Convex Optimization

Duality Application: Waterfilling Method for Maximizing Sum Rate of the Communication Channel

Zubair Khalid

Department of Electrical Engineering School of Science and Engineering Lahore University of Management Sciences

https://www.zubairkhalid.org/ee563_2020.html

Outline

- Sum-Rate Maximization Problem in Communications
- Solution utilizing KKT Conditions

Section 5.5.3, Example 5.2

Recap - Karush-Kuhn-Tucker (KKT) Optimality Conditions

Lagrange Dual Problem:

maximize $g(\lambda, \mu)$ subject to $\lambda \succeq 0$

• Optimal points: x^* and (λ^*, μ^*)

Primal Feasibility

 $f_i(x^*) \le 0, \quad i = 1, 2, \dots, m$ $h_j(x^*) = 0, \quad j = 1, 2, \dots, p$

 $\frac{\text{Dual Feasibility}}{\lambda_i^* \ge 0, \quad i = 1, 2, \dots, m}$

<u>Complementary Slackness</u> $\lambda_i^* f_i(x^*) = 0, \quad i = 1, 2, \dots, m$

Stationarity $\nabla L(x^*, \lambda^*, \mu^*) = \nabla f_o(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + \sum_{j=1}^p \mu_j^* \nabla h_j(x^*) = 0$

Assumption:

• Strong duality holds (Duality gap is zero)

Sum Rate Maximization Problem in Communications

Model:

- MIMO system with n antennas and n channels of equal bandwidth B
- x_i denotes the power allocated to *i*-th antenna
- g_i denotes the channel power gain assocaited with *i*-th antenna
- $n_i \sim N(0, \sigma^2)$ denotes the noise across *i*-th channel
- Total power available is x_T
- Output power across i-th channel is given by

$$y_i = g_i x_i + n_i, \quad i = 1, 2, \dots, n$$

Problem:

Determine the power allocated to each channel, i.e., $x \in \mathbb{R}^n$, which maximizes the sum-rate (total communication rate or capacity).

Sum Rate Maximization Problem in Communications

Problem Formulation:

* Communication nate on channel capacity of i.th
channel is given by

$$C_i = B \log_2 (1 + SNR_i)$$

* $SNR_i = \frac{g_i \times i}{S^2} - \frac{signal power}{Noise} Power (Expected value)$
* $C_i = B \log_2 (1 + \frac{g_i \times i}{S^2})$

Problem Formulation

* Sum Rate

$$f(x) = \sum_{i=1}^{n} C_{i} = B \sum_{i=1}^{n} \log_{2} \left(1 + \frac{g_{i} \chi_{i}}{s^{2}} \right)$$
* $f(x)$ is concave; a sum of concave functions
* $Optimization$ problem can be formulated an $\left(B = 1, \log_{2} \rightarrow \log_{2} \right)$
maximize $\sum_{i=1}^{n} \log \left(1 + \frac{g_{i} \chi_{i}}{s^{2}} \right)$ Convex
 $\chi \in \mathbb{R}^{n}$ $\sum_{i=1}^{n} \log \left(1 + \frac{g_{i} \chi_{i}}{s^{2}} \right)$ Optimization
Subject to $\chi \gg 0$ $-\chi \lesssim 0$ Problem
 $\sum_{i=1}^{n} \chi_{i} = \chi_{T}$ $1^{T}\chi = \chi_{T}$

minimize
$$-\sum_{i=1}^{n} \log \left(1 + \frac{g_i x_i}{S^2}\right)$$

subject to $-x \leq 0$
 $1^T x = x_T$
Now, we are going to use KKT conditions
to solve this problem

• Optimal points:
$$x^*$$
 and (λ^*, μ^*)

Primal Feasibility $-x^* \leq 0$ $1x^* = x_{T}$

$$\frac{\text{Dual Feasibility}}{\sum^{*} \geq 0}$$

 $\lambda^* \in \mathbb{R}^n$, $\mu \in \mathbb{R}$

Stationarity

 $\nabla L(x^*, \lambda^*, \mu^*) = 0$

$$\begin{split} \mathcal{L}(x,\lambda,\mu) &= -\sum_{i=1}^{n} \log \left(\frac{1+g_{i}x_{i}}{s^{2}} \right) + \mu \left(\frac{1}{x} - x_{T} \right) - \lambda^{T} x \\ \frac{\partial \mathcal{L}}{\partial x_{i}} &= -\frac{1}{1+g_{i}x_{i}} \frac{g_{i}}{s^{2}} + \mu - \lambda_{i} = -\frac{g_{i}}{s^{2}+g_{i}x_{i}} + \mu - \lambda_{i} \\ \frac{\partial \mathcal{L}}{s^{2}} &= -\frac{1}{1+g_{i}x_{i}} \frac{g_{i}}{s^{2}} + \mu - \lambda_{i} = -\frac{g_{i}}{s^{2}+g_{i}x_{i}} + \mu - \lambda_{i} \\ \nabla_{x}\mathcal{L}(x,\lambda,\lambda,\mu^{*}) &= 0 = \lambda^{*} \mu^{*} = -\lambda^{*}_{i} + \frac{g_{i}^{*}}{s^{2}+g_{i}x_{i}} , i = 1, 2, ..., n \end{split}$$

 $\frac{g_i}{b^2 + g_i x_i^*}$

M*

 $\chi_i^* + \underline{b}^2$

 $> \frac{S^2}{g_i}$

<u>и*</u>

Complementary Slackness

 $\lambda_i^* \chi_i^* = 0$ $\frac{\text{Case 1}}{\lambda_{i}^{*}=0, \quad x_{i}^{*}>0}$

 $\frac{\text{Case 2}}{\chi_i^* = 0} =),$ $\lambda_i^* > 0$ $> \frac{g_i}{\zeta^2}$ 5

$\varkappa_{i}^{*} = \begin{cases} \frac{1}{\mu^{*}} - \frac{\delta^{2}}{g_{i}} \end{cases}$	$\frac{1}{\mu^*} > \frac{3}{g_i}^2$
	$\frac{1}{\mu^{\star}} < \frac{\beta^2}{g_i}$
$\chi_i^* = max \left(\frac{1}{\mu^*} \right)$	$-\frac{s^2}{g_i}, o$

* To find
$$\mu^*$$
, we note that
 χ^* is primal feasible, i.e.,
 $1^T \chi^* = \chi_T \implies \sum_{i=1}^{n} \chi_i^* = \chi_T$
 $\sum_{i=1}^{n} \max\left(\frac{1}{\mu^*} - \frac{\delta^2}{g_i}, 0\right) = \chi_T$ water-filling

Method

$$\chi_{i}^{*} = \max\left(\frac{\bot}{\mu^{*}} - \frac{b^{2}}{g_{i}}, 0\right)$$

Water-filling Interpretation

• Assume $g_1 \ge g_2 \ge g_3$... (without loss of generality)

Feedback: Questions or Comments?

Email: zubair.khalid@lums.edu.pk

Slides available at: <u>https://www.zubairkhalid.org/ee563_2020.html</u> (Let me know should you need latex source)

