

Machine Learning

Recurrent Neural Networks (RNNs) and LSTM Networks

School of Science and Engineering

https://www.zubairkhalid.org/ee514 2025.html

Outline

- Recurrent Neural Networks (RNNs)
- Long Short-Term Memory (LSTM) Networks
 - Gated Recurrent Units

Sequence Modeling:

Predicting or Generating sequences of data by capturing patterns and dependencies **over time**.

Given current and past values, determine the next and future values.

Sequence Modeling – Applications:

Feedforward Neural Network:

Key Idea: Output of one layer serves as input to the next layer.

Recurrent Neural Networks (RNNs) – Concept:

Feedforward Network:

 $\hat{y}_t = f(x_t)$

Key Idea: Output at time t depends on input at time t.

Recurrent Neural Networks (RNNs) – Concept:

Recurrence: Past inputs are captured by the state h_t , that is the output of the recurrent cell.

Key Idea: Output at time t depends on input at time t and past inputs.

Recurrent Neural Networks (RNNs) – Concept:

Recurrence: Past inputs are captured by the state h_t , that is the output of the recurrent cell.

 f_W : independent of time, that is, we have same W and f for each time step

RNNs – One to Many:

Applications:

- Captioning an Image
- Input: Image
- Output: Sequence of Words

-> Student in Machine Learning Class

Key Idea: Output of one layer serves as input to the same layer.

RNNs – Many to One:

Applications:

Sentiment Analysis

- Input: Tweet (Sequence of words)Output: Sentiment

Key Idea: Output of one layer serves as input to the same layer.

RNNs – Many to Many:

Applications:

Auto-tweet or Translation

- Input: Tweet
- Output: Sequence of Words

Object tracking in Video

- Input: Frames of Video
- Output: Object position in a scene

Key Idea: Output of one layer serves as input to the same layer. Key Idea: Neurons with Recurrence

Recurrent Neural Networks – Vanilla Variant:

Recurrence: Past inputs are captured by the state h_t , that is the output of the recurrent cell.

Recurrent Neural Networks – Vanilla Variant – Computational Graph:

Recurrence: Past inputs are captured by the state h_t , that is the output of the recurrent cell.

Same weights at each time step

RNNs for Sequence Modeling:

Example – Predict the Next Word – Many to Many:

Objective: Predict the next word in a sequence using embeddings and RNNs

Example Sentence:

I live in Canberra and I fluently speak English

Key challenges:

Variable-length sequences

Long-term dependencies ("I" \rightarrow "speak")

Semantic relationships ("fluently" \rightarrow "speak")

RNNs for Sequence Modeling:

Example – Predict the Next Word

Step 1: Tokenization & Vocabulary:

Tokenized Sentence:

```
["I", "live", "in", "Canberra",
  "and", "I", "fluently",
  "speak", "English"]
```

	Token	Index
	Ι	0
	live	1
	in	2
Vocabulary:	Canberra	3
	and	4
	fluently	5
	speak	6
	$\bar{\mathrm{English}}$	7

Step 2: Input-Output Pairs:

Training sequences for RNN:

Input Sequence	Target Word
[0]	"live" (1)
[0,1]	"in" (2)
[0,1,2]	"Canberra" (3)
[0,1,2,3]	"and" (4)
[0,,4]	"I" (0)
[0,,0]	"fluently" (5)
[0,,5]	"speak" (6)
[0,,6]	"English" (7)

Note: Shortened notation [0, ..., 4] represents growing sequence

RNNs for Sequence Modeling:

Example – Predict the Next Word

Representation Comparison:

One-Hot Encoding (vocab size = 8)

"I" --> [1,0,0,0,0,0,0,0] "and" --> [0,0,0,0,1,0,0,0]

Problems:

High dimensionality

No semantic meaning

Embeddings $(\dim = 2 \text{ for illustration})$

"I" --> [0.1, -0.3] "and" --> [0.5, 0.2] "fluently" --> [-0.4, 1.1] "speak" --> [1.2, 0.7]

Advantages:

Compact representation

Captures relationships

RNNs for Sequence Modeling:

Example – Predict the Next Word

RNN

embed

word(0)

A Not-for-Profit University

Model Design:

Embedding layer (learned vectors)

RNN cell (hidden state propagation)

Softmax output (vocabulary distribution)

RNN

embed

word(1)

Parameter Sharing: Same weights used at all time steps.

Teacher Forcing: During training, use ground truth inputs instead of previous predictions.

RNNs for Sequence Modeling:

To effectively model sequences, RNNs satisfy the following design criteria:

Handle Variable-Length Sequences:

The model should accommodate input sequences of varying lengths, ensuring flexibility across different data scenarios.

<u>Track Long-Term Dependencies:</u>

The model must capture relationships between elements that are far apart in the sequence, preserving context over extended intervals.

• Maintain Information About Order:

The sequential nature of the data should be preserved, as the order of elements often carries critical meaning.

• <u>Share Parameters Across the Sequence:</u>

Parameter sharing is essential to ensure the model generalizes well and remains efficient, especially for long sequences.

