LAHORE UNIVERSITY OF MANAGEMENT SCIENCES Department of Electrical Engineering

EE563/MATH325 Convex Optimization (Spring 2020) Quiz 02

Name:	
Campus ID:	
Total Marks: 20	
Time Duration: 25 minutes	

Question 1 (8 marks)

Determine whether each of the following functions defined on \mathbb{R}^n or specified domain is convex or concave or neither. Provide brief justification to support your answer.

- (a) $f(x) = a^T x + b$, $x \in \mathbf{R}^n$ (b) $f(x) = \frac{1}{1-x^T x}$, $||x||_2 < 1$, $x \in \mathbf{R}^n$ (c) $f(x) = e^x + e^{-x}$, $x \in \mathbf{R}$ (d) $f(x) = \max\{1/x, x^2, e^x\}$, $x \in \mathbf{R}_+$
- (e) $f(x, y, z) = -\log(yz x^T x), \quad \text{dom}f = \{x \in \mathbf{R}^n, y, z \in \mathbf{R}_{++} | yz > x^T x\}$

Question 2 (3 marks)

Consider a polynomial

$$P(x,\omega) = x_1 + x_2 \cos \omega + x_3 \cos 2\omega + \dots + x_n \cos(n-1)\omega$$

Show that the function

$$f(x) = -\int_0^{2\pi} \log P(x,\omega) d\omega,$$

is convex on $\{x \in \mathbf{R}^n | P(x, \omega) > 0, \omega \in [0, 2\pi]\}$.

Question 3 (4 marks)

If $f: \mathbf{R}^n \to \mathbf{R}$ is a convex function show that its α -sub-level set S_α given by

$$S_{\alpha} = \{ x \in \mathbf{R}^n | f(x) \le \alpha \}$$

is convex.

Question 4 (5 marks)

Determine the conjugate of the function $f(x) = x^p, x \in \mathbf{R}_{++}, p > 1.$