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Abstract—Optimal-dimensionality sampling schemes for band-
limited signals (in spherical harmonic degree) on the sphere
have been developed such that the number of samples equals
the spectral degrees of freedom. These schemes use iso-latitude
rings of samples for the computation of the Spherical Harmonic
Transform (SHT) to high accuracy. However, the location of
the iso-latitude rings had not been fully optimized to attain the
highest possible numerical accuracy of the SHT computation. We
study the effect of selecting the set of minimal dimensionality
set of latitudes from much larger sets distributed according to
different measures. In comparison to the other measures on the
sphere used in the literature, we show that the placement of
iso-latitude rings according to the uniform measure from the
larger set allows the most accurate computation of the SHT in
the class of (known) optimal-dimensionality sampling schemes.
These claims are corroborated with numerical examples.

Index Terms—2-sphere (unit sphere), spherical harmonic
transform, sampling, harmonic analysis, spherical harmonics.

I. INTRODUCTION

The development of spherical signal processing techniques

finds applications in various fields of science and engineering,

where signals are naturally defined on the sphere. These

applications include geodesy [1], planetary science [2], elec-

tromagnetic inverse problems [3], medical imaging [4], 3D

beamforming [5] and wireless channel modeling [6], to name

a few. Many signal processing techniques have been developed

to analyze the signal defined on the sphere (e.g., [7]–[10]). At

the core of these developments, the signal is analyzed either

in the spatial domain or spectral domain. The spectral domain

is formed through the spherical harmonic transform (SHT),

which is the well-known counterpart of the Fourier transform

for signals on the sphere [11]. Clearly, the ability to accurately

compute the spherical harmonic transform of sampled (dis-

cretized) signal is of significant importance. Furthermore, it

is desirable that the methods to compute SHT require fewer

samples on the sphere and are supported by computationally

efficient algorithms [12], [13].

Many sampling schemes on the sphere, supported by ac-

curate and fast SHT methods, have been proposed in the

literature (e.g., see [12]–[15] and references therein). Common

to the literature, we focus on the sampling schemes which

support accurate computation of the SHT for signals band-

limited at degree L (defined in Section II-B). Recently, the

sampling scheme, referred as optimal-dimensionality sampling

scheme, that allows the accurate computation of SHT has

been proposed [12]. This scheme only requires the optimal

(minimal) number of samples, L2, given by the degrees of

freedom in spectral domain, in order to compute spherical

harmonic transform accurately. In comparison, the equiangular

sampling schemes, based on the sampling theorem, although

supporting exact quadrature require twice (2L2) [13] or four

times (4L2) [14] of the optimal number of samples. The

optimal-dimensionality sampling scheme belongs to the class

of iso-latitude sampling schemes (e.g., [13], [14]), where the

samples along longitude are taken over iso-latitude rings.

Furthermore, the iso-latitude structure of the sampling scheme

allows separation of variables in the computation of the

SHT, which results in a SHT with reduced computational

complexity.

In optimal-dimensionality sampling schemes, the L iso-

latitude rings are placed according to uniform measure along

latitude, which is shown to achieve more accurate SHT com-

putation of a signal band-limited at degree L compared to the

case when the L rings are placed along latitude according to

different measures, such as based on the sine and tangent of the

latitude [16]. The placement of rings according to the uniform

measure, although an intuitive choice and supports accurate

spherical harmonic transform, may not be an optimal choice

to place the iso-latitude rings of samples. In this context, we

answer the following questions (mathematically formulated in

Section III-C) in this work:

• Is the SHT computational accuracy significantly improved

if we optimally select our L iso-latitude rings from a

larger set of M � L latitudes distributed with uniform

measure in latitude?

• Is the SHT computational accuracy significantly improved

if the L iso-latitude rings are selected according to other

non-uniform measures developed in the literature?
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In addressing these questions, we organize the paper as

follows. In Section II, we present the mathematical background

for signals on the sphere. In Section III, we review the optimal-

dimensionality sampling scheme [12] and formulate the re-

search questions considered in this work. In Section IV, we

develop a method to optimally place L iso-latitude rings from

a set of M � L samples along latitude, where the M samples

are distributed according to some defined measure on the

sphere. We also analyze the effect of placement of samples

according to different measures (adopted in the literature)

on the accuracy of SHT. We show that the placement of

iso-latitude rings according to the uniform measure allows

the most accurate computation of SHT associated with the

optimal-dimensionality sampling scheme. Finally, we summa-

rize the findings in Section V.

