regression
- Neural networks notation

- Neural networks ‘Forward Pass’

- Activation functions

- Learning neural network parameters

- Back Propagation.

e LUMS

A Not-for-Profit Uni

Neural Networks

Activation Function:

e Single neuron is characterized by weights, bias and activation function g.

e We require g to be some non-linear function. 2 (D—

e Why? 2(2)

e Consequently, different layers of the network can be equivalently repre-

sented by a single linear transformation.

e We require active function g to be differentiable if we want to use gradient
descent.

e Some standard activation functions:

e identity (linear), step, rectified linear, leaky rectified linear sigmoid, tanh

LUMS

A Not-for-Profit University

Neural Networks

Step:
e Step function is defined as 15+
9(2)
(2) 1 z>0
Z) =
& 0 2<O0 _
L1 S o
e We have used this activation function before.
5 4 > >

Perceptron
e Issues: Non-differentiable and only supports binary classification.

Linear:
9(z) =z +
e Constant derivative, ¢’(z) = «; cannot be used for backpropagation.

e Used for simple linear regression model.

e Does not capture non-linearities irrespective of the depth of the network.

LUMS

A Not-for-Profit University

Neural Networks

Sigmoid:
g(z) =o0(z) = 1 +1 (Sigmoid: because of S shaped curve)
e—z
e Squishes values in (—o00,0) to (0,1), bounded, strictly increasing. 1-
e Suitable for output neurons of neural networks used for classification. 9(z)

e We have used this activation function before. Logistic regression.

0. 5=
e It is differentiable. ¢'(z) = g(2)(1 — g(2))
Issues:
e Saturation Problem or Vanishing Gradient: ' —i £
-5 -4 -2 0

Neuron is saturated considered when it reaches its maximum or minimum value.

g(z) =0 or g(z) = 1. Conseqeunce: ¢'(z) =g(z)(1 —¢'(z)) =0 (poor learning for deep networks)

e Sigmoid outputs are not zero-centered:

Due to this, the gradient of all the weights for a neuron is either positive or
negative. Consequently, the weights move in one direction. This issue is less
severe as gradients are added across the batch and mitigate this.

LUMS

A Not-for-Profit University

Neural Networks
tanh (Hyperbolic tangent):

(2) = tanh(z) = 20(22) — 1 2 e
z)=tanh(z)=20(22) -1l =m—"——" — | = —
& 1+ e22 e* + e ?

e Scaled version of sigmoid.
e Squishes values in (—o00,o0) to (—1,1), bounded, strictly increasing.

e Unlike Sigmoid, tanh is a zero-centered function and resolve the issue
associated with the sigmoid.

o It is differentiable. 4/(2) =1 — (g(Z))2

[Ssues:
e Saturation Problem or Vanishing Gradient:

Neuron is saturated considered when it reaches its maximum or minimum value.

g(z) =—1org(z) =1. Conseqgeunce: ¢'(z) =1— (g(z))2 =0 (poor learning for deep networks)

LUMS

A Not-for-Profit University

Neural Networks
Rectifier — Rectified Linear Unit (ReLu):

z 220
z) = max(0, z) = - : .
9(2) (0, 2) {0 L <0 e Super simple
1 220 51
e It is differentiable. ¢'(2) = - g(2)!
0 z2<0

e [t is the most used activation function.

Whg? 05

e Unlike Sigmoid and tanh that required the computation of exponents,
easier to compute.

e It only activates for which the output is non-negative. It deactives the
neurons if the pre-activation output is less than 0. This makes RelLu

computationally efficient relative to sigmoid and tanh.
[Ssues:

e Relu is not zero centered.
As indicated earlier, this is not a major issue and training the network longer
can resolve this.

e ReLu does not suffer from saturation problem. Vanishing gradient however
occurs for negative values; dead neuron.

LUMS Different variants of ReLu have been proposed to overcome these issues.

A Not-for-Profit University

-

Neural Networks
Leaky Rectified Linear Unit (Leaky RelLu):

9(2)—{z i

az z<0

9(2)
e This resolves the issues associated with RelLu to an extent.

e Due to non-zero output for negative values, it keeps neurons alive.

e [t is not zero centered but close to it.

e If o is any value less than 0.01, randomized ReLu. Leak

e To be precise, a = 0.01 for leakly ReLu.

-4 -2 0

A i / I z2=>0

o It is differentiable. g (z)=
a z<0

We use rectified linear, leaky rectified linear sigmoid and tanh for hidden layer.

LUMS

A Not-for-Profit University

Neural Networks
Activation Function for output layer:

e Identity function if the problem is regression.

e Sigmoid function if output needs to be between 0 and 1.

e c.g., probability value.

e classification problem.

e Softmax if output needs to be probability distribution.

e multi-class classification problem.

