:\;‘ . 8
" Dy "
he &S 7 ? PN
o] S ——
5 3 ST w'x—0=1 w
I ! ‘ .
RP—N(& s PAcdichon ‘{ o vereble on covhatnans D\® o ®
e ———————— S Ar v \ "'I
Seale CHassreat g,
‘/;Z_k."nn) . fy \. °
BT e BRSO e O N e
h!(lj\ ' 3 y- o‘.«j 5 o \'-u\
3 oy NN,
fivd “Fd ® N \
o \\
~
Wl ‘ ’ ® ‘ N
¥ =@ < Mgld)=—s 4O .
¢ o Margin
[l] 10 A7_10 P WTX == 0 - _1 g 2 p
Wy o _
] 2
Bhos | @

"0»2

Machine Learning

Recurrent Neural Networks (RNNs) and LSTM Networks

School of Science and Engineering

https://www.zubairkhalid.org/ee514 2025.html
LUMS

A Not-for-Profit University

https://www.zubairkhalid.org/ee514_2022.html

Outline

- Recurrent Neural Networks (RNNS)
- Long Short-Term Memory (LSTM) Networks
- Gated Recurrent Units

a2 LUMS

A Not-for-Profit Uni

Recurrent Neural Networks
Sequence Modeling:

Predicting or Generating sequences of data
by capturing
patterns and dependencies over time.

Given current and past values, determine the next and future values.

1,600 10 -

1,400 -
¥ ‘-
’—"' &0
1,200 -+
1,000 50 -
800
- Sales 40 4
600 -
== == Forecast
400 30 A
200
20 4 ;
0 - —— . —— gbservations
T 2> U 2> g s e e - = > u P . L.
EE‘éaggg:gggggﬁ‘éagg . medlanpredlctm.n
2 2 &8« = ¥ E S8 E E 2 2 &2 < = 10 41 90% confidence interval
@ 0 E << 3 mmmmm 2 .
- 2 B o 3 g - 2 I 50% confidence interval
=
v

00-00 02:00 04-00 06:00 08:00 10:00 12:00
LUMS 20-hpr

A Not-for-Profit University
T UOOOOOBOEBBBEBRTURREEeeRERRBRBGRCBBRSBSHSMWHDSMWQDHMS™S™™SW™W™SSSEFCSSOOUOTSTTTTTTTTTTTTTTTT

Recurrent Neural Networks
Sequence Modeling — Applications:

Speech Recognition

Sequence Model | love oranges

Image Captioning

Two dogs are playing with a

Sequence Model ball

Subtitle Generator

How you doin?

Sequence Model

LUMS

A Not-for-Profit University

Recurrent Neural Networks

Feedforward Neural Network:

output output output output output output

I I I I I I

I I I I I I

input input input input input

Key ldea: Output of one layer serves as input to the next layer.

a2 LUMS

A Not-for-Profit Uni

Recurrent Neural Networks
Recurrent Neural Networks (RNNs) — Concept:

Feedforward Network:

input Ty Lo L1 L2

Key ldea: Output at time t depends on input at time t.

a2 LUMS

A Not-for-Profit Uni

Recurrent Neural Networks
Recurrent Neural Networks (RNNs) — Concept:

Recurrence: Past inputs are captured by the state h;, that is the output of the recurrent cell.

Yo U1 U2 output Yt
|
hO > h1 > L RNN J ht Qt — f(xta ht—l)
Wiy T To input Ty

Key ldea: Output at time t depends on input at time t and past inputs.

LUMS

A Not-for-Profit University

Recurrent Neural Networks
Recurrent Neural Networks (RNNs) — Concept:

Recurrence: Past inputs are captured by the state h;, that is the output of the recurrent cell.

output Yt

A ht :fW(xtaht—l)

Gl

RNN

new state old state
input at time ¢

input T
t fw: Functional mapping characterized by some parameters W

fw: independent of time, that is, we have same W and f for each time step

LUMS

A Not-for-Profit University

Recurrent Neural Networks
RNNs — One to Many:

Applications:

output output output .
Captioning an lmage

T T T - Input: Image
- Output: Sequence of Words

—> Student in Machine Learning Class

Key ldea: Output of one layer serves as input to the same layer.

