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Unsupervised Learning
Overview:

The learning algorithm would receive unlabeled raw data to train a model 
and to find patterns in the data

All 
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data
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Model
Structured data,
Labeled data,
Clustering

Clustering, aka unsupervised learning (due to historical reasons), is 
the most widely used technique.



Clustering
Overview:

Clustering

Given the data, group ‘similar’ points into the form of clusters.



Clustering
Overview:
- Idea: the process of grouping data into similarity groups known as clusters.

- Formally, organize the unlabeled data into classes such that 

- Inter-cluster similarity is minimized:

- low similarity between data points in different classes

- Intra-cluster similarity is maximized:

- High similarity between data points of each class

- In contrast to classification, we learn the number of classes and class labels 
directly from the data.



Clustering
Applications of Clustering:

Marketing: Clustering is used for segmentation of the customers/markets to do 

targeted marketing.
- Spatio-temporal demographic distribution of the sales of products
- Insurance companies cluster policy holders to identify  groups of policy 

holders with a high claim costs on average

Text Analysis: Grouping of a collection of text documents with respect to similarity in their content.
- Grouping of news items when you search for an item

Anomaly Detection: Given data from the sensors, grouping of sensor readings for machine 

operating in different states and detect anomaly as an outlier.

Finance: Allocation of diversified portfolios of stocks by using clustering.

Earth-quake studies: Clustering of epi-centers of earthquakes are distributed around or along fault 

lines.



Clustering
Aspects of Clustering:

- Given the data, what do we need to carry out clustering?

- A measure to quantify or determine similarity

- A criterion to evaluate the quality of the clustering
- Low inter-class similarity, High intra-class similarity
- Ability to identify hidden patterns in the data

- Clustering techniques/algorithms for grouping similar data points
- Partitional Clustering
- Hierarchical Clustering
- Model Based
- Density Based



Clustering
(Dis)Similarity using distance metric:

Symmetry 

Self-Similarity

Triangular Inequality 

- We studied earlier; Minkowski, Euclidean distance, Manhattan distance,  
Chebyshev distance, cosine distance

- For categorical variables, we use Hamming distance

Non-negativity



Clustering
Evaluation of Clustering:

- Unlike supervised learning problems, the evaluation of quality of a 
clustering is a hard problem and is mostly subjective as the information 
about correct clusters is unknown.

- Using Internal Data:
- Use the unlabeled data for evaluation of the clustering algroithm.

- Using External Data:
- Use labeled data (supervised learning) to evaluate the performance of different 

clustering algorithms.

Evaluation criteria:



Clustering
Evaluation of Clustering using Internal Data:

- Inter-cluster separability
- measure of the isolation of the cluster
- E.g., measured as the distance between
the centroids of the clusters 

- Intra-cluster cohesion
- measure of the compactness  of the cluster
- E.g., measured by the sum of squared error that quantifies the spread of the points 

around the centroid.



Clustering
Evaluation of Clustering using External (Labeled) Data:

- Use labeled data to carry out clustering and measure the extent to 
which the external class labels match the cluster labels. 

- Idea: Evaluation of clustering performance using the labeled data gives us some 
confidence about the performance of the algorithm.

- This evaluation method is referred to as evaluation based on external data.

- Assuming each class as a cluster, we use classification evaluation metrics 
after clustering:
- Confusion matrix
- Precision, recall, F1-score
- Purity and Entropy



Clustering
Evaluation of Clustering using External (Labeled) Data:

Entropy:

Measure of the proportion of different classes in each cluster.



Clustering
Evaluation of Clustering using External (Labeled) Data:

Purity:

Also serves as a measure of the proportion of different classes in each cluster.

- Since we do not have labels associated with the data for the clustering problem; it 
must be noted that the good performance on the labeled data does not guarantee 
good performance on the data with no labels. 

Remark:



Clustering
Clustering Algorithms:

- In clustering algorithms, we usually optimize the following for a given 
number of clusters.

- Tightness, spread, cohesion of clusters

- Separability of clusters, distance between the centers

- Ideally, we require clustering algorithms to be

- scalable (in terms of both time and space)

- able to deal with different data types and noise/outliers

- insensitive to order of input records

- interpretable and usable



Clustering
Clustering Algorithms:

- Partitional Clustering
- Divides data points into non-overlapping subsets (clusters) such 

that each data point is in exactly one subset.
- E.g. K-means clustering

- Hierarchical Clustering
- Constructs a set of nested clusters by carrying out hierarchical 

division of the data points.
- E.g., Agglomerative clustering, Divisive Clustering

- Model Based Clustering
- Assumes that the data was generated by a model and try to fit the 

data to model that defines clusters of the data

- Density Based Clustering
- Assumes that a cluster in the space is a region of high point density 

separated from other clusters by regions of low point density.