LUMS

A Not-for-Profit University

Neural Networks

Choice of the Activation Function:

For classification tasks;

« we prefer to use sigmoid, tanh functions and their combinations.
Due to the saturation problem, sigmoids and tanh functions are sometimes avoided.

As indicated earlier, ReLU function is mostly used (computationally fast).

* RelLu variants are used to resolve a dead neuron issue (e.g., Leaky Relu).
[t must be noted that RelLU function is only used in the hidden layers.

Start with RelLu or leaky/randomized Relu and if the results are not satisfactory,

you may try other activation functions.

LUMS

A Not-for-Profit University

Outline

- Neural networks connection with perceptron and logistic regression
- Neural networks notation

- Neural networks ‘Forward Pass’

- Activation functions

- Learning neural network parameters

- Back Propagation

e LUMS

A Not-for-Profit Uni

Neural Networks
Learning Weights:

e Given the training data, we want to learn the weights (weight matri-
ces+bias vectors) for hidden layers and output layer.

] . Example
Notation reuvisit:
e [- number of layers. ay’
2]
e Number of nodes in the ¢-th layer, m!¥ a) (20 " “
D)
° agg] denotes the output of i-th node in the /-th layer. Jol (@) o o —
2
[1]
e alYl output of ¢-th layer, al% =x. @3
a0 2(3) a?]
e all =y output layer. ’ ol
) WZ[E] and b,[f] denote the weight and bias associated with the ¢-th node in
the /-th layer respectively. w il w2 W3]
° [] denotes the weight associated with the j-th input of the i-th node in
bl b2l b3l

the /-th layer.

Parameters we
need to learn!

LUMS

A Not-for-Profit University

Neural Networks
Learning Weights:

e We assume we have training data D given by

D = {(Xlayl)a (X23y2)7 R (Xnayn)} g Xd X y

e Consider a network with d nodes (features) at the input layer, 1 output
node and any number of hidden layers.

e Define the loss function (for regrgssion problem): We use log loss here if we have a

1 2 e 2
L== Ui — Y classification problem and
2 ; () output represents probability.

where 1; denotes the output of the neural network for ¢-th input.

e We can use gradient descent to learn the weight matrices and bias vectors.

e Given our prior knowledge, output ¥ is a composite function of input x.
Therefore, it is continuous and differentiable and we can use chain rule to
compute the gradient.

We use a method called ‘Back Propagation’ to implement the chain rule for

LUMS the computation the gradient.

A Not-for-Profit University
O OOOOOOOUOREBREUURRUUEBRRRSOSSSSS S S™SSOw@s@m ™ e

Neural Networks
Back Propagation — Key Ildea:

e We compute the loss function using forward pass.

o~

x@- Ui

Sl
o (z® al?
[1]
as n .
L (@ ol A }Z (5 — v:)° The weights are the only
] 2 — parameters that can be
o . ’ 2] modified to make the loss
a . .
. o ’ function as low as possible.
4

Y Learning problem reduces to the question
e Gradient descent: fwﬂ — fwﬂ —a—p of calculating gradient (partial derivatives)
’ ’ ow; ; of loss function.

e We compute the derivative by propagating the total loss at the output
node back into the neural network to determine the contribution of every
node in the loss. (Back Propagation)

LUMS

A Not-for-Profit University

Neural Networks

Back Propagation — Example:
e 2 layer with 2 neurons in the hidden layer, 2 inputs, 2 outputs network.

e Assuming sigmoid as activation function, that is, g(z) = o(2).

=
)
|

e Given training data
M =0.05 2@ =0.1, y® =0.01, @ =0.99
e Initial values of weights and biases:

wih =0.15, wi'y = 0.2, wy) = 0.25, whh = 0.3, b1 =0.35, b} = 0.35.

wiy = 0.4, w’, = 045, wy) = 0.5, wyy = 0.55, b)') = 0.6, by = 0.6,

LUMS

A Not-for-Profit University

Neural Networks

Back Propagation — Example:

Fil a[12] —_— (1) e Loss function
(noting output is a vector):
e w2 1)
1 ; > oL e £=S1@G" —y)? = @ —y@)?|?
w ' 1
o £ = 51(0.01,0.99) — (0.7514, 0.7729)|]%= 0.2984
Forward Pass
1 1 1 1 1
N C S I K A = wiz® 4 wiha® b = 03775, ol = ¢(0.3775) = 0.5933
T T
ol = g1y, 200 — w1 4 pll 2 = whl x + bl = 03925, b = (0.3925) = 0.5969
2 2 2 91T 2 T
o) = g(z), A =wi? x40 A=W x ol = 1106, o = g(1.106) = 0.7514 = §V
2 2 2 91T 2 T
o) = g(), A =wh x+ b) =wi x+by) =1.225, af) = g(1.225) = 0.7729 = §®

Nothing fancy so far, we have computed the output and loss by traversing neural network.
LUMS Let’s compute the contribution of loss by each node; back propagate the loss.

