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ABSTRACT

This paper introduces an adaptive, multi-resolution windowing tech-
nique that can be used in conjunction with the spatially localized
spherical harmonic transform (SLSHT) to process signals on the 2-
sphere in the spatio-spectral domain. In contrast with the standard
formulation, which uses a fixed window, the new windowing tech-
nique is able to respond locally to the signal under analysis, that is,
be adaptive, and also is formulated to depend on the spectral de-
gree to give it a multi-resolution character. We further enhance its
simultaneous spatial and spectral localization by basing the window
on a parametric band-limited Slepian maximum spatial concentra-
tion eigenfunction. The criterion for window design is to maximize
the energy concentration in each spectral component in the spatio-
spectral domain. A computationally efficient method is also devel-
oped to implement the adaptive window design. An example is also
provided to demonstrate the superiority of the new adaptive, multi-
resolution window technique.

Index Terms— 2-sphere; unit sphere; spherical harmonic trans-
form; spatio-spectral domain; spatially localized spherical harmonic
transform; fast transforms; adaptive; multi-resolution.

1. INTRODUCTION

The development of signal processing techniques for signals defined
on the 2-sphere finds many applications in various fields of science
and engineering. These applications include gravity of topographic
data in geophysics [1], 3D beamforming [2] and wireless channel
modeling in communication systems [3].

1.1. Relation to Prior Work

In the past decade, many space-scale and space-spectral analysis
techniques have been developed to analyze the spatially localized
variations in signals defined on the 2-sphere [1, 4, 5]. For exam-
ple, wavelets have been used as a tool in signal analysis due to the
scale and spatial localization intrinsic to many signals and differ-
ent attempts have been made to extend Euclidean wavelets to the
2-sphere [5]. The space-scale analysis of a signal using wavelets is
characterized by the scale corresponding to different frequency re-
gions, which naturally allows multi-resolution analysis. However,
if we are interested in obtaining the localized contribution of a par-
ticular spherical harmonic in the global signal, there is no explicit
relation between the scale domain that describes the wavelet trans-
form and the spherical harmonic transform.

An alternative to the space-scale analysis is space-spectral (or
spatio-spectral) analysis. For spatio-spectral analysis, spatially lo-
calized spherical harmonic transform (SLSHT) has been defined in
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[6]. The SLSHT is the spherical harmonic transform of a signal win-
dowed with an azimuthally symmetric window. Noting that the win-
dow function used for spatial localization ideally should be simul-
taneously concentrated in both the spatial and the spectral domains,
it is shown in [6] that the window function obtained from Slepian
concentration problem on the sphere [1] serves as a good choice for
the window function as it approaches the lower bound imposed by
the concentration uncertainty principle on the sphere [7]. However,
the use of the same window function for analyzing different spec-
tral components fixes the resolution of the transform in the spatio-
spectral domain. Furthermore, since the spatio-spectral representa-
tion of a signal depends on the window function, a suitable choice of
the window function for the specific signal under consideration has
not been investigated before.

1.2. Contributions

This paper is the first to reveal how to set up an adaptive multi-
resolution windowing technique that can be used in SLSHT spatio-
spectral analysis. The spatial window is chosen as the dominant
(largest eigenvalue) band-limited Slepian spatial eigenfunction be-
cause we argue that it optimally concentrates energy in the spher-
ical harmonic spectral domain and in the 2-sphere spatial domain.
As this window takes a single parameter, which is taken as the
band-limit parameter, then it is readily adapted to provide a multi-
resolution capability where the window scale can be tuned to the
spectral degree and to localized signal-dependent features. We also
present a matrix formulation of the transform technique and provide
inversion results that map from the spatio-spectral domain back to
the original signal on the 2-sphere. The contributions conclude with
the development of computationally efficient methods and a toy
example illustrating the benefits of the new scheme over standard
fixed window techniques.

2. PRELIMINARIES

2.1. Signals on the 2-Sphere

The square integrable complex-valued functions f(x̂) defined on
2-sphere S

2 � {u ∈ R
3 : ‖u‖ = 1}, where x̂ ≡ x̂(θ, φ) �

(sin θ cosφ, sin θ sinφ, cos θ)T ∈ R
3 is a unit vector which pa-

rameterizes a point on the 2-sphere with θ ∈ [0, π] and φ ∈ [0, 2π)
denoting the co-latitude (or elevation) and longitude (or azimuth) re-
spectively. Here (·)T denotes the vector transpose operation.