Total Loss

 $\mathcal{L} = \sum_{t=0} \mathcal{L}_T$

T

Recurrent Neural Networks – Vanilla Variant – Computational Graph:

Loss Computation:

RNNs – Limitations and Extensions:

Basic RNN Limitations:

- Vanishing/Exploding gradients
- Struggles with long sequences

I lived my entire life in <u>Pakistan</u> and have recently moved to Canberra. I live in Canberra and I fluently speak <u>.....</u>

<u>RNNs – Understanding Vanishing/Exploding Gradients</u>

Consider a simple RNN with the following recurrence relation:

$$h_t = \phi(W_{hh}h_{t-1} + W_{xh}x_t + b_h)$$

 ϕ is a non-linear activation function (e.g., tanh).

Let the loss function at the final time step be \mathcal{L} . The gradient of the loss with respect to the hidden state h_t is:

$$\frac{\partial \mathcal{L}}{\partial h_t} = \frac{\partial \mathcal{L}}{\partial h_T} \cdot \frac{\partial h_T}{\partial h_t} \qquad \qquad \frac{\partial \mathcal{L}}{\partial h_t} = \frac{\partial \mathcal{L}}{\partial h_T} \cdot \prod_{k=t+1}^T \frac{\partial h_k}{\partial h_{k-1}}$$
(Expanding using the chain rule)

Since

$$\frac{\partial h_k}{\partial h_{k-1}} = \phi'(a_k) \cdot W_{hh}, \quad \text{where } a_k = W_{hh}h_{k-1} + W_{xh}x_k + b_h,$$

we get

$$\frac{\partial \mathcal{L}}{\partial h_t} = \frac{\partial \mathcal{L}}{\partial h_T} \cdot \prod_{k=t+1}^T \left(\phi'(a_k) \cdot W_{hh} \right)$$

<u>RNNs – Understanding Vanishing/Exploding Gradients</u>

If the spectral norm of W_{hh} is less than 1 and ϕ' produces small values (as in the case of tanh or sigmoid), then:

$$\left\|\prod_{k=t+1}^{T} \left(\phi'(a_k) \cdot W_{hh}\right)\right\| \to 0 \quad \text{as } T - t \to \infty$$

This leads to the vanishing gradient problem, where early layers (smaller t) receive negligible gradient signals during backpropagation.

RNNs – Limitations and Extensions:

Basic RNN Limitations:

- Vanishing/Exploding gradients
- Struggles with long sequences

I lived my entire life in <u>Pakistan</u> and have recently moved to Canberra. I live in Canberra and I fluently speak <u>.....</u>

Improvements:

- LSTMs (next topic)
- Attention mechanisms

Real-World Scaling:

- Use pre-trained embeddings (GloVe, Word2Vec)

Outline

- Recurrent Neural Networks (RNNs)
- Long Short-Term Memory (LSTM) Networks

Limitations of Vanilla RNNs

Problem 1: Vanishing/Exploding Gradients

- During Backpropagation Through Time (BPTT), gradients are multiplied by weight matrices repeatedly, causing them to <u>shrink (vanish)</u> or <u>grow (explode)</u>. This makes learning long-term dependencies difficult.
- Example: In a sequence of length 100, gradients involve W¹⁰⁰, leading to instability.

Problem 2: Short-Term Memory

• Hidden states in RNNs are overwritten at each time step, making it challenging to retain information over long sequences.

Intuition Behind Selective Memory Update

LSTM networks are designed to remember important information and forget what's not useful. They do this using three key mechanisms:

1. Forget Gate:

Decides what part of the past information should be *forgotten*. Think of it like cleaning up memory — "Is this old info still relevant?"

2. Input Gate (Selective Write):

Determines what new information should be added to memory. This is like saying, "I just saw something new — should I store it?"

3. Output Gate (Selective Read):

Chooses what part of the memory to use for the next step. It's like asking, "What do I need to remember right now to make a decision?"

Together, these gates help LSTMs handle long-term dependencies more effectively.

Key Idea:

Introduce a cell state (C_t) as a

"memory highway"

regulated by gates controlling information propagation over time.

Formulation:

Formulation – Forget Gate Action:

Formulation – Input Gate Action:

Formulation – Determining Next (Internal) State:

 \odot – element wise multiplication

Formulation – Output Gate Action and Next Hidden State:

Variations and Extensions – Gated Recurring Units:

GRUs simplify LSTMs by combining the forget and input gates into a single update gate. The key equations are:

$$r_{t} = \sigma(W_{xr}x_{t} + W_{hr}h_{t-1} + b_{r}) \quad (\text{Reset Gate})$$

$$\tilde{h}_{t} = \tanh(W_{xh}x_{t} + W_{hh}(r_{t} \odot h_{t-1}) + b_{h}) \quad (\text{Candidate State})$$

$$z_{t} = \sigma(W_{xz}x_{t} + W_{hz}h_{t-1} + b_{z}) \quad (\text{Update Gate})$$

$$h_{t} = (1 - z_{t}) \odot h_{t-1} + z_{t} \odot \tilde{h}_{t} \quad (\text{Final Hidden State})$$

Key Idea: GRUs control how much past information to keep (z_t) and how much to reset (r_t) .

