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Deep Learning (DL)
Overview:

- We have already studied deep learning

- Deep Learning = Deep Neural Network

- Using a neural network with several layers of nodes

- Deep: high number of hidden layers

Deep neural network – generalize very well as they are capable of 
learning the true underlying features.



Deep Learning (DL)
Difference between ML and DL:

- High number of layers in deep neural network enables 

- feature identification

- processing in a series of stages

DL

Multi-layer networks have been around but what has changed recently?

ML



Now we have more 

- Data; deep learning needs more data 

- Computing power (availability of GPUs, parallel processing)

- New tricks to learn the weights of the network

Deep Learning (DL)
Difference between ML and DL:



Deep Learning (DL)
New way to train Deep Neural Networks:

First, train this layer

Then this layer

Then this layer

Then this layer

Then this layer

We train layers of the network sequentially

We train each of the non-output layer to act as an autoencoder.



Deep Learning (DL)
AutoEncoders:

- A type of neural network that is used to learn data encodings (unsupervised).

- In general, autoencoder has three parts; 

- Encoder

- bottleneck (code, latent representation) 

- Decoder

- A simple example: 

An auto-encoder (one hidden layer network) is trained 

to reproduce the input using standard learning algorithm.

Input Input

Idea:

- Learn a lower-dimensional representation (encoding) 

for a higher-dimensional data.

- Capture the most important parts of the input.

In other words, training autoencoder forces the ‘hidden layer’ units to 
become good feature detectors.



Deep Learning (DL)
AutoEncoders – Representation Example; Linear (PCA) vs non-linear :

30 neurons



Deep Learning (DL)
AutoEncoders – Representation Example; Deeper:



Deep Learning (DL)
AutoEncoders – Compression Example:



Deep Learning (DL)
Denoising AutoEncoders:

Idea: The denoising autoencoder gets rid of noise by learning a representation of 

the input where the noise can be filtered out easily.

Code
(Latent representation)



Deep Learning (DL)
Overview:

- This is the overall idea!

- There are many types of deep neural networks, different architectures, 

different types of autoencoder, and different training algorithms

- Fast growing research in the area!



Convolutional Neural Networks (CNNs)
Overview:

Motivation:

Consider an object detection (classification) problem from images using neural network.

For example: CIFAR-10 dataset 

- 10 classes, Input image is 32x32x3 = 3072 

Fully connected neural network

- Treats input as a vector

- Each neuron in the first layer will have 3072 weights

For 400x400x3 image, each neuron has 480,000 weights 

Very large number of parameters!

Why? Regular Neural Network treats input as a vector

Solution: Exploit the structure in the input data



Convolutional Neural Networks (CNNs)
Overview:

- Convolutional Neural Networks exploits the structure in the input, that is, a fact that 

the input consists of images.

- Instead of treating image as an input vector and each layer as a column of neurons, 

we

- take image as an input

- arrange neurons in 3 dimensions: width, height and depth in each layer

- Each layer transforms an input volume (3D) to an output 3D volume.



Convolutional Neural Networks (CNNs)
Overview:

Regular Neural Network Convolutional Neural Network (CNN)

In CNNs, the structure of image is exploited, and each layer transforms a volume of activations 
to an output volume through differentiable function that may or may not have parameters.

In CNN, we use three main types of layers to build network architecture:
- Convolutional layer - Pooling layer - Fully-connected layer



Convolutional Neural Networks (CNNs)
Convolutional Layer:

- Convolution Operation:



Convolutional Neural Networks (CNNs)
Convolutional Layer:

- Convolution in 2D:

Convolution leverages three important ideas that 
can help improve a machine learning system: 

- Sparse interactions
- Kernel smaller than the input

- Parameter sharing 

- Equivariant Representations
- Equivariance to translations



Convolutional Neural Networks (CNNs)
Convolutional Layer:

- Convolutional layer parameters consists of a set of learnable filters.

- Intuitively, network learn filters that activate when they see some type of visual 

feature e.g.,

- an edge of some orientation or boundary of the shape on the first layer

- wheel like patterns on higher layers of network

- Each filter in a set of filters produces a separate 2-dimensional activation map.

- These 2D maps are stacked along the depth dimension to produce output volume.



Convolutional Neural Networks (CNNs)
Convolutional Layer:

- Instead of connecting each neuron to all the neurons in the previous volume, CNN 

connects the neuron to a local region in the input volume controlled by 

hyperparameter referred to as receptive field (denoted by F).

- Extent of this connectivity is always equal to the depth of input volume.

- Connections are local along height and width but always full along the depth of 

input volume.



Convolutional Neural Networks (CNNs)
Convolutional Layer:

Example:

Input: 32x32x3 image

Receptive field: 5x5

Each neuron in the convolutional layer will connect to 5x5x3 region in input volume.