LUMS

A Not-for-Profit University

Recurrent Neural Networks
RNNs — Many to One:

Applications:

Sentiment Analysis
T - Input: Tweet (Sequence of words)
- Output: Sentiment

I I I

input input input

Key ldea: Output of one layer serves as input to the same layer.

LUMS

A Not-for-Profit University

Recurrent Neural Networks
RNNs — Many to Many:

Applications:

output output output .
Auto-tweet or Translation

T T T - Input: Tweet
- Output: Sequence of Words

—> —> v Sl
T T T T Object tracking in Video
- Input: Frames of Video
input input input input - Output: Object]OOSH:I'OV\ In a scene

Key ldea: Output of one layer serves as input to the same layer.

LUMS Key ldea: Neurons with Recurrence

A Not-for-Profit University

Recurrent Neural Networks
Recurrent Neural Networks — Vanilla Variant:

Recurrence: Past inputs are captured by the state h;, that is the output of the recurrent cell.

output Yt
A ht :fW(mtaht—l)
|
L RNN J hy — tanh(Whhht_l -+ tha:t —+ bh)
I
e - Yt — Whyht + by

a2 LUMS

A Not-for-Profit Uni

Recurrent Neural Networks
Recurrent Neural Networks — Vanilla Variant — Computational Graph:

Recurrence: Past inputs are captured by the state h;, that is the output of the recurrent cell.

output Yt Yo Y1 Y2 yr
T TWhy TWhy TWhy TWhy
L J hy ho hq hr—1
RNN > > —_— = = >————>
Whn, Whh Whn,
T Tth TWth Tth Tth
input Ty L0 X1) TT
Same weights at each time ste
LUMS ¥ P

A Not-for-Profit University
T UOOOOOBOEBBBEBRTURREEeeRERRBRBGRCBBRSBSHSMWHDSMWQDHMS™S™™SW™W™SSSEFCSSOOUOTSTTTTTTTTTTTTTTTT

Recurrent Neural Networks
RNNs for Sequence Modeling:

Example — Predict the Next Word — Many to Many:

Objective: Predict the next word in a sequence using embeddings and RNNs

Example Sentence:

I live in Canberra and I fluently speak English

Key challenges:
Variable-length sequences
Long-term dependencies (“I” — “speak”)

Semantic relationships (“fluently” — “speak”)

LUMS

A Not-for-Profit University

Recurrent Neural Networks
RNNs for Sequence Modeling:

Example — Predict the Next Word

Step 1: Tokenization & Vocabulary: Step 2: Input-Output Pairs:
Training sequences for RNN:
Tokenized Sentence: Input Sequence | Target Word
[661' 2 1
[IIIII , Illivell , llinll , llCanberrall , :O] “.1‘:76 ()
n n n n n n 071] ln (2)
and", "I", "fluently", 1 « T
| . . 0,1,2] Canberra” (3)
speak", "English"] : —
0,1,2,3] and” (4)
o . 0,...,4 “I” (0)
— m— ;O,...,O; “fluently” (5)
live ; 0,...,] “speak” (6)
in = - -
Vocabulary: Canberra 3 0,...,6] “English” (7)
and 4
fluently 5
speak 6 Note: Shortened notation [0,...,4] represents growing sequence
English 7

LUMS

A Not-for-Profit University

Recurrent Neural Networks
RNNs for Sequence Modeling:

Example — Predict the Next Word

Representation Comparison:

One-Hot Encoding Embeddings
(vocab size = 8) (dim = 2 for illustration)
"I" --> [130’030303030’0] "I --> [01, -03]
"and" --> [0,0,0,0,i,0,0,0] "and" --> [0-5, 0.2]
"fluently" --> [-0.4, 1.1]
"speak" --> [1.2, 0.7]
Problems:

Advantages:
High dimensionality

Compact representation
No semantic meaning

Captures relationships

LUMS

A Not-for-Profit University

Recurrent Neural Networks

RNNs for Sequence Modeling:

Example — Predict the Next Word
word(n+1)

s
-

Model Design:

Embedding layer (learned vectors)
RNN cell (hidden state propagation)

Softmax output (vocabulary distribution)

A Not-for-Profit University

Parameter Sharing: Same weights

used at all time steps.

