Convex Optimization

Duality: Geometric Interpretation

Zubair Khalid

Department of Electrical Engineering School of Science and Engineering Lahore University of Management Sciences

https://www.zubairkhalid.org/ee563 2020.html

Outline

• Duality Geometric Interpretation

Section 5.3

Duality

Primal Optimization problemminimize $f_o(x)$ subject to $f_i(x) \le 0, \quad i = 1, 2, \dots, m$ $h_j(x) = 0, \quad j = 1, 2, \dots, p$

Lagrange Dual Problem:

maximize $g(\lambda, \mu)$

subject to $\lambda \succeq 0$

• Optimal points: x^* and (λ^*, μ^*)

Primal Optimization problemminimize $f_o(x)$ subject to $f_1(x) \leq 0$

$$G = \{(u,t) | f_o(x) = t, f_1(x) = u, x \in D\}$$

 \boldsymbol{D} - domain of the problem

Lagrange Dual Function:

$$g(\lambda) = \inf_{x \in D} f_o(x) + \lambda f_1(x)$$

Noting:

$$G = \{(u,t) | f_o(x) = t, f_1(x) = u, x \in D\}$$

$$g(\lambda) = \inf_{(u,t)\in G} t + \lambda u$$

$$g(\lambda) = \inf_{(u,t)\in G} \begin{bmatrix} \lambda & 1 \end{bmatrix} \begin{bmatrix} u & t \end{bmatrix}^T$$

Lagrange Dual Function:

$$g(\lambda) = \inf_{x \in D} f_o(x) + \lambda f_1(x)$$

Noting:

$$G = \{(u,t) | f_o(x) = t, f_1(x) = u, x \in D\}$$

$$g(\lambda) = \inf_{(u,t)\in G} t + \lambda u$$

$$g(\lambda) = \inf_{(u,t)\in G} [\lambda \quad 1] [u \quad t]^T$$

Lagrange Dual Function:

$$g(\lambda) = \inf_{x \in D} f_o(x) + \lambda f_1(x)$$

Noting:

$$G = \{(u,t) | f_o(x) = t, f_1(x) = u, x \in D\}$$

$$g(\lambda) = \inf_{(u,t)\in G} t + \lambda u$$

$$g(\lambda) = \inf_{(u,t)\in G} \begin{bmatrix} \lambda & 1 \end{bmatrix} \begin{bmatrix} u & t \end{bmatrix}^T$$

Duality – Geometric Interpretation (Weak Duality)

Lagrange Dual Function:

$$g(\lambda) = \inf_{x \in D} f_o(x) + \lambda f_1(x)$$

Noting:

$$G = \{(u,t) | f_o(x) = t, f_1(x) = u, x \in D\}$$

$$g(\lambda) = \inf_{(u,t)\in G} t + \lambda u$$

$$g(\lambda) = \inf_{(u,t)\in G} [\lambda \quad 1] [u \quad t]^T$$

Duality – Geometric Interpretation (Weak Duality)

Lagrange Dual Function:

$$g(\lambda) = \inf_{x \in D} f_o(x) + \lambda f_1(x)$$

Noting:

$$G = \{(u,t) | f_o(x) = t, f_1(x) = u, x \in D\}$$

$$g(\lambda) = \inf_{(u,t)\in G} t + \lambda u$$

$$g(\lambda) = \inf_{(u,t)\in G} \begin{bmatrix} \lambda & 1 \end{bmatrix} \begin{bmatrix} u & t \end{bmatrix}^T$$

Duality – Geometric Interpretation (Weak Duality)

Lagrange Dual Function:

$$g(\lambda) = \inf_{x \in D} f_o(x) + \lambda f_1(x)$$

Noting:

$$G = \{(u,t) | f_o(x) = t, f_1(x) = u, x \in D\}$$

$$g(\lambda) = \inf_{(u,t)\in G} t + \lambda u$$

$$g(\lambda) = \inf_{(u,t)\in G} [\lambda \quad 1] [u \quad t]^T$$

Duality – Complementary Slackness Geometric Interpretation

Problem 1:

$$\lambda^* > 0 \rightarrow f_1(x^*) = 0$$

Problem 2:

$$f_1(x^*) < 0 \quad \to \ \lambda^* = 0$$

Feedback: Questions or Comments?

Email: zubair.khalid@lums.edu.pk

Slides available at: <u>https://www.zubairkhalid.org/ee563_2020.html</u> (Let me know should you need latex source)