The space of square integrable complex valued functions on the
sphere forms a complete Hilbert space L2(S2) with the inner prod-
uct

〈
f, h

〉
�

∫
S2

f(x̂)h(x̂) ds(x̂), where ds(x̂) = sin θ dθ dφ

is the area element, (·) denotes complex conjugate and the inte-
gration is carried out over S

2. The inner product induces a norm
‖f‖ � 〈f, f〉1/2 and the functions with finite induced norm are re-
ferred to as the signals on the 2-sphere.

2014 IEEE Workshop on Statistical Signal Processing (SSP)

978-1-4799-4975-5/14/$31.00 ©2014 IEEE 41



2.2. Spherical Harmonics

The basis for the spectral representation of a signal on the 2-sphere
are the spherical harmonics, which are characterized as follows.
The Hilbert space L2(S2) is separable and spherical harmonics
Y m
� (x̂) = Y m

� (θ, φ) [8], defined for integer degree � ≥ 0 and
integer order m ∈ [−�, �], form archetype complete orthonormal set
of basis functions. We can expand any signal f ∈ L2(S2) as

f(x̂) =
∑
�,m

(f)m� Y m
� (x̂), where (f)m� � 〈f, Y m

� 〉 (1)

and we have used the shorthand notation
∑

�,m �
∑∞

�=0

∑�
m=−�.

The term (f)m� is called the spherical harmonic Fourier coefficient
of degree � and order m. For notational simplification, define the
infinite dimensional column vector

f =
(
(f)00, (f)

1
−1, (f)

0
1, (f)

1
1, (f)

−2
2 , . . .

)T
as the spectral response of the signal containing all spherical har-
monic coefficients. The signal f is said to be band-limited at degree
Lf if (f)m� = 0, ∀� > Lf . For such a band-limited signal, the spec-
tral response f is a (Lf +1)2 dimensional vector. For an azimuthally
symmetric function, such that f(θ, φ) = f(θ), only the zero-order
spherical harmonic coefficients of f are non-zero, that is (f)m� = 0
for all m 	= 0.

2.3. Rotations on the 2-sphere

Define the rotation operator D(ŷ) with ŷ = ŷ(ϑ, ϕ) that rotates
the azimuthally symmetric function h(x̂) by ϑ ∈ [0, π] about the
y-axis followed by ϕ ∈ [0, 2π) about the z-axis. Under this rotation
operation D(ŷ), the spherical harmonic coefficients of the rotated
signal are related to those of the original signal through [8]

(D(ŷ)h
)m
�

=

√
4π

2�+ 1
Y m
� (ϑ, ϕ)(h)0� , where ŷ = ŷ(ϑ, ϕ). (2)

2.4. Spatially Localized Spherical Harmonics Transform

The spatially localized spherical harmonics transform (SLSHT) has
been defined as a windowed spherical harmonics transform in [6] to
represent the signal jointly in the spatio-spectral domain. SLSHT
of degree � and order m is defined as the spherical harmonics trans-
form of a signal f(x̂) localized with a rotated azimuthally symmetric
function h(x̂) band-limited at Lh centered at ŷ, i.e.,

g(ŷ; �,m;Lh) �
∫
S2

f(x̂)
(D(ŷ)h

)
(x̂)Y m

� (x̂) ds(x̂). (3)

The SLSHT g(ŷ; �,m;Lh) represents the signal jointly in the
spatio-spectral domain, which provides information about the con-
tribution of the spherical harmonics in the signal f(x̂) spatially
localized within the windowed region. It also reveals the spatially
varying contribution of each spectral component to the global spher-
ical harmonic coefficient.

3. ADAPTIVE MULTI-RESOLUTION WINDOW SLSHT

3.1. Slepian Eigenfunction Window

The formulation of SLSHT g(ŷ; �,m;Lh) in (3) can be interpreted
as the spherical harmonic transform of the spatially localized signal,
where the window function h(x̂) provides localization at position
ŷ ∈ S

2 through
(D(ŷ)h

)
(x̂). Therefore, the SLSHT is dependent

on the chosen window function h(x̂) and in the conventional setting,
(3), this window is fixed (independent of the spatio-spectral coordi-
nates, ŷ and �,m and independent of the signal f(x̂)).