Teacher Forcing: During training, use
ground truth inputs instead of
previous predictions.

Recurrent Neural Networks
RNNs for Sequence Modeling:

To effectively model sequences, RNNs satisfy the following design criteria:

 Handle Variable-Length Sequences:

The model should accommodate input sequences of varying lengths, ensuring flexibility across different data
scenarios.

 Track Long-Term Dependencies:

The model must capture relationships between elements that are far apart in the sequence, preserving context
over extended intervals.

 Maintain Information About Order:

The sequential nature of the data should be preserved, as the order of elements often carries critical meaning.

 Share Parameters Across the Sequence:

Parameter sharing is essential to ensure the model generalizes well and remains efficient, especially for long
sequences.

LUMS

A Not-for-Profit University

Recurrent Neural Networks Total Loss
Recurrent Neural Networks — Vanilla Variant — Computational Graph: T
L=) Lr
t=0

Loss Computation:

Yo —> L Yy —> L4 V2 —> L, Yyr—> Lp

! | | !

output Yt Yo U1 U2 YT
T TWhy TWhy TWhy TWh’y

L J he i > I > — - - —>hT;1>
RNN Whn Whh Whh

T TWIIZh Tth Tth Tth

input Ty L0 1 T2 TT

LUMS

A Not-for-Profit University

Recurrent Neural Networks Total Loss

Recurrent Neural Networks — Vanilla Variant — Computational Graph: T
L=) L

t=0

How do we determine the weights/parameters? Back Propagation (through time)

Yo —> L Yy —> L4 V2 —> L, Yyr — L7

! ! | !

output Yt Yo U1 U2 YT
T TWhy TWhy TWhy TWh’y

L J he i > I > — - - —ILT_—1>
RNN Whn Whh Whh

T TWIIZh Tth Tth Tth

input Ty L0 1 T2 TT

LUMS

A Not-for-Profit University

Recurrent Neural Networks Total Loss

Recurrent Neural Networks — Vanilla Variant — Computational Graph: T
L=) L

t=0

How do we determine the weights/parameters? Back Propagation (through time)

Yo — L N — L Y2 — L Yyr —> L
output Ut Yo Y1 Yo yr
T TWhy \ TWhy \ TWhy Y TWhy Y
L J hy ho hy hr_1
RNN > > — = —D
Whn Whh Whh
T TWIIZh Tth Tth Tth
input Ty L0 1 T2 TT

LUMS

A Not-for-Profit University

Recurrent Neural Networks Total Loss

Recurrent Neural Networks — Vanilla Variant — Computational Graph: T
L=) L

t=0

How do we determine the weights/parameters? Back Propagation (through time)

Yo —> L Yy —> Ly V2 —> L, Yyr —> L

output Ut Yo Y1 Yo yr
T TWhy TWhy TWhy TWh’y

L J hy ho hy hr_1
RNN > > —4— -
) IWhn +Whn tWhn

T WIIZh Tth Tth W:ch,

input Ty L0 1 T2 TT

LUMS

A Not-for-Profit University

Recurrent Neural Networks Total Loss

Recurrent Neural Networks — Vanilla Variant — Computational Graph: T
L=) L

t=0

How do we determine the weights/parameters? Back Propagation (through time)

Yo —> L Yy —> Ly V2 —> L, Yyr —> L

output Ut Yo Y1 Yo yr
T TWhy TWhy TWhy TWh’y

L J hy ho hy hr_1
RNN > > —4— -
) IWhn +Whn tWhn

T WIIZ hl TWx hl TWCB hl WCEh

input Ty L0 1 T2 TT

LUMS

A Not-for-Profit University

Recurrent Neural Networks

RNNSs — Limitations and Extensions:

output Yt

L

input Ty

LUMS

A Not-for-Profit University

Basic RNN Limitations:

— Vanishing/Exploding gradients

— Struggles with long sequences

[lived my entire life in Pakistan and have recently
to Canberra. | live in Canberra and | fluently speak

moved

Recurrent Neural Networks
RNNs — Understanding Vanishing/Exploding Gradients

Consider a simple RNN with the following recurrence relation:

hi = ¢(Whphi—1 + Wenz + bp)

¢ is a non-linear activation function (e.g., tanh).