Total weights: 76 = 5x5x3 weights + 1 bias parameter



Convolutional Neural Networks (CNNs)
Convolutional Layer:

Spatial Arrangement of Neurons in the Output Volume:

- 3 hyper-parameters control the arrangement of neurons in the output volume

- Depth

- Stride

- Zero-padding

- Depth (denoted by k): 

- It is equal to the number of filters we want to use.

- Each filter is assumed to reveal something different in the input.

- The neurons that are all looking at the same region of the input as a depth column.



Convolutional Neural Networks (CNNs)
Convolutional Layer:

Spatial Arrangement of Neurons in the Output Volume:

- Stride (denoted by S): 

- Controls the amount of translation in the convolution operation.

- Stride=1: filter is translated (moved) one pixel when we slide the filter.

- Stride=2: filter is translated (moved) two pixel when we slide the filter.

- Stride=2 produces smaller output volume as compared to stride=1.



Convolutional Neural Networks (CNNs)
Convolutional Layer:

Spatial Arrangement of Neurons in the Output Volume:

- Zero-padding (denoted by P):

- To handle the convolution along the boundary points, we zero-pad input around the 

borders. The amount of zero-padding controls the spatial size of the output volume.

Source: https://medium.com/@draj0718/zero-padding-in-convolutional-neural-networks-bf1410438e99



Convolutional Neural Networks (CNNs)
Convolutional Layer:

Spatial Arrangement of Neurons in the Output Volume:

For

- F – receptive field size, S – stride, P – amount of zero padding and W – Input volume size

- Output volume slice size: 1 + (W-F+2P)/S

- Example:

- 7x7 input, 3x3 filter, 0 padding and 1 stride

- 1 + (W-F+2P)/S = 5

- 5x5 output

- With 2 stride 

- 1 + (W-F+2P)/S = 3

- 3x3 output



Convolutional Neural Networks (CNNs)
Convolutional Layer:

Parameter Sharing

- Number of parameters can be further reduced by parameter sharing.

- Idea:

- Neurons at each depth slice share the same weights and a bias.

- At each depth level, we have a 2D slice and we use same parameters for every neuron at 

each depth level.



Convolutional Neural Networks (CNNs)
Convolutional Layer:

Parameter Sharing - Example

- Input: 227x227x3

- First convolutional layer: F=11, S=4, P=0, depth=96 

- Output slice size: 1+(W-F+2P)/S = 55

- Without parameters sharing: 

- Number of parameters per depth slice: 55x55x(11x11x3+1)

- With parameters sharing: 

- Number of parameters per depth slice: 11x11x3+1



Convolutional Neural Networks (CNNs)
Convolutional Layer:

Parameter Sharing

- Q: What is the benefit of parameter sharing? 

- A: 1) Significant reduction in the number of parameters.

2) Convolutional layer output can be computed by simply convolving filter with an input.

- Each neuron of the depth slice has same parameters which means

- Shared weights can be interpreted as a filter.

- The depth slice output is simply a convolution of the filter and the input.

- Parameter sharing is also intuitive because if the filter is detecting an edge at some spatial 

position, we also want to detect the edge in a similar way at all other positions.



Convolutional Neural Networks (CNNs)
Convolutional Layer:

Summary:

- Accepts a volume of size W1XH1XD1

- 4 Hyper-parameters define the convolutional layer

- Number of filters, k - Spatial extent of each filter, F

- Stride, S - Zero-padding, P

- Produces a volume of size W2XH2XD2

- W2 = 1 + (W1-F+2P)/S - H2 = 1 + (H1-F+2P)/S

- D2 = k (depth)

- With parameters sharing, the number of parameters are FxFxD1 weights and 1 bias per depth 

slice and FxFxD1xk weights and k biases overall

- The d-th depth slice output is given by the convolution of d-th filter and the input volume.



Convolutional Neural Networks (CNNs)
AlexNet:



Convolutional Neural Networks (CNNs)
Pooling Layer:

- We usually use pooling layer between the convolutional layers in CNNs.

- The role of pooling layer is to progressively reduce the spatial size of the volume to reduce

- the number of parameters

- computation time

- Idea: The pooling layer operates independently on every depth slice of the input and resizes it 

spatially using the ‘Max’ operation.

- Example:



Convolutional Neural Networks (CNNs)
Pooling Layer:

- Pooling layer is defined by two hyper-parameters

- Spatial extent – F

- Stride – S 

- In the example, F=2 and S=2

- Input: a volume of size W1XH1XD1

- Output: a volume of size W2XH2XD2

- W2 = 1 + (W1-F)/S - H2 = 1 + (H1-F)/S

- D2 = D1 (same depth)

- Pooling layer does not have any parameters.



Convolutional Neural Networks (CNNs)
Pooling Layer:

- Instead of Max-Pooling, other pooling techniques are also adopted such as 

- average pooling 

- L2 norm pooling

- These days, research has suggested to use bigger strides at the convolutional layer level instead 

of frequent pooling layers.



Convolutional Neural Networks (CNNs)
AlexNet:
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