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Machine Learning

Recurrent Neural Networks (RNNs) and LSTM Networks
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Outline

- Recurrent Neural Networks (RNNS)
- Long Short-Term Memory (LSTM) Networks
- Gated Recurrent Units
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Recurrent Neural Networks
Sequence Modeling:

Predicting or Generating sequences of data
by capturing
patterns and dependencies over time.

Given current and past values, determine the next and future values.
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Recurrent Neural Networks
Sequence Modeling — Applications:

Speech Recognition

Sequence Model | love oranges

Image Captioning

Two dogs are playing with a

Sequence Model ball

Subtitle Generator

How you doin?

Sequence Model

LUMS

A Not-for-Profit University



Recurrent Neural Networks

Feedforward Neural Network:

output output output output output output

I I I I I I

I I I I I I

input input input input input

Key ldea: Output of one layer serves as input to the next layer.

a2 LUMS
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Recurrent Neural Networks
Recurrent Neural Networks (RNNs) — Concept:

Feedforward Network:

input Ty Lo L1 L2

Key ldea: Output at time t depends on input at time t.

a2 LUMS
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Recurrent Neural Networks
Recurrent Neural Networks (RNNs) — Concept:

Recurrence: Past inputs are captured by the state h;, that is the output of the recurrent cell.

Yo U1 U2 output Yt
|
hO > h1 > L RNN J ht Qt — f(xta ht—l)
Wiy T To input Ty

Key ldea: Output at time t depends on input at time t and past inputs.

LUMS
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Recurrent Neural Networks
Recurrent Neural Networks (RNNs) — Concept:

Recurrence: Past inputs are captured by the state h;, that is the output of the recurrent cell.

output Yt

A ht :fW(xtaht—l)

Gl

RNN

new state old state
input at time ¢

input T
t fw: Functional mapping characterized by some parameters W

fw: independent of time, that is, we have same W and f for each time step

LUMS
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Recurrent Neural Networks
RNNs — One to Many:

Applications:

output output output .
Captioning an lmage

T T T - Input: Image
- Output: Sequence of Words

—> Student in Machine Learning Class

Key ldea: Output of one layer serves as input to the same layer.

LUMS
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Recurrent Neural Networks
RNNs — Many to One:

Applications:

Sentiment Analysis
T - Input: Tweet (Sequence of words)
- Output: Sentiment

I I I

input input input

Key ldea: Output of one layer serves as input to the same layer.

LUMS

A Not-for-Profit University



Recurrent Neural Networks
RNNs — Many to Many:

Applications:

output output output .
Auto-tweet or Translation

T T T - Input: Tweet
- Output: Sequence of Words

—> —> v Sl
T T T T Object tracking in Video
- Input: Frames of Video
input input input input - Output: Object ]OOSH:I'OV\ In a scene

Key ldea: Output of one layer serves as input to the same layer.

LUMS Key ldea: Neurons with Recurrence

A Not-for-Profit University




Recurrent Neural Networks
Recurrent Neural Networks — Vanilla Variant:

Recurrence: Past inputs are captured by the state h;, that is the output of the recurrent cell.

output Yt
A ht :fW(mtaht—l)
|
L RNN J hy — tanh(Whhht_l -+ tha:t —+ bh)
I
e - Yt — Whyht + by

a2 LUMS
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Recurrent Neural Networks
Recurrent Neural Networks — Vanilla Variant — Computational Graph:

Recurrence: Past inputs are captured by the state h;, that is the output of the recurrent cell.

output Yt Yo Y1 Y2 yr
T TWhy TWhy TWhy TWhy
L J hy ho hq hr—1
RNN > > —_— = = >————>
Whn, Whh Whn,
T Tth TWth Tth Tth
input Ty L0 X1 ) TT
Same weights at each time ste
LUMS ¥ P

A Not-for-Profit University
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Recurrent Neural Networks
RNNs for Sequence Modeling:

Example — Predict the Next Word — Many to Many:

Objective: Predict the next word in a sequence using embeddings and RNNs

Example Sentence:

I live in Canberra and I fluently speak English

Key challenges:
Variable-length sequences
Long-term dependencies (“I” — “speak”)

Semantic relationships (“fluently” — “speak”)

LUMS
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Recurrent Neural Networks
RNNs for Sequence Modeling:

