Convex Optimization

Signal Processing Application: Compressive Sensing

Department of Electrical Engineering School of Science and Engineering Lahore University of Management Sciences

https://www.zubairkhalid.org/ee563_2020.html

Outline

- Compressive Sensing (CS) Overview
- CS Problem Formulation
- Orthogonal Matching Pursuit (OMP) Algorithm
- ℓ_1 norm minimization

Compressive Sensing - Overview

A Not-for-Profit University

Sparse Sampling
Used in a variety of applications in science, engineering and beyond; image processing, computer vision, cosmology, geophysics, finance, economics, acoustics and wireless communication, to name a few.

LUMS	Google Scholar	
	Articles	About 33 results (0.03 sec)
	All versions	Compressed sensing DL Donoho - IEEE Transactions on information theory, 2006 - ieeexplore.ieee.org Suppose x is an unknown vector in Ropf m (a digital image or signal); we plan to measure n general linear functionals of x and then reconstruct. If x is known to be compressible by transform coding with a known transform, and we reconstruct via the nonlinear procedure ☆ 切り Cited by 25837 Related articles

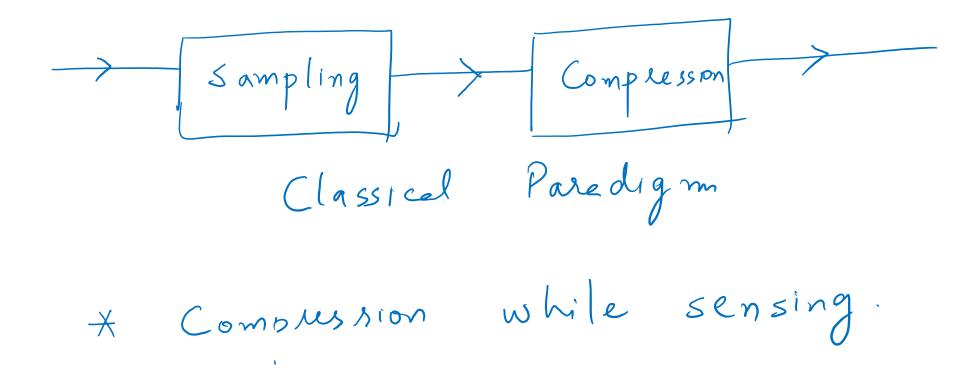
Compressive Sensing - Overview

$$\times$$
 1920 ×1080 × 3
 \approx 6.22 MB
 \times 300 N 400 KB
R; How can we store?
A·) Compression

1920×1080

8611 m

Compressive Sensing - Overview



Compressive Sensing - Formulation

Problem under consideration:

*
$$x \in R^n$$

* $y = \phi x$

Sensing Matrix

 $\phi = \begin{bmatrix} \phi_1 \\ \overline{\phi_2} \end{bmatrix}$
 $\psi = \begin{bmatrix} \phi_1 \\ \overline{\phi_2} \end{bmatrix}$

* Determine $x \in R^m \times n$

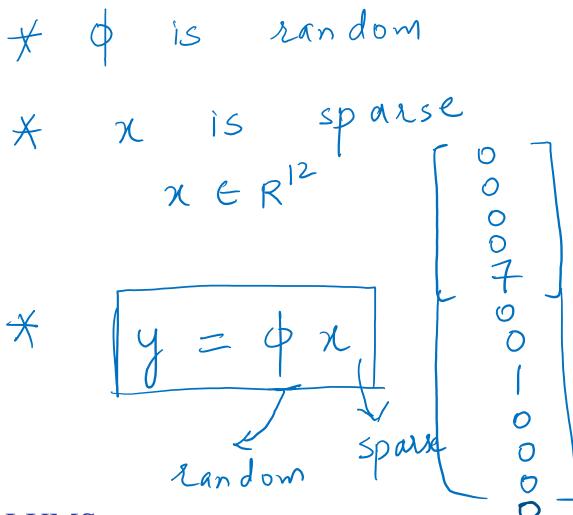
* $y_i = \phi_i^T \times 1$

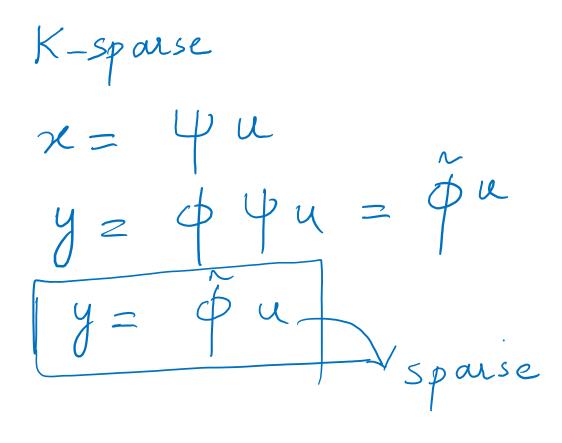
* $y_i = \phi_i^T \times 1$

* $y_i = \phi_i^T \times 1$

Compressive Sensing - Formulation

Assumptions:



