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Question 1 (10 marks)

Consider a following optimization problem

minimize max |log(alz) — log(by)|
k=1,2,....p

subject to x = 0,

where we assume that b; > 0 and log(al z) =

= —oo when alz < 0 for i = 0,1,...,n. Formulate
the problem as SOCP.

Solution: Noting the following

T afx by
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ko QT
we can rewrite the above problem as
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since log is monotone increasing; minimizing the log of any function is equivalent to the log of the minimum
of the function.

Now using the epigraph reformulation, we can write the optimization problem as

minimize ¢,

T
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By reformulating the constraint %% > 3 as
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we obtain SOCP in variables z and ¢.

You may find the following relationships/information useful.

|log p — log q| = log max(p/q,q/p), p,q>0.

¢ log is monotone increasing and therefore minimizing the log of any function is equivalent to
the log of the minimum of the function.



e Hyperbolic constraint w’w < yz for 3,z > 0 can be expressed as a second-order constraint

given by
2
[Rajens
y—=z 2

Page 2 of 1 CONVEX OPTIMIZATION EE563/MATH325



