Convex Optimization

Conic Optimization and Semidefinite Programming

Zubair Khalid

Department of Electrical Engineering School of Science and Engineering Lahore University of Management Sciences

https://www.zubairkhalid.org/ee563_2020.html

Outline

- Convex Optimization with Generalized Inequality Constraints
- Conic Optimization Problems
- Semidefinite Programming (SDP)

Section 4.6

Convexity w.r.t. Generalized Inequality

Generalized Inequality: For a proper one $K \subseteq R^{m}$ we define a generalized inequality: $x, y \in R^{m}$ $x \leq k y$ iff $y - x \in K$ $\overline{z} \in R^{m}$ $0 \leq_{k} \overline{z}$ iff $\overline{z} \in K$

Convexity w.r.t. Generalized Inequality: A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is $K_{-convex}$, where $K \subseteq \mathbb{R}^m$ is a proper cone, if $f(\Theta_x + (I - \Theta)y) \leq_K \Theta f(x) + (I - \Theta)f(y)$ for $\Theta \in [0, 1]$ and $x, y \in \operatorname{dom} f$,

Convex Optimization with Generalized Inequality Constraints:

- Ordinary convex optimization problem minimize $f_o(x)$ subject to $f_i(x) \le 0$, i = 1, 2, ..., mGx = h
- If we allow the constraint functions to be vector valued:

minimize
$$f_o(x)$$

subject to $f_i(x) \preceq_{K_i} 0, \quad i = 1, 2, ..., m$
 $Gx = h$

A Not-f

Convex Optimization with Generalized Inequality Constraints

$$f_{o}: R^{n} \rightarrow R$$

$$f_{i}: R^{n} \rightarrow R^{k_{i}}$$

$$\downarrow$$

$$K_{i} \text{ convex}, \quad K_{i} \subseteq R^{k_{i}}$$

$$(Proper \text{ cone})$$

$$X = If$$
 $\dot{p}_i = 1$, $K_i = R_+$ for each $i = 1, ..., m$
LUMS we have an ordinary optimization problem.

Convex Optimization with Generalized Inequality Constraints:

Properties and Interpretation

* Feasible set
$$-\operatorname{convex}$$

 $F = \{ x \mid f_i(x) \leq K_i^{\circ}, i = 1, 2, ..., m, Gx = -h \}$

* Optimal set
$$_$$
 convex
* Locally optimal point is globally optimal point.
* Optimality Criterion: $\nabla f_o(x)(y-x) \ge 0$ $\forall y \in F$
 $\iff x \in F$ is optimal

Conic Form Problems

In convex Optimization with Generalized Inequality Constraints, if we consider

- Objective function: Affine (or linear)
- Inequality constraints: Affine

minimize	$c^T x$	
subject to	$A_i x - b_i \preceq_{K_i} 0,$	$i = 1, 2, \ldots, m$
	Gx = h	
	1	

Conic Form Problem or Conic Optimization Problem or Conic Program (CP)

- <u>Conic form problems; generalization of LP</u>
- The cones which we have a tractable conic optimization are of three basic types.
- K Non-negative orthant

• K - Quadratic, Second-order • K - Positive semidefinite

Conic Form Problems

- K_i Non-negative orthant
 - Component-wise inequality
 - Linear inequality constraints half-spaces
 - Conic optimization problem becomes a linear program
- K Quadratic, Second-order
 - We have SOCP

minimize $f^T x + e$

subject to
$$||A_i x + b_i||_2 \le c_i^T x + d_i$$
 $i = 1, 2, \dots, m$
 $Gx = h$

$A_i x - b_i \preceq_{K_i} 0 \quad \to \quad A_i x - b_i \preceq 0$

- K Positive semidefinite
 - Conic optimization problem is referred to as *Semidefinite Program (SDP)*

* Linear Matrix Inequality (LMI)
For
$$x \in \mathbb{R}^{n}$$
, A_{1} , A_{2} , ..., A_{n} , $B \in \mathbb{S}^{p}$,
 $\chi_{1}A_{1} + \chi_{2}A_{2} + \dots + \chi_{n}A_{n} \leq B$
 $A(\chi)$
 $A(\chi) \leq B \Rightarrow B - A(\chi) \geq 0$
 $A(\chi) - B \leq 0$

* If
$$A_{1}, ..., A_{n}, B$$

scalar $a_{1}, ..., a_{n}, b$
 $aT_{X} - b \leq 0$
* $S = \{x \mid A(x) - B \leq 0\}$
is convex, since
it is an inverse image
of PSD cone under
affine function: $B - A(x)$

Formulation:

Notes:

- If matrices defining any LMI, the LMI reduces to a linear inequality constraint (half-space).
- Multiple LMI constraints can be formulated as a single LMI.

 $A_i(x) - B_i \leq 0, \quad i = 1, 2, \dots, m \quad \rightarrow$

diag
$$\left(A_1(x) - B_1, A_2(x) - B_2, \dots, A_m(x) - B_m\right) \preceq 0$$

Block Diagonal Matrix

SOCP as SDP:
* Schu Complement

$$X = \begin{bmatrix} A & B \\ B^{T} & C \end{bmatrix}$$
 (Symmetric)
 $S = C - B^{T}A^{-1}B$
* $X \ge 0$ iff $A \ge 0$ and S
* If $A \ge 0$, $X \ge 0 \iff S \ge 0$ >0

SOCP as SDP:

SOC as LMI:

 $\|Ax+b\|_{2} \leq c^{T}x+d \qquad A \in \mathbf{R}^{k \times n}$ $\begin{bmatrix} c^{T}n+d & (Ax+b)^{T} \\ Ax+b & c^{T}n+d \end{bmatrix} \geq 0$

 $\|\mathbf{x}\|_{1} \leq t$ $\begin{bmatrix} t & x_1 \dots & x_n \\ x_1 & t \\ \vdots & \ddots & t \end{bmatrix} = \begin{bmatrix} t & x^T \\ x & t \end{bmatrix} \ge 0$ $S = tI_n - \frac{x^T x}{t} = 70$ $= \frac{t}{||x||_{2}} \leq t^{2}$

Big Picture: Connecting the Dots

Feedback: Questions or Comments?

Email: zubair.khalid@lums.edu.pk

Slides available at: <u>https://www.zubairkhalid.org/ee563_2020.html</u> (Let me know should you need latex source)