II. MATHEMATICAL PRELIMINARIES

In this section we review the mathematical background for

signals and harmonic analysis on the sphere.

A. Signals on the Sphere
We consider complex valued square integrable functions

f(θ, φ), defined on a unit sphere S
2 � {u ∈ R

3 : |u| = 1},

where θ ∈ [0, π] denotes the co-latitude that is measured

from positive z-axis, φ ∈ [0, 2π) denotes the longitude that

is measured from the positive x-axis in the x − y plane and

| · | denotes the Euclidian norm.
The set of square integrable complex valued functions

defined on S
2 forms a complete Hilbert space L2(S2) with

the inner product defined for two functions f and h defined

on S
2 as [17]

〈f, h〉 �
∫
S2

f(θ, φ)h(θ, φ) sin θ dθ dφ, (1)

where sin θ dθ dφ denotes the differential area element on the

sphere, (·) denotes the complex conjugate and the integration

is carried out over the sphere. The inner product in (1) induces

a norm ‖f‖ � 〈f, f〉1/2. The functions with finite induced

norm are referred as signals on the sphere.

B. Spherical Harmonics
The Hilbert space L2(S2) is separable and the spherical

harmonic functions form the archetype complete orthonormal

set of basis functions. The spherical harmonic function (or

spherical harmonic for short), Y m
� (θ, φ), for degree � ≥ 0 and

order |m| ≤ � is defined as [11]

Y m
� (θ, φ) = Nm

� Pm
� (cos θ) eimφ, (2)

with Nm
� �

√
2�+1
4π

(�−m)!
(�+m)! is the normalization factor such

that
〈
Y m
� , Y q

p

〉
= δ�,pδm,q , where δm,q is the Kronecker delta

function: δm,q = 1 for m = q and is zero otherwise. Pm
� (x)

is the associated Legendre function defined for degree � and

order 0 ≤ m ≤ � as

Pm
� (x) =

(−1)m

2��!
(1− x2)m/2 d�+m

dx�+m
(x2 − 1)�

P−m
� (x) = (−1)m

(�−m)!

(�+m)!
Pm
� (x),

for |x| ≤ 1.

By completeness of spherical harmonics, any signal f ∈
L2(S2) can be expanded as

f(θ, φ) =

∞∑
�=0

�∑
m=−�

(f)m� Y m
� (θ, φ), (3)

where

(f)m� �
〈
f, Y m

�

〉
=

∫
S2

f(θ, φ)Y m
� (θ, φ) sin θ dθ dφ (4)

is the spherical harmonic coefficient of degree � and order m.

III. PROBLEM FORMULATION

We consider the problem of how to compute the spherical

harmonic transform, that is, the spherical harmonic coefficients

given in (4), of a band-limited discretized (sampled) signal on

the sphere. The signal f ∈ L2(S2) is defined to be band-

limited at degree L if (f)m� = 0 for � ≥ L. The spherical

harmonic transform (SHT) of a signal f band-limited to degree

L can be expressed as

f(θ, φ) =

L−1∑
�=0

�∑
m=−�

(f)m� Y m
� (θ, φ), (5)

where the summation over degree � in (3) is limited to L− 1.

There exist many sampling schemes on the sphere which al-

low accurate computation of the spherical harmonic transform

of a band-limited signal [12]–[14]. In this work, we consider

the recently developed sampling scheme on the sphere [12],

which was referred to as an optimal-dimensionality sampling

scheme as it requires the minimum number of samples, L2,

on the sphere to accurately compute the spherical harmonic

transform, in comparison to the schemes based on sampling

theorems proposed in [14] and [13], which require 4L2 and

2L2 samples, respectively. We refer the reader to [12] and

[13] for a detailed comparison of different sampling schemes

proposed in literature.

A. Optimal-Dimensionality Sampling Scheme

We review the iso-latitude sampling scheme on the sphere

proposed in [12]. Let such a sampling scheme be denoted by

S(L) that consists of L iso-latitude rings of samples (where

L is the band-limit). Let the indexed vector

θ � [θ0, θ1, . . . , θL−1]
T , (6)

represent L (possibly) arbitrary, ordered and distinct, points

along θ that describes the L iso-latitude rings. We discuss the

precise location of these rings of sample points later in the

paper.