Example — Predict the Next Word

Step 1: Tokenization & Vocabulary: Step 2: Input-Output Pairs:
Training sequences for RNN:
Tokenized Sentence: Input Sequence | Target Word
[ 661' 2 1
[IIIII , Illivell , llinll , llCanberrall , :O] “.1‘:76 ( )
n n n n n n 071] ln (2)
and", "I", "fluently", 1 « T
| . . 0,1,2] Canberra” (3)
speak", "English"] : —
0,1,2,3] and” (4)
o . 0,...,4 “I” (0)
— m— ;O,...,O; “fluently” (5)
live ; 0,...,] “speak” (6)
in = - -
Vocabulary: Canberra 3 0,...,6] “English” (7)
and 4
fluently 5
speak 6 Note: Shortened notation [0,...,4] represents growing sequence
English 7

LUMS
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Recurrent Neural Networks
RNNs for Sequence Modeling:

Example — Predict the Next Word

Representation Comparison:

One-Hot Encoding Embeddings
(vocab size = 8) (dim = 2 for illustration)
"I" --> [130’030303030’0] "I --> [01, -03]
"and" --> [0,0,0,0,i,0,0,0] "and" --> [0-5, 0.2]
"fluently" --> [-0.4, 1.1]
"speak" --> [1.2, 0.7]
Problems:

Advantages:
High dimensionality

Compact representation
No semantic meaning

Captures relationships

LUMS

A Not-for-Profit University




Recurrent Neural Networks

RNNs for Sequence Modeling:

Example — Predict the Next Word
word(n+1)

s
-

Model Design:

Embedding layer (learned vectors)
RNN cell (hidden state propagation)

Softmax output (vocabulary distribution)

A Not-for-Profit University

Parameter Sharing: Same weights

used at all time steps.

Teacher Forcing: During training, use
ground truth inputs instead of
previous predictions.




Recurrent Neural Networks
RNNs for Sequence Modeling:

To effectively model sequences, RNNs satisfy the following design criteria:

 Handle Variable-Length Sequences:

The model should accommodate input sequences of varying lengths, ensuring flexibility across different data
scenarios.

 Track Long-Term Dependencies:

The model must capture relationships between elements that are far apart in the sequence, preserving context
over extended intervals.

 Maintain Information About Order:

The sequential nature of the data should be preserved, as the order of elements often carries critical meaning.

 Share Parameters Across the Sequence:

Parameter sharing is essential to ensure the model generalizes well and remains efficient, especially for long
sequences.

LUMS
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Recurrent Neural Networks Total Loss
Recurrent Neural Networks — Vanilla Variant — Computational Graph: T
L=) Lr
t=0

Loss Computation:

Yo —> L Yy —> L4 V2 —> L, Yyr—> Lp

! | | !

output Yt Yo U1 U2 YT
T TWhy TWhy TWhy TWh’y

L J he i > I > — - - —>hT;1>
RNN Whn Whh Whh

T TWIIZh Tth Tth Tth

input Ty L0 1 T2 TT

LUMS
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Recurrent Neural Networks Total Loss

Recurrent Neural Networks — Vanilla Variant — Computational Graph: T
L=) L

t=0

How do we determine the weights/parameters? Back Propagation (through time)

Yo —> L Yy —> L4 V2 —> L, Yyr — L7

! ! | !

output Yt Yo U1 U2 YT
T TWhy TWhy TWhy TWh’y

L J he i > I > — - - —ILT_—1>
RNN Whn Whh Whh

T TWIIZh Tth Tth Tth

input Ty L0 1 T2 TT

LUMS
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Recurrent Neural Networks Total Loss

Recurrent Neural Networks — Vanilla Variant — Computational Graph: T
L=) L

t=0

How do we determine the weights/parameters? Back Propagation (through time)

Yo — L N — L Y2 — L Yyr —> L
output Ut Yo Y1 Yo yr
T TWhy \ TWhy \ TWhy Y TWhy Y
L J hy ho hy hr_1
RNN > > — = —D
Whn Whh Whh
T TWIIZh Tth Tth Tth
input Ty L0 1 T2 TT

LUMS
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Recurrent Neural Networks Total Loss

Recurrent Neural Networks — Vanilla Variant — Computational Graph: T
L=) L

t=0

How do we determine the weights/parameters? Back Propagation (through time)

Yo —> L Yy —> Ly V2 —> L, Yyr —> L

output Ut Yo Y1 Yo yr
T TWhy TWhy TWhy TWh’y

L J hy ho hy hr_1
RNN > > —4— -
) IWhn +Whn tWhn

T WIIZh Tth Tth W:ch,

input Ty L0 1 T2 TT

LUMS
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Recurrent Neural Networks Total Loss

