Convex Optimization

Duality: Lagrange Dual Problem and Slater's Constraint Qualification

Zubair Khalid

Department of Electrical Engineering School of Science and Engineering Lahore University of Management Sciences

https://www.zubairkhalid.org/ee563_2020.html

Outline

- Lagrange Dual Problem
- Duality Gap
- Slater's Condition (constraint qualification)
- Examples

Section 5.2

Summary

Primal Optimization problem minimize $f_o(x)$ subject to $f_i(x) \leq 0, \quad i = 1, 2, \dots, m$ $h_{j}(x) = 0, \quad , j = 1, 2, \dots, p$ **Lagrangian:** $L(x, \lambda, \mu) = f_o(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \mu_j h_j(x)$ concave in (λ, μ) Lagrange Dual Function: $g(\lambda, \mu) = \inf_{x \in D} f_o(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{i} \mu_j h_j(x)$

Lower bound on the optimal value of the primal problem:

$$g(\lambda,\mu) \le p^*, \quad \lambda \succeq 0$$

Q: What is the best lower bound?

Duality Gap

Dual Problem * Primal problem - Convex / Non- convex - Convex - d* - p* If $P = d^*$. $J^* \leq p^*$ => duality gap=0 Strong Duality * d* Duality Gap = If p* , d* => Weak Dyality

Duality Gap

Slater's Condition (Slater's Theorem)

A Not-for-Profit University

Example: Lagrange Dual Problem for LP

Primal Optimization problem minimize $c^T x$ subject $T_{a} = b$ x = b

Lagrange Dual Function:

$$g(\lambda, \mu) = \begin{cases} \mu^{T}b & c - \lambda + A^{T}\mu = 0 \\ -\infty & o \text{ therwise} \end{cases} \qquad \frac{\text{Strong Duality Holds:}}{p = d}$$

Lagrange Dual Problem:
maximize
$$\mu^{Tb}$$

subject to $\lambda \neq 0$
Maximize μ^{Tb}
subject to $\lambda \neq 0$
Subject to $A^{T}\mu + c - \lambda = 0$
Subject to $A^{T}\mu + c \neq 0$
 λ^{*} .

Example: Least-squares

Primal Optimization problem

$$A \in \mathbb{R}^{p \times n}$$

$$Minimize \quad x^{T}x \qquad (Least \quad No \ Lm) \\ \text{ subject } to \quad Ax = b \qquad (Signal \quad Estimation)$$

$$\frac{\text{Lagrangian:}}{1(x, \mu)} = \quad x^{T}x + \quad \mu^{T}(Ax - b)$$

$$\frac{\text{Dual Function:}}{g(\mu)} = \quad \inf_{x} f \quad (x^{T}x + \mu^{T}(Ax - b))$$

$$\frac{\text{Function:}}{x} = \quad \inf_{x} f \quad (x^{T}x + \mu^{T}(Ax - b))$$

Example: Least-squares

 $\star L(x, \mu)$ is convex quadratic * $\nabla_{x} \mathcal{L}(x, \mu) = 2x + A'\mu = 0$ $\Rightarrow x = -\frac{1}{2} A^T \mu$ (Concave) $* g(\mu) = -\frac{1}{4} \mu^{T} A A^{T} \mu - b^{T} \mu$ * $g(\mu) \leq p^*$ (Lower bound) What is the best lower bound?

Lagrange Dual Problem:

A Not-for-Profit University

maximize
$$g(\mu) = -\frac{1}{4}\mu^{T}AA^{T}\mu - \mu^{T}b$$

minimize $\frac{1}{4}\mu^{T}AA^{T}\mu + \mu^{T}b$
 $\nabla_{\mu}g(\mu) = -\frac{1}{4}2AA^{T}\mu - b = 0$
 $\Rightarrow \mu^{\pm} - 2(AA^{T})^{T}b$
 $d^{\pm} = g(\mu^{\pm}) = b^{T}(AA^{T})^{-T}b$
 $d^{\pm} = g(\mu^{\pm}) = b^{T}(AA^{T})^{-T}b$
 $p^{\pm} = (x^{\pm})^{T}x^{\pm}$
 $= b^{T}(AA^{T})^{-T}b$

Summary

agrange Dual	Problem:
maximize	$g(\lambda,\mu)$
subject to	$\lambda \succeq 0$

Best Lower bound on the optimal value of the primal problem:

 $g(\lambda *, \mu *) = d^* \le p^*$

Duality Gap: $p^* - d^*$

- Weak Duality, $d^* \leq p^*$
- Strong Duality, $p^* = d^*$
 - Slater's condition establishes for strong duality

Feedback: Questions or Comments?

Email: zubair.khalid@lums.edu.pk

Slides available at: <u>https://www.zubairkhalid.org/ee563_2020.html</u> (Let me know should you need latex source)