Let the loss function at the final time step be £. The gradient of the loss with
respect to the hidden state h; is:

OL 9L Ohy 5_£:3_£.H Ohy,
Oh, Ohr Ol Ohy Ohr | 2° Ohk
Since (Expanding using the chain rule)
Ohp.)
e, ¢’ (ax) - Why, where ay, = Wipnhi—1 + Wynzr + bp,
we get
oL oL
LUMS oh, Ohp H (¢'(ak) - Wha)

A Not-for-Profit University k=t+1

Recurrent Neural Networks
RNNs — Understanding Vanishing/Exploding Gradients

If the spectral norm of Wy, is less than 1 and ¢’ produces small values (as in
the case of tanh or sigmoid), then:

T

11 @' (ar) Win)

k=t+1

—0 asT —t—

This leads to the vanishing gradient problem, where early layers (smaller t)
receive negligible gradient signals during backpropagation.

LUMS

A Not-for-Profit University

Recurrent Neural Networks

RNNSs — Limitations and Extensions:

output Yt
|
hy
RNN
input Ty

LUMS

A Not-for-Profit University

Basic RNN Limitations:

— Vanishing/Exploding gradients

— Struggles with long sequences

[lived my entire life in Pakistan and have recently
to Canberra. | live in Canberra and | fluently speak

Improvements:

— LSTMs (next topic)

— Attention mechanisms

Real-World Scaling:
— Use pre-trained embeddings (GloVe, Word2Vec)

moved

Outline

- Recurrent Neural Networks (RNNSs)
- Long Short-Term Memory (LSTM) Networks

a2 LUMS

A Not-for-Profit Uni

Limitations of Vanilla RNNs

Problem 1: Vanishing/Exploding Gradients
* During Backpropagation Through Time (BPTT), gradients are multiplied by

output Yt weight matrices repeatedly, causing them to shrink (vanish) or grow (explode).
A This makes learning long-term dependencies difficult.
L | J Example: In a sequence of length 100, gradients involve W, |eading to
RNN ht instability.
T Problem 2: Short-Term Memory

* Hidden states in RNNs are overwritten at each time step, making it challenging
Input P to retain information over long sequences.

LUMS

A Not-for-Profit University

Long Short-Term Memory (LSTM) Networks

Intuition Behind Selective Memory Update

LSTM networks are designed to remember important information and forget
what’s not useful. They do this using three key mechanisms:

1. Forget Gate:

Decides what part of the past information should be forgotten. Think of it like
cleaning up memory —“Is this old info still relevant?”

2. Input Gate (Selective Write):

Determines what new information should be added to memory. This is like
saying, “I just saw something new — should I store it?”

3. Output Gate (Selective Read):

Chooses what part of the memory to use for the next step. It’s like asking,
“What do I need to remember right now to make a decision?”

Together, these gates help LSTMs handle long-term dependencies more ef-
fectively.

LUMS

A Not-for-Profit University

Long Short-Term Memory (LSTM) Networks

T RNN
gt ht_l > Memory —_— ht = tanh(Whhht_l —+ thxt + bh)
Cell

TWh Current hidden state depends on

, Y - previous hidden state

t=1 hy - current input

Whhn rt

TW:ch

Long Short-Term Memory (LSTM)

Lt : .
Equip memory cell with
- internal’ state, and
- multiplicative gates that determine
RNN (i) How should a given input impact the internal state (the input gate)?

(ii) How should the internal state be flushed to 0 (the forget gate)?

