LAHORE UNIVERSITY OF MANAGEMENT SCIENCES Department of Electrical Engineering

EE563/MATH325 Convex Optimization (Spring 2020) Quiz 01

Name:	
Campus ID:	
Total Marks: 10	
Time Duration: 20 minutes	

Question 1 (4 marks)

Show that the set $S \subseteq \mathbf{R}^3$ given by

$$S = \left\{ x \in \mathbf{R}^n \middle| -2 \le \operatorname{Real}\left(\sum_{k=1}^n x_k e^{jkt}\right) \le 4 \quad \text{for} \quad |t| \le 3 \right\}$$

is convex. Here $j = \sqrt{-1}$ denotes the complex imaginary number, $e^{jkt} = \cos(kt) + j\sin(kt)$ and Real(·) returns the real part of the complex argument.

Question 2 (3 marks)

Consider a proper cone $K = \{x \in \mathbf{R}^2 | x_i \leq 0, i = 1, 2\}.$

- (a) [1 mark] Sketch the cone K.
- (b) [2 marks] Find the minimum (if any) or minimal element(s) of the set $S = R_+^2 \cap B$ with respect to the cone K, where $B = \{x \in \mathbb{R}^2 | ||x||_2 \le b\}$ is the Euclidean norm ball in \mathbb{R}^2 .

Question 3 (3 marks)

- (a) [1 mark] Define the dual of the cone K, that is, provide an explicit definition of the dual cone.
- (b) [2 marks] Find the dual of the cone $K = \{x \in \mathbb{R}^2 | x_1 \leq -|x_2|\}.$