Recurrent Neural Networks — Vanilla Variant — Computational Graph: T
L=) L

t=0

How do we determine the weights/parameters? Back Propagation (through time)

Yo —> L Yy —> Ly V2 —> L, Yyr —> L

output Ut Yo Y1 Yo yr
T TWhy TWhy TWhy TWh’y

L J hy ho hy hr_1
RNN > > —4— -
) IWhn +Whn tWhn

T WIIZ hl TWx hl TWCB hl WCEh

input Ty L0 1 T2 TT

LUMS
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Recurrent Neural Networks

RNNSs — Limitations and Extensions:

output Yt

L

input Ty

LUMS

A Not-for-Profit University

Basic RNN Limitations:

— Vanishing/Exploding gradients

— Struggles with long sequences

[ lived my entire life in Pakistan and have recently
to Canberra. | live in Canberra and | fluently speak

moved



Recurrent Neural Networks
RNNs — Understanding Vanishing/Exploding Gradients

Consider a simple RNN with the following recurrence relation:

hi = ¢(Whphi—1 + Wenz + bp)

¢ is a non-linear activation function (e.g., tanh).

Let the loss function at the final time step be £. The gradient of the loss with
respect to the hidden state h; is:

OL 9L Ohy 5_£:3_£.H Ohy,
Oh,  Ohr Ol Ohy  Ohr | 2° Ohk
Since (Expanding using the chain rule)
Ohp. )
e, ¢’ (ax) - Why, where ay, = Wipnhi—1 + Wynzr + bp,
we get
oL oL
LUMS oh,  Ohp H (¢'(ak) - Wha)

A Not-for-Profit University k=t+1




Recurrent Neural Networks
RNNs — Understanding Vanishing/Exploding Gradients

If the spectral norm of Wy, is less than 1 and ¢’ produces small values (as in
the case of tanh or sigmoid), then:

T

11 @' (ar) Win)

k=t+1

—0 asT —t—

This leads to the vanishing gradient problem, where early layers (smaller t)
receive negligible gradient signals during backpropagation.

LUMS
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Recurrent Neural Networks

RNNSs — Limitations and Extensions:

output Yt
|
hy
RNN
input Ty

LUMS

A Not-for-Profit University

Basic RNN Limitations:

— Vanishing/Exploding gradients

— Struggles with long sequences

[ lived my entire life in Pakistan and have recently
to Canberra. | live in Canberra and | fluently speak

Improvements:

— LSTMs (next topic)

— Attention mechanisms

Real-World Scaling:
— Use pre-trained embeddings (GloVe, Word2Vec)

moved



Outline

- Recurrent Neural Networks (RNNSs)
- Long Short-Term Memory (LSTM) Networks
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Limitations of Vanilla RNNs

Problem 1: Vanishing/Exploding Gradients
* During Backpropagation Through Time (BPTT), gradients are multiplied by

output Yt weight matrices repeatedly, causing them to shrink (vanish) or grow (explode).
A This makes learning long-term dependencies difficult.
L | J  Example: In a sequence of length 100, gradients involve W, |eading to
RNN ht instability.
T Problem 2: Short-Term Memory

* Hidden states in RNNs are overwritten at each time step, making it challenging
Input P to retain information over long sequences.

LUMS
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Long Short-Term Memory (LSTM) Networks

Intuition Behind Selective Memory Update

LSTM networks are designed to remember important information and forget
what’s not useful. They do this using three key mechanisms:

1. Forget Gate:

Decides what part of the past information should be forgotten. Think of it like
cleaning up memory —“Is this old info still relevant?”

2. Input Gate (Selective Write):

Determines what new information should be added to memory. This is like
saying, “I just saw something new — should I store it?”

3. Output Gate (Selective Read):

Chooses what part of the memory to use for the next step. It’s like asking,
“What do I need to remember right now to make a decision?”

Together, these gates help LSTMs handle long-term dependencies more ef-
fectively.

LUMS
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Long Short-Term Memory (LSTM) Networks

T RNN
gt ht_l > Memory —_— ht = tanh(Whhht_l —+ thxt + bh)
Cell

TWh Current hidden state depends on

, Y - previous hidden state

t=1 hy - current input

Whhn rt

TW:ch

Long Short-Term Memory (LSTM)

Lt : .
Equip memory cell with
- internal’ state, and
- multiplicative gates that determine
RNN (i) How should a given input impact the internal state (the input gate)?