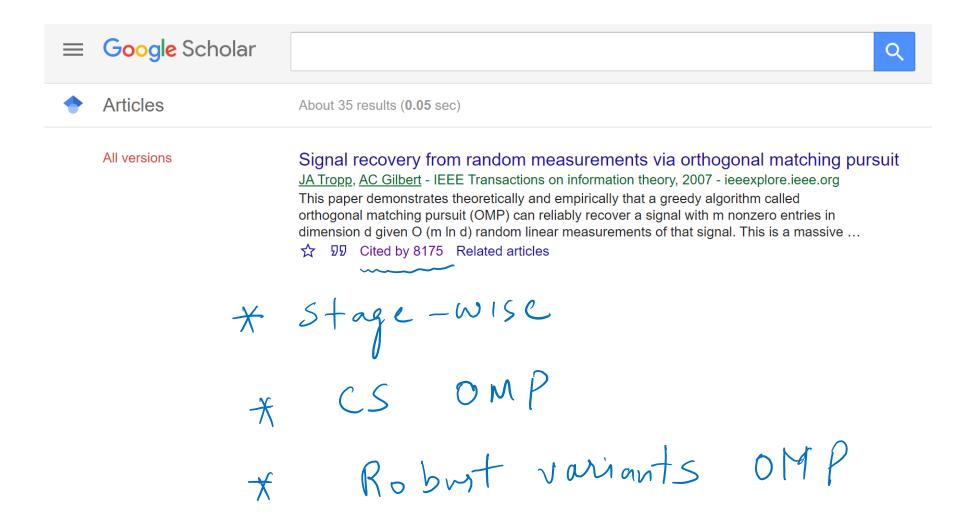


Compressive Sensing - Formulation

Problem Formulation:

A Not-for-Profit University

Orthogonal Matching Pursuit



Orthogonal Matching Pursuit (OMP)
$$y = \oint \chi$$

 $y^{(1)} = y$, $K = 1$

$$\frac{\text{S+ep}}{\lambda(k)} = \max_{j} \phi_{j}^{T} y^{CK}$$

$$\frac{5 + e_p^2}{A} = \left(\frac{\phi}{\lambda} \right)$$

$$y = \phi \lambda$$

$$\phi = \begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$$

$$\chi' = (A^{T}A)^{-1}A^{T}y$$

Orthogonal Matching Pursuit (OMP)

$$||x_{K} - x_{K-1}||_{2} \le \epsilon_{o}$$
Break

After K iterations;

$$\times \lambda \in \mathbb{R}$$

$$\times \lambda \in \mathbb{R}$$

$$\times A \in \mathbb{R}$$

$$\|y-A_{\chi}(K)\|_{2} \leqslant \epsilon_{o}$$

$$\chi = \begin{bmatrix} 0 \\ 0 \\ \chi_1 \\ 0 \\ \chi_2 \\ 1 \end{bmatrix} \qquad \chi(1)$$

minimize
$$\|x\|_{o}$$

Subject to $y = \phi x$

$$\|x\|_{1} \stackrel{\triangle}{=} \|x_{1}| + \|x_{2}| + \dots + \|x_{n}\|$$

$$= t_{1} + t_{2} + \dots + t_{n} = 1^{T} t$$

$$m_{1} = t_{1} + t_{2} + \dots + t_{n} = 1^{T} t$$

$$m_{1} = t_{1} + t_{2} + \dots + t_{n} = 1^{T} t$$

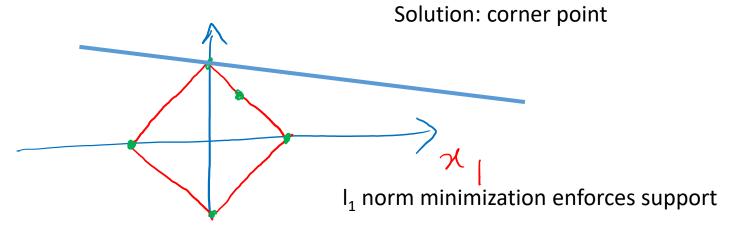
$$m_{1} = t_{1} + t_{2} + \dots + t_{n} = 1^{T} t$$

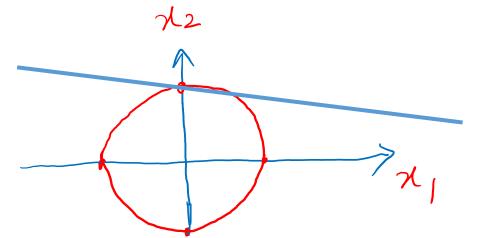
$$y = \phi_{1} \times (Aff_{me})$$

$$|x_{i}| = t_{i} \quad i = 1, 2, \dots, n$$

$$|x_{i}| = t_{i} \quad i = 1, 2, \dots, n$$

$$Inequality \begin{bmatrix} x_{i} \leq t_{i} & i = 1, 2, \dots, n \\ -x_{i} \leq t_{i} & i = 1, 2, \dots, n \end{bmatrix}$$





Solution: does not need to be corner point

 $\rm I_2$ norm minimization does not give us $\rm I_0$ norm solution

$$y = \phi \chi + \eta$$

minimize $\|y - \phi \chi\|_2 + \lambda \|\chi\|_1$

Basis Pursuit Denoising

 $\lambda \to \text{Regularization parameter}$

Feedback: Questions or Comments?

Email: <u>zubair.khalid@lums.edu.pk</u>

Slides available at: https://www.zubairkhalid.org/ee563 2020.html (Let me know should you need latex source)