A Not-for-Profit University
O OOOOOOOUOREBREUURRUUEBRRRSOSSSSS S S™SSOw@s@m ™ e

Neural Networks
Back Propagation — Example:

w 2 1

o = L 2

LN 2)

2 2

ay = S ey Y

: oL
e Consider a case when we want to compute 2
owy 7

e Traverse the path from the loss function back to the weight w[f]l

1 ~ ~
£=2@" =y)? = @ -y

oL oL 95V 022
7V = o(z) 2~ 7@ 2.8 A [
! Owy 0y 9z Owy;

o+ ufZlaf) 4o

z?] = w[zj

= 0.0821

LUMS

A Not-for-Profit University

Neural Networks
Back Propagation — Example:

a[10] _ L) Wiy a[ll} Wi o2 — y(” 1
> £ =Sl =y ™M) = G~y
1] Wy 2,1 o] @)
CL[QO] — 3}(2) wgJQ 05 w[22]2 Qs — Y
. oL
e Consider a case when we want to compute 0
owy 1

e Traverse the path from the loss function back to the weight fw[ll]l There

are two paths from the output to the weight wgl]l In other words, wgl]l is

contributing to both the outputs.
oL _ oL 95w a2 aal! 92 ar 95@ 827 aall 92
- +

[1] - =
Owyy oy 8z£2] 8(1[_[1] 8,%1] awgf]l 0y 8,%2] 80,[11] 82{1] awﬁ]l

e Looking tedious but the concept is very straightforward. I encourage you
to write one partial derivative using the same approach to strengthen the
concept.

LUMS

A Not-for-Profit University

Neural Networks
Back Propagation — Vectorization:

ay) 3] _ 3] — (513

0 (2O 1 ol2 a - =y a g(z"")
A1
2 Y é Y

o) (@@ ay) alt! —> [W[S]? bl = 2B 2z = WBlal2l 4 plBl
aél] J \ J

o] [z ol

a3 3 . N

ol al2] al?l = g(z?)
[w[z] b[z]]_{ 2| 22— wilaltl 4 bl

U= g(=l")

al’l = g(z1?)), 2 = Wilaltl | pl2

n w0 = wilx o pl]
al®l = g(Z[sl), 713 — Wil g2l + bl3! [W) bl]]_'L Z Z WHx +b

LUMS L0 _

A Not-for-Profit University

Neural Networks

Back Propagation — Vectorization:

e We compute loss function £ using forward pass.

e We update W and bl¥ using gradient descent as:

/) __ 14 oL /) __ 14 oL
Wi =wl — 25, bl = bl — £
Partial Derivatives:

oL 9L 0a¥ 0z oL L 9al¥ 9zP

OWBl — 9aldl 9zB8] W
oL oL 0ald 9z a2l Hz2
OWE ~ 9all 928 9al 922 oW

oL oL 9aldl 9z13 pal?l 9z!2]
ob2 — 9all 928! 9al2l 9z bl

oL oL 0all 9z gal?l 9z[2 galll 9zl

W — 5all 9z dall 0z dalll 9zl HWIL

oL oL 0all 9z gal?l 972l palll Gzl
oblll — 9all 9281 9al2l 022 dalll 9zl PblL

LUMS

A Not-for-Profit University

obBl 9al3l 9zl Gbll

Forward Pass

Wil pldl

wid plZ

wit plt

al’l = g(z?)

23— Whla | bl

al?l — g(z[2])

212 — Wi2lalll 4 pl2

alll — g(z[l])

21— Wity 4 pll

Neural Networks

Back Propagation — Vectorization:

Partial Derivatives:

oL oL dall 9zl oL

oL 0albl 9zl

OWB ~ 9aBl 9208 gWEI 9bBl — 9al3l 9z gbBl
0L oL 0al’l 9z gal? Hzl?
oW~ 92l 9251 a2 0212l oW
oL 9L 9al® 0z 9al? 9gl2
obl2l ~ all 9zBl dall 9z Hbl2

L oL 9all 9213 9al? 922! galll 9zl
GWI — 9all 9281 §a2l 9z dalll 9zl W]
oL oL dal’l 9z pal?l 9z[2 palll Gzl
abll — 9abl 9z 9al? 922 dalll 9z gbll]

e We need to develop capability to compute 3

LUMS

A Not-for-Profit University

oL oL 0z oL 0oL 0z!3]
WE ~ 928 aWBl BB~ 5708 opBl
oL oL 0z
oW Hzl2 W2l
oL oC ozl2
obl2l 9zl obl2]
oc oL ozl
oW 9zl oW
oL oL ozl
oblll 9zl 9bll]
oz!" oz
[f]v W @] and ETNUR