Partitional 

Hierarchical
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Partitional Clustering
Overview:



K-means Algorithms
Overview and Notation:



K-means Algorithms
Algorithm:

In K-means algorithm, we carry out the following steps:

- Input: K and Data D

- Randomly choose K cluster centers (centroids) 

- Repeat until convergence:
- Each data point is assigned membership of the cluster of closest centroid
- Compute the centroids again for each cluster using the current cluster memberships

Computations:

Repeat until convergence:

Complexity:



K-means Algorithms
Illustration:



K-means Algorithms
Illustration:



K-means Algorithms
Illustration:



K-means Algorithms
Illustration:



K-means Algorithms
Illustration:



K-means Algorithms
Illustration:



K-means Algorithms
Illustration:



K-means Algorithms
Illustration:



K-means Algorithms
Stopping and Convergence Criterion:

Multiple convergence criteria:

Interpretation: clusters are no more changing.

Remark: Algorithm may converge at a local optimum.



K-means Algorithms
Evaluation of K-means clustering:



K-means Algorithms
Choice of Initial Centroids:
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Possible solutions:



K-means Algorithms
Number of Clusters:



K-means Algorithms
Limitations/Weaknesses:



K-means Algorithms
Summary:

- Despite these limitations, K-means is the most popular and fundamental 
unsupervised clustering algorithm; 

- Simple: two-step iterative algorithm; easy to understand and to implement.

- Computationally efficient: O(K n d) is the time complexity.

- It assumes that the number of clusters is known.

- Most of the convergence takes place in the first few iterations.

- Performance of  the clustering is often hard to evaluate, that is true for every 
clustering algorithm.

- It is sensitive to initial values of centroids, outliers and difference in sizes, densities 
and shapes of clusters. 
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- We take a union of clusters 
at level i+1 to obtain a 
parent cluster at level i.

Hierarchical ClusteringOverview – Illustration:

6 clusters

4 clusters 3 clusters 2 clusters

Dendrogram



Hierarchical Clustering
Overview:
- In hierarchical clustering, we carry out a hierarchical decomposition of 

the data points using some criterion.

- Use distance or similarity metric to carry out hierarchical decomposition. 
We do not need to define the number of clusters as an input.

- A nested sequence of clusters is created in this decomposition process.

- This nested sequence of clusters, a tree, is also called Dendrogram.

- A tree data structure, that records the sequences of splits or merges, 
used for the visualization of hierarchical clustering techniques.

- We represent the similarity between two data-points in the 
dendrogram as the height of the lowest internal node they share.

- Root corresponds to one cluster and leaf represents individual clusters.

- Each level of the tree shows clusters for that level.

Dendrogram:



Hierarchical Clustering

Overview – Illustration:

Data Dendrogram Nested Clusters

- Dendrogram is the representation of nested clusters. 

- We can cut the dendrogram at a desired level to carry out clustering; the 
connected data-points below the desired level form a cluster.



Hierarchical Clustering
Overview:

- Agglomerative:
- Start with considering each data point as one cluster
- Merge the clusters iteratively
- Keep on merging until all clusters are fused to form one cluster
- Also termed as ‘Bottom-Up’

- Divisive:
- Starting with considering all data points as a single cluster
- Divide (split) the clusters successively
- Also termed as ‘Top-Down’

- In both approaches, we usually similarity (distance metric) one cluster at a time.



Agglomerative Clustering
Algorithm:

In agglomerative algorithm, we carry out the following steps:

Complexity:



Agglomerative Clustering
Agglomerative Clustering:

- Here, we are merging the two clusters that are nearest to each other.

- A group of points represents a cluster.

- We have studied a distance metric that computes the distance between points.

Question: How do we compute the distance between a point and a cluster or the distance between 
two clusters? 

Answer: We can define the closest pair of clusters in multiple ways, and this results in different 
versions of hierarchical clustering.

- Single linkage: Distance of two closest data points in the different clusters (nearest neighbor) 

- Complete linkage: Distance of the furthest points in the different clusters (furthest neighbor)

- Group average linkage: Average distance between all pairs of points in the two different clusters.

- Centroid linkage: Distance between centroids

- Wards linkage: Merge the clusters such that the variance of the merged clusters is minimized.



Agglomerative Clustering
Agglomerative Single Linkage:
- Single linkage: Distance between the two clusters is the distance 

between the closest data points (nearest neighbor). 

- Complete linkage: Distance between the two clusters is the distance 

between the furthest data points (furthest neighbor)

- Results in (long and thin) clusters.

- Sensitive to noise and/or outliers

- Results in more compact spherical clusters (biased towards globular, blob clusters).

- Less sensitive to noise and/or outliers.



Agglomerative Clustering
Agglomerative Single Linkage:

- Single linkage vs Complete linkage:

Single linkage Complete linkage



Hierarchical Clustering
Summary:

- We obtain a set of nested clusters arranged as a tree, aka dendrogram.

- We do not need to specify the number of clusters in advance. 

- Agglomerative is bottom-up and divisive is top-down.

- We have different metrics to quantify the distance between the clusters; the clusters 

are different for each metric. 

- Hierarchal clustering is often used for analyzing text data or social network data. 

- Unlike K-means, hierarchical clustering is does not scale well due to significant 

computational cost O(n2).

- Like any heuristic search algorithms, local optima are a problem.

- Interpretation of results is (very) subjective. 



Clustering
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