(ii) How should the internal state be flushed to 0 (the forget gate)?

(iii) How should the internal state of a given neuron be allowed to impact the

cell's output (the output gate)?
LUMS put ( put gate)

A Not-for-Profit University




Long Short-Term Memory (LSTM) Networks

Key Idea:

Introduce a cell state (C;) as a
“memory highway”

regulated by gates controlling information propagation over time.

internal state
Ct—l > E— Ct
hy_
=1 Memory > hy Memory Cell
with Gates
I hi—1 > — Iy
hidden state
Xt
RNN

LUMS
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Long Short-Term Memory (LSTM) Networks

Formulation:
internal state 4 )
Ci_q > , 5 — ()
ft 1t Ct Ot
h 0] o) tanh 0] h
t—1 — Iy
hidden state
Lt
Forgetgate f; = o(Wyrxe + Whyphi—1 +by) 0t = 0(Wyaoxy + Who hi—1 + b,) Output gate
Input gate it = o(Wyixe + Whihe_1 + b;) é’t = tanh(Wpphe—1 + Wenay) Input node

LUMS
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Long Short-Term Memory (LSTM) Networks

Formulation — Forget Gate Action:

internal state 4 )

Ci1 D (. X . — ()
A Ut

g)z
@)
~

S —>

tanh 0]

hi—1 — Iy
hidden state
Lt
Forgetgate f; = o(Wyrxe + Whyphi—1 +by) 0t = 0(Wyaoxy + Who hi—1 + b,) Output gate
Input gate it = 0(Wyixt + Whi he—1 + b;) ét = tanh(Wpphe—1 + Wenay) Input node

LUMS
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Long Short-Term Memory (LSTM) Networks

Formulation — Input Gate Action:

internal state 4 )
Ci—1 D pr— X ) — ()
A Ot
X T
I
ht . 0] o) tanh 0] h
- ;—) t
hidden state
Lt
Forgetgate f; = oc(Wyrxy + Whyphi—1 + by) 0t = 0(Wyo xt + Who hi—1 + b,) Output gate
Input gate it = 0(Wyixt + Whi he—1 + b;) ét = tanh(Wpphe—1 + Wenay) Input node

LUMS
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Long Short-Term Memory (LSTM) Networks

Formulation — Determining Next (Internal) State:

internal state 4 )
Ci1 > s X —— ) — 3y ()
A O¢ ‘ ~
T Ci = fr ©Ci_1 + 1 © C}
]
|
ht . 0] o tanh o h
N r—> t
hidden state
Lt
Forgetgate f; = o(Wyrxe + Whyphi—1 +by) 0t = 0(Wyaoxy + Who hi—1 + b,) Output gate
Input gate it = 0(Wyixt + Whi he—1 + b;) ét = tanh(Wpphe—1 + Wenay) Input node

LUMS ®» — element wise multiplication

A Not-for-Profit University




Long Short-Term Memory (LSTM) Networks

Formulation — Output Gate Action and Next Hidden State:

internal state 4 A
Ci1 »— X — + ——p—> (} 3
4 T tanh Ci = ft ©Ci1 + 1 © C
|
Jt 1t & 3
1C: |
h 0) 0] tanh )
t—1 hy = o @ tanh(C})
hidden state
Lt
Forgetgate f; = o(Wyrxe + Whyphi—1 +by) 0t = 0(Wyaoxy + Who hi—1 + b,) Output gate
Inputgate iy = o (Was x4 + Wiy hy—1 + by) C; = tanh(Wyphi—1 + Wanr,)  Input node

LUMS
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Long Short-Term Memory (LSTM) Networks
Variations and Extensions — Gated Recurring Units:

GRUs simplify LSTMs by combining the forget and input gates into a single
update gate. The key equations are:

(
ry = o(Werxe + Whrhe—1 + b))  (Reset Gate)
hy = tanh(Wopxe + Whp(r: © hy—1) + by) (Candidate State)
2z = 0o(Weyxy + Whohe 1 +b,) (Update Gate) Candidate
~ hidden stat
hy = (1 —2) ®hy—1 + 2 © hy (Final Hidden State) B ei’Ls ’
t
I

Key Idea: GRUs control how much past information to keep (z;) and how

much to reset ().

LUMS

A Not-for-Profit University
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