LAHORE UNIVERSITY OF MANAGEMENT SCIENCES Department of Electrical Engineering

EE 514 (CS 535) Machine Learning Quiz 7 Solutions

Name:	
Campus ID:	
Total Marks: 10	
Time Duration: 15 minutes	

Question 1 (4 marks)

(a) [3 marks] Mathematically formulate how C appears in the primal optimization problem of soft-margin SVM and explain its role in the objective function. Analyze the effect of varying C on the width of the margin.

Solution: The primal optimization problem with parameter C:

$$\min_{\mathbf{w},b,\xi} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$

subject to:

 $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i \text{ and } \xi_i \ge 0 \quad \forall i$

Here, C controls the tradeoff between 'margin maximization ($\|\mathbf{w}\|^2$ minimization)' and 'penalty for violations $(\sum \xi_i)$ '.

Effect of varying C:

• Large C:

- Narrower margin (larger $\|\mathbf{w}\|$)

- Fewer classification errors (strict enforcement)
- Potentially fewer support vectors
- Risk of overfitting
- Small C:
 - Wider margin (smaller $\|\mathbf{w}\|$)
 - More tolerance for errors
 - Typically more support vectors
 - Risk of underfitting

(b) [1 mark] In the dual SVM formulation, the Lagrange multipliers α_i are non-zero only for:

- A) All training points
- B) Misclassified points
- C) Support vectors
- D) Outliers

Solution: C) Support vectors

Question 2 (6 marks)

Given the following linearly separable dataset:

- Class +1 (Positive): (1,1) and (1,3)
- Class -1 (Negative): (3,1) and (3,3)

- (a) Plot the data and identify the support vectors.
- (b) Find the optimal hyperplane (decision boundary) using Hard SVM.
- (c) Determine the weight vector \mathbf{w} and bias term θ .
- (d) Compute the classification margin ρ

Solution: We need to:

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$

subject to:

$$w_1 + w_2 - \theta \ge 1 \quad \text{(for (1,1))}$$

$$w_1 + 3w_2 - \theta \ge 1 \quad \text{(for (1,3))}$$

$$3w_1 + w_2 - \theta \le -1 \quad \text{(for (3,1))}$$

$$3w_1 + 3w_2 - \theta \le -1 \quad \text{(for (3,3))}$$

By symmetry, we can assume $w_2 = 0$. Then:

	$w_1 - \theta = 1$
	$3w_1 - \theta = -1$
Solving gives:	
	$w_1 = -1, \theta = -2$
Thus:	$\begin{pmatrix} 1 \end{pmatrix}$
	$\mathbf{w} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}, heta = -2$
The decision boundary is:	
	-x + 2 = 0 or x = 2
Margin boundaries:	
	$-x+2=1 \Rightarrow x=1$
	$-x+2 = -1 \Rightarrow x = 3$
Margin width:	0 0
	$\rho = \frac{2}{\ \mathbf{w}\ } = \frac{2}{1} = 2$