LAHORE UNIVERSITY OF MANAGEMENT SCIENCES Department of Electrical Engineering

EE563/MATH325 Convex Optimization (Spring 2020) Quiz 02 - Solutions

Name:	
Campus ID:	
Total Marks: 20	
Time Duration: 25 minutes	

Question 1 (8 marks)

Determine whether each of the following functions defined on \mathbb{R}^n or specified domain is convex or concave or neither. Provide brief justification to support your answer.

(a) $f(x) = a^T x + b, x \in \mathbf{R}^n$

Solution: Affine and therefore convex and concave.

(b)
$$f(x) = \frac{1}{1 - x^T x}, \quad \|x\|_2 < 1, \, x \in \mathbf{R}^n$$

Solution: $1 - x^T x$ is concave, $\frac{1}{x}$ is convex and non-increasing, f is a convex, non-increasing function of a concave function and is therefore convex.

(c)
$$f(x) = e^x + e^{-x}, x \in \mathbf{R}$$

Solution: Convex

(d) $f(x) = \max\{1/x, x^2, e^x\}, x \in \mathbf{R}_+$

Solution: Convex; point-wise maximum of convex functions.

(e)
$$f(x, y, z) = -\log(yz - x^T x), \quad \text{dom}f = \{x \in \mathbf{R}^n, y, z \in \mathbf{R}_{++} | yz > x^T x\}$$

Solution: f is convex. $\log(yz - x^Tx) = \log(y) + \log(z - x^Tx/y)$. Since $z - x^Tx/y$ is concave, $\log(z - x^Tx/y)$ is concave and consequently $\log(yz - x^Tx)$ is concave.

Question 2 (3 marks)

Consider a polynomial

 $P(x,\omega) = x_1 + x_2 \cos \omega + x_3 \cos 2\omega + \dots + x_n \cos(n-1)\omega.$

Show that the function

$$f(x) = -\int_0^{2\pi} \log P(x,\omega) d\omega,$$

is convex on $\{x \in \mathbf{R}^n | P(x, \omega) > 0, \omega \in [0, 2\pi]\}.$

Solution: $\log P(x,\omega)$ is concave in x since $P(x,\omega)$ is affine in x for each ω . $\int_0^{2\pi} \log P(x,\omega) d\omega$ is a non-negative weighted sum of concave functions and is therefore concave. $\int_0^{2\pi} \log P(x,\omega) d\omega$ is convex.

Question 3 (4 marks)

If $f: \mathbf{R}^n \to \mathbf{R}$ is a convex function show that its α -sub-level set S_α given by

$$S_{\alpha} = \{ x \in \mathbf{R}^n | f(x) \le \alpha \}$$

is convex.

Solution: For $x_1, x_2 \in S_\alpha$, we have $f(x_1) \leq \alpha$ and $f(x_2) \leq \alpha$. By convexity of $f(\theta x_1 + (1 - \theta)x_2) \leq \theta f(x_1) + (1 - \theta)f(x_2) \leq \theta \alpha + (1 - \theta)\alpha \leq \alpha$, which implies that $(\theta x_1 + (1 - \theta)x_2) \in S_\alpha$.

Question 4 (5 marks)

Determine the conjugate of the function $f(x) = x^p, x \in \mathbf{R}_{++}, p > 1.$

Solution: By definition, we have

$$f^*(y) = \sup_{x>0} (yx - x^p)$$

For y < 0, the supremum is zero at x = 0 and therefore we have $f^*(y) = 0$. For y > 0, the maximum occurs at $x = \left(\frac{y}{p}\right)^{1/(p-1)}$ and

$$f^*(y) = (p-1) \left(\frac{y}{p}\right)^{p/(p-1)}, \quad y > 0.$$