

EE 563 - Convex Optimization

Spring 2020

Course Description

This course focuses on theory, algorithms and applications of convex optimization. Convex optimization deals with the non-linear optimization problems where the objective function and the constraints of the problem are both convex. These problems appear in a variety of applications in diverse fields of science and engineering (e.g., statistics, signal/image processing, wireless communications, computational neuroanatomy, machine learning, and computational geometry, to name a few).

Students will be given training to recognize, model and formulate the convex optimization problems. Topics include: review of leastsquares, linear programming, convex sets and functions, convexity with reference to inequalities, linear optimization problems, quadratic optimization problems, geometric programming, duality (Lagrange dual function), norm approximation, regularized approximation, geometric problems, Algorithms (descend, Newton, interior-point). Implementation of optimization algorithms will be carried out in CVX (MATLAB based software for convex optimization).

Course Basics		
Instructor	Zubair Khalid	
Room No.	9-251 (Zubair)	
Office Hours	TBA	
Email	zubair.khalid@lums.edu.pk	
Telephone	8477	
Secretary/TA	TBA	
TA Office Hours	ТВА	
Course URL (if any)	https://lms.lums.edu.pk/	

Credit Hours	3			
Lecture(s)	Nbr of Lec(s) Per Week	2	Duration	75 minutes

Course Distribution				
Core	EE-MS			
Elective	May be Elective for others			
Open for Student Category	BS (Needs prior permission) / MS / PhD			

COURSE PREREQUISITE(S)			
•	Required: Linear Algebra Recommended: Introduction to Analysis, Signal Processing, Feedback Control Systems		
Grading Breakup and Policy (Tentative)			
	Assignment(s): 25% (5 Assignments) 6 (3-5 Quizzes)		
2 Midterm Examination:40%			
Final Examination:25%			

Lahore University of Management Sciences

Course Objectives

By the end of the course, the students should be able to

- understand the basic theory of convex optimization.
- recognize and formulate the convex optimization problems appear in a variety of applications.
- analyze a convex problem using convex optimization theory and duality theory.
- solve optimization problems by using different state-of-the-art algorithms.
- use the tools/methods learnt in this course in their own research work and applications.

Examination Detail (Tentative)				
Midterm Exams	Duration: 2 hours Preferred Date: Week 6, Week 11 Exam Specifications: Closed book closed notes/Calculators Allowed			
Final Exam	Yes/No: Yes Duration: 3 hours Exam Specifications: Closed book, closed notes/Calculators Allowed/			

Textbook(s)/Supplementary Readings

• Boyd, Stephen, and Lieven Vanderberghe. Convex Optimization. Cambridge University Press, 2004

References:

Text:

- Bertsekas, Dimitri. Convex Optimization Theory. Athena Scientific, 2009
- Ben-Tal and Nemirovski. Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications, SIAM Series, 2001.
- Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer, 2003.
- David G. Luenberger, **Optimization by Vector Space Methods**, Wiley, 1997.
- R. Tyrell Rockafellar, **Convex Analysis**, Princeton University Press., 1996