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Outline

- Recurrent Neural Networks (RNNs)

- Long Short-Term Memory (LSTM) Networks

- Gated Recurrent Units



Recurrent Neural Networks
Sequence Modeling:

Given current and past values, determine the next and future values.

Predicting or Generating sequences of data 
by capturing 

patterns and dependencies over time.



Recurrent Neural Networks
Sequence Modeling – Applications:



Recurrent Neural Networks
Feedforward Neural Network:
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Key Idea: Output of one layer serves as input to the next layer.



Recurrent Neural Networks
Recurrent Neural Networks (RNNs) – Concept:
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output

Feedforward Network:

Key Idea: Output at time t depends on input at time t.



Recurrent Neural Networks
Recurrent Neural Networks (RNNs) – Concept:

Recurrence:

Key Idea: Output at time t depends on input at time t and past inputs.

RNN
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Recurrent Neural Networks
RNNs – One to Many:
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Key Idea: Output of one layer serves as input to the same layer.

Captioning an Image 
- Input: Image
- Output: Sequence of Words

Applications:

Student in Machine Learning Class



Recurrent Neural Networks
RNNs – Many to One:

Key Idea: Output of one layer serves as input to the same layer.

Sentiment Analysis
- Input: Tweet (Sequence of words)
- Output: Sentiment

input input input

output

… …

Applications:



Recurrent Neural Networks
RNNs – Many to Many:

output output

… …

Key Idea: Output of one layer serves as input to the same layer.

Auto-tweet or Translation
- Input: Tweet
- Output: Sequence of Words

Applications:

input input input

output

input

Object tracking in Video
- Input: Frames of Video
- Output: Object position in a scene

Key Idea: Neurons with Recurrence



Recurrent Neural Networks
Recurrent Neural Networks – Vanilla Variant:
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Recurrent Neural Networks
Recurrent Neural Networks – Vanilla Variant – Computational Graph:

Recurrence:

RNN
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output



Recurrent Neural Networks
RNNs for Sequence Modeling:

Example – Predict the Next Word – Many to Many:



Recurrent Neural Networks
RNNs for Sequence Modeling:

Example – Predict the Next Word

Step 1: Tokenization & Vocabulary: Step 2: Input-Output Pairs:



Recurrent Neural Networks
RNNs for Sequence Modeling:

Example – Predict the Next Word

Representation Comparison:



Recurrent Neural Networks
RNNs for Sequence Modeling:

Example – Predict the Next Word

Model Design:

Parameter Sharing: Same weights 
used at all time steps.

Teacher Forcing: During training, use 
ground truth inputs instead of 
previous predictions.



Recurrent Neural Networks
RNNs for Sequence Modeling:

To effectively model sequences, RNNs satisfy the following design criteria:

• Handle Variable-Length Sequences:

The model should accommodate input sequences of varying lengths, ensuring flexibility across different data 
scenarios.

• Track Long-Term Dependencies: 

The model must capture relationships between elements that are far apart in the sequence, preserving context 
over extended intervals.

• Maintain Information About Order: 

The sequential nature of the data should be preserved, as the order of elements often carries critical meaning.

• Share Parameters Across the Sequence: 

Parameter sharing is essential to ensure the model generalizes well and remains efficient, especially for long 
sequences.



Recurrent Neural Networks
Recurrent Neural Networks – Vanilla Variant – Computational Graph:

Loss Computation:

RNN

input

output

Total Loss



Recurrent Neural Networks
Recurrent Neural Networks – Vanilla Variant – Computational Graph:

How do we determine the weights/parameters?

RNN

input

output

Back Propagation (through time)

Total Loss



Recurrent Neural Networks
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Recurrent Neural Networks
Recurrent Neural Networks – Vanilla Variant – Computational Graph:
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Recurrent Neural Networks
Recurrent Neural Networks – Vanilla Variant – Computational Graph:

How do we determine the weights/parameters?

RNN

input

output

Back Propagation (through time)

Total Loss



Recurrent Neural Networks
RNNs – Limitations and Extensions:

RNN

input

output

I lived my entire life in Pakistan and have recently moved 
to Canberra. I live in Canberra and I fluently speak ………….



Recurrent Neural Networks
RNNs – Understanding Vanishing/Exploding Gradients

(Expanding using the chain rule)



Recurrent Neural Networks
RNNs – Understanding Vanishing/Exploding Gradients



Recurrent Neural Networks
RNNs – Limitations and Extensions:

RNN

input

output

I lived my entire life in Pakistan and have recently moved 
to Canberra. I live in Canberra and I fluently speak ………….



Outline

- Recurrent Neural Networks (RNNs)

- Long Short-Term Memory (LSTM) Networks



Limitations of Vanilla RNNs

RNN

input

output

Problem 1: Vanishing/Exploding Gradients

• During Backpropagation Through Time (BPTT), gradients are multiplied by 
weight matrices repeatedly, causing them to shrink (vanish) or grow (explode). 
This makes learning long-term dependencies difficult.

• Example: In a sequence of length 100, gradients involve W100, leading to 
instability.

Problem 2: Short-Term Memory

• Hidden states in RNNs are overwritten at each time step, making it challenging 
to retain information over long sequences.



Long Short-Term Memory (LSTM) Networks
Intuition Behind Selective Memory Update



Long Short-Term Memory (LSTM) Networks

RNN

Long Short-Term Memory (LSTM)

Equip memory cell with 
- ‘internal’ state, and
- multiplicative gates that determine 

(i) How should a given input impact the internal state (the input gate)?

(ii) How should the internal state be flushed to 0 (the forget gate)?

(iii) How should the internal state of a given neuron be allowed to impact the 

cell’s output (the output gate)?

Memory 
Cell

Current hidden state depends on 
- previous hidden state 
- current input

RNN



Long Short-Term Memory (LSTM) Networks

Memory 
Cell

Key Idea:

Memory Cell
with Gates

hidden state 

internal state 

RNN



Long Short-Term Memory (LSTM) Networks
Formulation:

hidden state 

internal state 

Input gate

Forget gate

Input node

Output gate



Long Short-Term Memory (LSTM) Networks
Formulation – Forget Gate Action:
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Long Short-Term Memory (LSTM) Networks
Formulation – Input Gate Action:
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Long Short-Term Memory (LSTM) Networks
Formulation – Determining Next (Internal) State:
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Long Short-Term Memory (LSTM) Networks
Formulation – Output Gate Action and Next Hidden State:
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Long Short-Term Memory (LSTM) Networks
Variations and Extensions – Gated Recurring Units:
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