LAHORE UNIVERSITY OF MANAGEMENT SCIENCES Department of Electrical Engineering

EE563/MATH325 Convex Optimization (Spring 2020) Quiz 01 - Solutions

Name: _____ Campus ID: _____ Total Marks: 10 Time Duration: 20 minutes

Question 1 (4 marks)

Show that the set $S \subseteq \mathbf{R}^n$ given by

$$S = \left\{ x \in \mathbf{R}^n \middle| -2 \le \operatorname{Real}\left(\sum_{k=1}^n x_k e^{jkt}\right) \le 4 \quad \text{for} \quad |t| \le 3 \right\}$$

is convex. Here $j = \sqrt{-1}$ denotes the complex imaginary number, $e^{jkt} = \cos(kt) + j\sin(kt)$ and Real(·) returns the real part of the complex argument.

Solution: For each t, the set S is given by

$$S_t = \left\{ x \in \mathbf{R}^n \middle| -2 \le c^T x \le 4 \right\},\$$

where $c = (\cos(t), \cos(2t), \dots, \cos(nt))$. S_t is an intersection of two half-spaces and is therefore convex. S is convex since it is an intersection of convex sets S_t , that is $S = \bigcap S_t$.

Question 2 (3 marks)

Consider a proper cone $K = \{x \in \mathbf{R}^2 | x_i \le 0, i = 1, 2\}.$

(a) [1 mark] Sketch the cone K.

Solution: The cone is non-positive orthant.

(b) [2 marks] Find the minimum (if any) or minimal element(s) of the set S = R²₊ ∩ B with respect to the cone K, where B = {x ∈ R²|||x||₂ ≤ b} is the Euclidean norm ball in R².
Solution: There is no minimum element. {x ∈ R²₊|||x||₂ = b} represents a set of minimal elements.

Question 3 (3 marks)

(a) [1 mark] Define the dual of the cone K, that is, provide an explicit definition of the dual cone.

Solution: The dual cone K^* is defined as

$$K^* = \{ x | x^T y \ge 0, \forall y \in K \}.$$

(b) [2 marks] Find the dual of the cone K = {x ∈ R² |x₁ ≤ −|x₂|}.
Solution: The cone of self-dual.