The window is localized spectrally to a band-limit at Lh but
ideally it should also localize spatially such that its energy is max-
imally concentrated within a polar cap with maximum co-latitude
θh. We shall see that these two parameters, Lh and θh, are com-
plementary and their product is lower bounded by an uncertainty
principle, which also implies we cannot have a strict spatial limit
if we have a strict band-limit. In our design we shall use band-
limit Lh as the parameter and the window is chosen as the domi-
nant band-limited eigenfunction, denoted hLh(x̂), arising from the
Slepian spatial concentration problem [1,9]. Such window functions
are close in performance to that constrained by uncertainty princi-
ple [7]. The spatial parameter θh of the eigenfunction window is
related to band-limit Lh by

θh =
2π

Lh + 1
. (4)

Furthermore, we impose the condition of unit energy on the window
function, that is,

∫
S2
|hLh(x̂)|2ds(x) =

∑Lh
�=0

∣∣(hLh)
0
�

∣∣2 = 1.

3.2. Multi-Resolution Capability

It is clear that the window band-limit Lh should be tuned (that is
varied) for each degree � of interest within the SLSHT (3). Equally
clearly it should be chosen independent of the order m. The follow-
ing definition captures this multi-resolution attribute.

Definition 1 (Multi-Resolution SLSHT). For a signal f ∈ L2(S2),
define the multi-resolution SLSHT as the SLSHT using a degree de-
pendent band-limited Lh(�) eigenfunction window hLh(�):

ga(ŷ; �,m) � g(ŷ; �,m;Lh(�))

=

∫
S2

f(x̂)
(D(ŷ)hLh(�)

)
(x̂)Y m

� (x̂) ds(x̂). (5)

where hLh(�) is the band-limited eigenfunction window arising from
the Slepian spatial concentration problem.

Later we develop a suitable criterion to determine the band-limit
Lh(�) of the window function for each degree �. Before then we
complete the theory by presenting the multi-resolution SLSHT dis-
tribution and its matrix formulation in Section 3.3, and inversion in
Section 3.4.

3.3. Multi-Resolution SLSHT Distribution

Define the multi-resolution SLSHT distribution ga(ŷ) as the repre-
sentation of the signal in the spatio-spectral domain in the form of a
vector with the same ordering as in f

ga(ŷ) = [ga(ŷ; 0, 0), ga(ŷ; 1,−1), . . . , ga(ŷ;Lf , Lf )]
T

with matrix formulation

ga(ŷ) = Ψ(ŷ)f , (6)

where Ψ(ŷ) is the matrix of size (Lf + 1)2 × (Lf + 1)2 with the
same ordering as in f for its columns and rows, and its entries are
given by Ψm,t

�,s (ŷ) ∈ L2(S2) can be expressed as

Ψm,t
�,s (ŷ) =

∑
p,q

√
4π

2p+ 1
Y q
p (ŷ)(hLh(�))

0
p T (s, t; p, q; �,m),

where we have used (1) in conjunction with (2) and

T (s, t; p, q; �,m) �
∫
S2

Y t
s (x̂)Y

q
p (x̂)Y

m
� (x̂) ds(x̂)

denotes the spherical harmonic triple product [6] and can be com-
puted analytically using Wigner-3j symbols [8, 10].
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3.4. Multi-Resolution SLSHT Inversion

Similar to [6], we note that the adaptive SLSHT is invertible and the
signal spectral coefficient (f)m� can be obtained as a spatial marginal
of the adaptive SLSHT distribution component ga(ŷ; �,m) as

(f)m� =
1√

4π(hLh(�))00

∫
S2

ga(ŷ; �,m) ds(ŷ). (7)

Alternatively, the signal can be recovered (again in spectral form)
using the matrix formulation in (6) as

f = M−1

∫
S2

ΨH(ŷ)g(ŷ) ds(ŷ), (8)

where M �
∫
S2

ΨH(ŷ)Ψ(ŷ) ds(ŷ) is a diagonal matrix of size
(Lf +1)2×(Lf +1)2 with the same ordering as in f for its columns
and rows. Its diagonal entries are of the form

Mm,m
�,� =

Lf∑
s=0

Lh∑
p=0

(2s+ 1)
∣∣∣(hLh(�))

0
p

∣∣∣2 (� p s
0 0 0

)2

, (9)

where the brackets denote the Wigner-3j symbols [10]. The inver-
sion in (8) is useful in the spatio-spectral filtering [9], where the
inversion method outlined in (7) cannot be employed.

