LUMS  EE563 Convex Optimization

A Not-for-Profit University
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Problem 1
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Problem 2

Let y; = z . Because x; > 0, we can recover x;j as xj = t,'J/

fi can be written in terms of y as
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Since yj/ and (y;1 Jk)l/ 2 (the geometric mean of y; and yy) are concave and (F;);5 <0, ¢; <0, this
is convex in y. Thus the QCQP becomes a convex problem in y.

Problem 3

We can assume without loss of generality that m = 2% for some positive integer K.
(If not, define a; =0 and by = =1 for e =m+1,... .28 where 2% is the smallest
power of two greater than m.)

Let us first take m =4 (K = 2) as an example. The problem is equivalent to

maximize  Y1y29y3y4
subject to y = Axr —b
y =0,

which we can write as

maximize  tito
subject to y= Az —b
y1y2 >t
yays = 13
y~=0, t1 >0, t2>0,

and also as
maximize t

subject to y= Axr —b
yiy2 >t
Yaya > t5
tits > 12
y=0, ti,ta,t>0.

Expressing the three hyperbolic constraints
gy > 1, ysya > 13, bty >
as SOC constraints yields an SOCP:



minimize —t

subject to 22 Syity2, y1 20, y220
I 5
[ o2t
° <ys+uys, y3>0, y1>0
ECE I | P
[ ot
<ti+t2, 1 >0 t2>0
t1 — 1o
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y= Ax—b.

We can express the problem as

maximize Yoo

subject to  yrx_1,j-1 = aflr —b;, j=1,...,m
Uik < Yig1okYisrokgr. i=0.... K -2 k=0,...2"-1
Ax = b,

where we have introduced auxiliary variables y;; fori =0,... ., K—1,j=0,...,2"—1.
Expressing the hyperbolic constraints as SOC constraints yields an SOCP.

The equivalence can be proved by recursively expanding the objective function:

Yoo < Yoyl
< (y20y21) (y22y23)
< (yaoys1)(y32y33)(y3ayss) (yseyar)
YK-1,0YK—-1,1 " Yg_1 2K _4
= (aiz —b1) - (@ —bm).
Problem 4
LP as SDP: L T
- minimize cr+d
subject to  diag(Gz —h) <0
Ax = b.
—QP as SDP: Express P = WWT with W e R"*",
minimize t+ QQT.’E +r
I Wy
subjec -
subject to ST 7 =0
diag(Gz — h) =0
Axr = b,

with variables x, t € R.

QCQAPas SDP:  ppress P = W2 with W, € R™7.

minimize to + QQE{ x4+ ro
subject to ti+2q,_T$+ri <0, 2=1,....m
I wla
! =0, +1=0,1,...,
|: :I:T'H/ri f][ :| Y l 3 Lo , T
Axr = b,

with variables z, t; € R.



SOCP as SDP:
minimize '
(cFa+d)I  Ax+b;
(Ax; + b))t (cFz+d)l | —
Fz=g.

subject to

Problem 5

a) Noting the fact Ay(x) < ¢ iff F(x) < tI, we formulate the following SDP using
epigraph reformulation approach:

minimize
subject to  F(x) < tI

b) Using the Schur complement theorem we can write the problem as an SDP

minimize ¢

. F(z) ¢
subject to l (T) ; =0
c ;
C) minimize ¢
. F(z) ¢ - .
subject to [ (T) ! ‘| =0, i=1,.... K.
5 t
d) The cost function can be expressed as

F(&) = Amax(F(2)™Y),
so f(x) < tif and only if F(z)~! < #I. Using a Schur complement we get

minimize ¢

subject to [ Fx) I ‘| = 0.

E) The cost function can be expressed as
f(x) = F(x)'e + te(F(x)71S).

If we factor S'as S =), fi:kf-’{ the problem is equivalent to
T 1 T 1
minimize ¢ F(x)" ¢+ 3 o F(x) ey,
k=1
which we can write as an SDP

minimize tg+ >tk
k

) F(z) ¢
subject t =0
subject to [ A } =




Problem 6

a) minimize max@(Z:k?éz Gaepr + i) [ (Giips)
[] S pz g Pilﬂa.x
E:keffzpk = ]%gp
Yooy Giepr < Pi°

b) Code:

n=2>5;

G =[1 0.1 0.2 0.1 O
0.1 1 0.1 0.1 0
0.2 0. 2 0.2 0.2
0.1 0. 0.2 1 0.1
0 0 0.2 0.1 11;

sigma = 0.5;

Pmax = 3;

% set up lower and upper bounds

1=0;
u = 100;
tol = le—4;

Gtilde = G - diag(diag(G));

% use bisection to solve linear-fractional problem
while u-1 > tol
t = (1+u)/2;

% solve feasibility problem for this value of t
cvx_begin
cvx_quiet(true);
variable p(n);
Gtildexp + sigma*omes(n,1) <= t * diag(G).*p;
p >= 0;
p <= Pmax;
p(1)+p(2) <= 4;
p(3)+p(4)+p(5) <= 6;
G¥p <= b5;
cvx_end

if strempi(cvx_status, ’Solved’)
u=t;
% save best values

pstar = p;
sstar = 1/t;
else
1l=rt;
end
end

% output results
pstar
sstar

Optimal values:

optimal values of the trasmitted powers are: p; = 2.1188, po = 1.8812, p3 = 1.6444, py = 2.3789,
ps = 1.8011. The maximum SINR is 1.6884.