(iii) How should the internal state of a given neuron be allowed to impact the

cell's output (the output gate)?
LUMS put (put gate)

A Not-for-Profit University

Long Short-Term Memory (LSTM) Networks

Key Idea:

Introduce a cell state (C;) as a
“memory highway”

regulated by gates controlling information propagation over time.

internal state
Ct—l > E— Ct
hy_
=1 Memory > hy Memory Cell
with Gates
I hi—1 > — Iy
hidden state
Xt
RNN

LUMS

A Not-for-Profit University

Long Short-Term Memory (LSTM) Networks

Formulation:
internal state 4)
Ci_q > , 5 — ()
ft 1t Ct Ot
h 0] o) tanh 0] h
t—1 — Iy
hidden state
Lt
Forgetgate f; = o(Wyrxe + Whyphi—1 +by) 0t = 0(Wyaoxy + Who hi—1 + b,) Output gate
Input gate it = o(Wyixe + Whihe_1 + b;) é’t = tanh(Wpphe—1 + Wenay) Input node

LUMS

A Not-for-Profit University

Long Short-Term Memory (LSTM) Networks

Formulation — Forget Gate Action:

internal state 4)

Ci1 D (. X . — ()
A Ut

g)z
@)
~

S —>

tanh 0]

hi—1 — Iy
hidden state
Lt
Forgetgate f; = o(Wyrxe + Whyphi—1 +by) 0t = 0(Wyaoxy + Who hi—1 + b,) Output gate
Input gate it = 0(Wyixt + Whi he—1 + b;) ét = tanh(Wpphe—1 + Wenay) Input node

LUMS

A Not-for-Profit University

Long Short-Term Memory (LSTM) Networks

Formulation — Input Gate Action:

internal state 4)
Ci—1 D pr— X) — ()
A Ot
X T
I
ht . 0] o) tanh 0] h
- ;—) t
hidden state
Lt
Forgetgate f; = oc(Wyrxy + Whyphi—1 + by) 0t = 0(Wyo xt + Who hi—1 + b,) Output gate
Input gate it = 0(Wyixt + Whi he—1 + b;) ét = tanh(Wpphe—1 + Wenay) Input node

LUMS

A Not-for-Profit University

Long Short-Term Memory (LSTM) Networks

Formulation — Determining Next (Internal) State:

internal state 4)
Ci1 > s X ——) — 3y ()
A O¢ ‘ ~
T Ci = fr ©Ci_1 + 1 © C}
]
|
ht . 0] o tanh o h
N r—> t
hidden state
Lt
Forgetgate f; = o(Wyrxe + Whyphi—1 +by) 0t = 0(Wyaoxy + Who hi—1 + b,) Output gate
Input gate it = 0(Wyixt + Whi he—1 + b;) ét = tanh(Wpphe—1 + Wenay) Input node

LUMS ®» — element wise multiplication

A Not-for-Profit University

Long Short-Term Memory (LSTM) Networks

Formulation — Output Gate Action and Next Hidden State:

internal state 4 A
Ci1 »— X — + ——p—> (} 3
4 T tanh Ci = ft ©Ci1 + 1 © C
|
Jt 1t & 3
1C: |
h 0) 0] tanh)
t—1 hy = o @ tanh(C})
hidden state
Lt
Forgetgate f; = o(Wyrxe + Whyphi—1 +by) 0t = 0(Wyaoxy + Who hi—1 + b,) Output gate
Inputgate iy = o (Was x4 + Wiy hy—1 + by) C; = tanh(Wyphi—1 + Wanr,) Input node

LUMS

A Not-for-Profit University

Long Short-Term Memory (LSTM) Networks
Variations and Extensions — Gated Recurring Units:

GRUs simplify LSTMs by combining the forget and input gates into a single
update gate. The key equations are:

(
ry = o(Werxe + Whrhe—1 + b)) (Reset Gate)
hy = tanh(Wopxe + Whp(r: © hy—1) + by) (Candidate State)
2z = 0o(Weyxy + Whohe 1 +b,) (Update Gate) Candidate
~ hidden stat
hy = (1 —2) ®hy—1 + 2 © hy (Final Hidden State) B ei’Ls ’
t
I

Key Idea: GRUs control how much past information to keep (z;) and how

much to reset ().

LUMS

A Not-for-Profit University
T UOOOOOBOEBBBEBRTURREEeeRERRBRBGRCBBRSBSHSMWHDSMWQDHMS™S™™SW™W™SSSEFCSSOOUOTSTTTTTTTTTTTTTTTT

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 41