3.5. Adapting the Window to the Signal

In this subsection, we develop a criterion to determine the band-
limit Lh(�) of the window function for each degree �. We choose
band-limit Lh(�) ∈ [0, Lmax] such that the relative correlation be-
tween the localized signal f(·)(D(ŷ)hLh(�)

)
(·) and the spherical

harmonic Y m
� (·) is maximized over all spatial positions ŷ ∈ S

2.
This relative correlation is quantified by the ratio of energy in the
SLSHT distribution component under analysis to the energy in the
other distribution components. Since the resolution of the window
function Lh(�) is dependent on the degree � only, it must be chosen
such that the relative energy in all orders m ∈ [−�, �] is maximized.
With this consideration we need to match the window to the spheri-
cal harmonic degree only. Define the relative energy measure

S(�;Lh) �
∑�

m=−� E(�,m)(∑Lf

�′=0

∑�′
m′=−�′ E(�′,m′)

)−∑�
m=−� E(�,m)

,

(10)
where

E(�,m;Lh) �
∥∥g(· ; �,m;Lh)

∥∥2 (11)

denotes the energy of the SLSHT distribution component g(ŷ; �,m)
obtained using window of band-limit Lh. Using the relative energy
measure S(�;Lh) in (10), we develop a criterion to determine the
resolution (band-limit) Lh(�) ∈ [0, Lmax] of the window function
for each � as

Lh(�) = argmax
Lh

S(�;Lh). (12)

3.6. Efficient Computation

A computationally efficient method to determine the SLSHT dis-
tribution has been devised in [11] for a fixed window, that is, for
Lh(�) = Lh for all �. Here we outline the method to compute
the adaptive SLSHT distribution ga(ŷ) and show that the compu-
tational complexity does not increase with the consideration of dif-
ferent eigenfunction windows for the different spectral degrees. The
implementation of the criterion to find the resolution Lh(�) of the
window function for each � requires the computation of energy in
each SLSHT distribution component, that is, E(�,m;Lh) in (11) for
each degree � and order m and for each Lh ∈ [0, Lmax]. Using (5)

and (1), noting the effect of rotation in (2) and employing the or-
thonormality of spherical harmonics, we write E(�,m;Lh) as

E(�,m;Lh) =

Lh∑
p=0

4π

2p+ 1

∣∣(hLh(�))
0
p

∣∣2F (p, �,m) (13)

where

F (p, �,m) �
p∑

q=−p

∣∣∣ Lf∑
s,t

(f)tsT (s, t; p, q; �,m)
∣∣∣2

=

p∑
q=−p

∣∣∣∫
S2

f(x̂)Y m
� (x̂)Y q

p (x̂) ds(x̂)
∣∣∣2. (14)

We note that the computation of F (p, �,m) is independent of the
choice of window function and requires the evaluation of integral∫
S2

f(x̂)Y m
� (x̂)Y q

p (x̂) ds(x̂), which is necessarily needed in the
computation of SLSHT distribution with a fixed window (Lh(�) =
Lh) [11] and can be exactly computed with the computational com-
plexity O(L3

fL
2
h) for all 0 ≤ � ≤ Lf , |m| ≤ � and all 0 ≤ p ≤

Lh, |q| ≤ p, where Lh ∈ [0, Lmax]. Once we know F (p, �,m),
E(�,m;Lh) can be computed in O(Lh) for each Lh ∈ [0, Lmax] and
thus the optimal band-limit Lh(�) of the window can be determined
using the criterion (12) in O(Lh(Lmax)) ≡ O(L2

max), which is less
than the complexity to determine F (p, �,m) and, therefore, the over-
all complexity to compute multi-resolution SLSHT distribution does
not alter with the variation of the window with degree �. The only
difference is that we need to compute F (p, �,m) for p ≤ Lmax (in-
stead of p ≤ Lh) in case of multi-resolution SLSHT distribution
and, therefore, the overall complexity to apply the window matching
criterion and compute the SLSHT distribution is O(L3

fL
2
max).