Neural Networks
Back Propagation — Vectorization:

e We first compute % for £ = L (last layer), that is,

oL oL oalll
OzlLl — dalll ozlL]

e Derivative of loss function with respect to activation function output of
the last layer:

e It depends on the defintion of the loss function.

e Regression:

2 1
(@ —y)” = Slal" — |

Squared error: [—

DO |

e (lassification:

Log-loss (cross entropy): £ = —ylogal™l + (1 —1)log (1 _ a[L])

LUMS

A Not-for-Profit University

In literature, we often denote

oL

% with §¢.
alll —y
Y I—y

Neural Networks
Back Propagation — Vectorization:

e Derivative of activation function with respect to pre-activation output:

all = g(zl)

[£]
o = 9@ =@ (1 o)
Z

if sigmoid is used as an activation function.

e (» represents the element wise multiplication of matrices or vectors.

e Combining these two, we have

oL oL dalll oL

_ _ /(11
920~ 5all O g ~ gam © 927

e We have computed % for ¢ = L (last layer).

LUMS

A Not-for-Profit University

Neural Networks
Back Propagation — Vectorization:

e Observing this,
oL oL 9al¥ 0z 0al?! 9212 palll 9zl
W — 9abl 92831 9al2l 9212 dalll 9zl WL

we can write
oL oL 9zl palt
0zl — 9zl palll g0

e Derivative of pre-activation output of the layer with respect to the input
of the current layer or output of the previous layer:

ozl 1]

. [£+1]
gal =W

21— W10 | plet]

e Using these results, we can write
oL T 0L
Idadipen [e+1]" =& /(1]
ozl (W az[£+1]) © g(z")

changed order to keep the consistency of the multiplication of matrices.

LUMS

A Not-for-Profit University

Neural Networks
Back Propagation — Vectorization:

e Derivative of pre-activation output of the layer with respect to weight or
bias:

e We know that

Ozl Ozl
4] — Wit gle—1] [4] _ glt-1] kel
27 =Wham m+b owil ~ 2 ool
e Finally, we obtain
oL oL 0zl 0L T

a[

oW — 9zl oW — 9zl

oL oL 049 oc
bl 9210 oblll — 9gll

LUMS

A Not-for-Profit University

Neural Networks
Back Propagation — Vectorization:

Key Equations:

e Gradients with respect to weight and bias:

0L 0L T oL oL
oWl ~ 9700 2 obld — 9zll

oL
e We compute -5 as

oL T O0L
R [e+1]4 Y&~ 1 o l4]
T = (W az[f+1]) © ¢'(z")

e Base case:

oL oL T
dzlLl — HalLl ©9 (Z[])

e For sigmoid activation function:
J(@") =o(@") e (1) v(zm)
LUMS

A Not-for-Profit University

Neural Networks
Back Propagation — Vectorization:

Interpretation of Key Equations:

oL oL T 9L 0L OL T oL T
= (=11 = = [£+1] (1]
oW~ 900 * oblll — 9zl 9zld (W az[em) © gt
aldl — y
WEB pBl = 2Bl 0L
’ 7 0z13]
oL 1 oL oL a
9217 4 -0z e

oL
Ozl

(1) a2
o ! oL
ol w2 pll = 22 pE)
URE) o2 B f z
5 2 1
1]
a3 alll
0] 2B [2]

witl pll|—| Lo

witl plt Wk bl wil bl
LUMS X Al — 5

A Not-for-Profit University

Neural Networks
Back Propagation — Vectorization:

e Assuming squared error and sigmoid activation, let’s see if it all makes
sense. We want to compute:

oL oL 0al
oW 9zl oW A0 (2®
e Base case: a[QO} o
oL _ oL /(18]] i8]
= = — 1x1
55 = g © 9@ = (@ —y) © gE=") 1x . @
3

oL _ (W[2]T 3_5) o ¢'(al) = (Wm’f ((W[s]T 9Ly g gf(zm)) & ¢'(z)

ozl 0z!?]

4x3 1 1
e Finally: 3% 3 X

oL oL 0T
= a
Wil 9zl
4x3 41 %1 1 x3

LUMS

(3
aq

l —s

A Not-for-Profit University
e

Neural Networks

References:

* TM — Chapter 4
* CB — Chapter 5 (See Section 5.3 for back propagation)

* ‘Neural Networks: A Comprehensive Foundation’ and ‘Neural Networks and Learning
Machines’ by Simon Haykin

* http://neuralnetworksanddeeplearning.com/

LUMS

A Not-for-Profit University

http://neuralnetworksanddeeplearning.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