4. ILLUSTRATION

Here, we illustrate through an example that the proposed adaptive
SLSHT distribution using different resolution eigenfunction win-
dows tuned to the spectral degree provides more concentration of
the spatially localized spectral contents of the signal in the spatio-
spectral domain as compared to the SLSHT distribution obtained
using a fixed window. In our example, we consider the bandlim-
ited azimuthally symmetric signal f(x̂) shown in Fig. 1(a), which is
obtained by band-limiting the signal f1(x̂) given by

f1(x̂) = f1(θ) �

⎧⎪⎨
⎪⎩
∑9

�=7 Y
0
� (θ, φ) θ ∈ [π/8, 3π/8]∑19

�=17 Y
0
� (θ, φ) θ ∈ [5π/8, 7π/8]

0 otherwise
(15)

at Lf = 32. Since the signal is azimuthally symmetric, only zero-
order spherical harmonic coefficients (f)0� can be non-zero, which
are shown in Fig. 1(b). We note that the signal has different spectral
components localized in different spatial regions. Since we are seek-
ing the contribution of zero-order spherical harmonics in the spatio-
spectral domain, we obtain the adaptive SLSHT distribution ga(ŷ)
using the eigenfunction windows with band-limits Lh(�).

The Lh(�) obtained using criterion (12) is shown in Fig. 1(c) and
the adaptive, multi-resolution SLSHT distribution ga(ŷ) is shown in
Fig. 1(d) as a function of co-latitude θ and degree �, where we have
also indicated the spatio-spectral region over which the signal is lo-
calized. We have also plotted SLSHT distributions, obtained using
the windows with fixed band-limit Lh = 4 and Lh = 24, in Fig. 1(e)
and (f), respectively. Ideally the SLSHT distribution should be max-
imally concentrated in the indicated localized spatio-spectral region,
which is the case when we obtain adaptive distribution. Using the
window with smaller Lh produces leakage in the spatial region and
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Fig. 1: (a) Signal f(x̂) = f(θ) is obtained by band-limiting the signal given in (15) at Lf = 32 with (b) spectral response (f)0� . (c) The
matched resolution (band-limit) Lh(�) ∈ [0, 24] obtained using the matching criterion in (12), which is then employed to obtain (d) adaptive
SLSHT distribution ga(ŷ). The SLSHT distribution obtained using a fixed window is also plotted for (e) Lh = 4 and (f) Lh = 24. The
dashed areas denote the regions in spatio-spectral domain over which the signal is localized in spatial and spectral domains.

the window with larger Lh causes the energy to be leaked outside
the desired spatio-spectral region in the spectral domain. In order
to quantify the concentration of the distribution within the desired
spatio-spectral region, we also measure the ratio R of energy with
in the desired region to the total energy of the distribution. For the
SLSHT distribution with fixed window with band-limit Lh = 4 and
Lh = 24, we found the ratio to be R = 37.3% and R = 39.1%,
respectively. However, the ratio is R = 54.7% for adaptive SLSHT
distribution, which suggests that the use of multiple windows with
resolution matched to the signal under analysis and spectral degree
provides more concentration of spatially localized spectral contents
in the spatio-spectral domain. The application of proposed technique
to real world data presents a work for further research.

5. CONCLUDING COMMENTS

The main contributions of the new adaptive multi-resolution SLSHT
method has been detailed earlier in Section 1.2, and the effectiveness
of the scheme has been demonstrated through the illustrative exam-
ple. However, extensions of the technique are worth considering. For
example, we have argued that the Slepian eigenfunction as the basic
window class is a sound choice but whether this proves to be the best
choice remains to be determined. Further, the adaptive mechanism,
where the window band-limit is adapted to the signal and spectral
degree, likewise appears to work well and has manageable complex-
ity but there are many alternatives that could be explored.
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