For discretization along φ, we consider 2k + 1 equally

spaced sampling points along φ for each θk ∈ θ. Define φk

be a vector of 2k+1 equally spaced sampling points along φ
in the ring placed at θk, given by

φk �
[
0,Δk, 2Δk, . . . , (2k)Δk

]
, Δk =

2π

2k + 1
. (7)



The vectors θ and φk, for every k, describe the structure of

the sampling scheme S(L), where we note that the number

of points, 2k + 1, in ring k varies precisely in the way that

the total number of points is L2.

B. Computation of Spherical Harmonic Transform

We review the SHT, developed in [12], to compute the

spherical harmonic coefficients (f)m� of a band-limited signal

f sampled over the sampling scheme S(L). Define a vector

gm �
[
Gm(θ|m|), Gm(θ|m|+1), . . . , Gm(θL−1)

]T
, (8)

for order |m| < L, where Gm(θk) is defined for each θk ∈ θ
as

Gm(θk) �
∫ 2π

0

f(θk, φ)e
−imφdφ

= 2π

L−1∑
�=m

(f)m� P̃m
� (θk). (9)

Here P̃m
� (θ) � Y m

� (θ, 0) denotes the scaled associated Leg-

endre functions. By defining a vector fm containing spherical

harmonic coefficients of order |m| < L given by

fm =
[
(f)m|m|, (f)

m
|m|+1, . . . , (f)

m
L−1

]T
, (10)

and a matrix Pm as

Pm � 2π

⎛
⎜⎜⎜⎝

P̃m
|m|(θ|m|) P̃m

|m|+1(θ|m|) · · · P̃m
L−1(θ|m|)

P̃m
|m|(θ|m|+1) P̃

m
|m|+1(θ|m|+1) · · · P̃m

L−1(θ|m|+1)
...

...
. . .

...

P̃m
|m|(θL−1) P̃m

|m|+1(θL−1) · · · P̃m
L−1(θL−1)

⎞
⎟⎟⎟⎠ ,

(11)

we write gm as

gm = Pmfm, (12)

where the vector gm is given in (8). Using the formulation

in (12), the spherical harmonic coefficients in a vector fm for

each |m| < L can be computed provided the vector gm is

computed correctly and the matrix Pm is invertible.

By taking samples of the signal over the grid S(L), the

vector gm can be accurately computed by taking FFT of

the samples in each ring along longitude [12]. However, the

invertibility of the matrix Pm for each |m| < L depends on

the sample positions in the vector θ, where the iso-latitude

rings are placed. The sample positions in the vector θ should

be chosen such that each of the matrices Pm, which depends

on last L−m samples of the vector θ, is well-conditioned.

The simplest choice is to use the equiangular set (with

uniform measure along θ) of samples given by

Θ1(L) =

{
π(2t+ 1)

2L− 1

}
, t = 0, 1, . . . , L− 1, (13)

for the placement of the rings, where rings are placed such that

those with more samples along longitude are generally placed

(a) North Pole View

(b) South Pole View

Fig. 1: The sampling scheme S(L) for the representation of

the signal band-limited at L = 16. The sample positions θ
along latitude are given in (14). The samples on the sphere

are shown with a view from (a) North Pole and (b) South

Pole.

nearer to the equator (θ = π/2) [12]. For such an arrangement,

the vector θ for band-limit L is given by

θ �
[
π,

π

2L− 1
,
π(2L− 3)

2L− 1
,

3π

2L− 1
, . . . ,

π(2	L−1
2 
+ 1)

2L− 1

]T
. (14)

As an example, Figure 1 shows the sampling grid S(L) for

L = 16 and θ given as in (14).

C. Research Questions under Consideration

The placement of rings with equal angular spacing, although

an attractive choice, may not be appropriate as the matrix Pm



for some |m| < L can become ill-conditioned [12]. In order

to ensure the invertibility of the matrix Pm for each m, the

sample positions in θ has been constructed from the samples

in the set Θ1(L) given by (13) by minimizing the condition

number (ratio of largest eigenvalue to the smallest eigenvalue)

of matrix Pm for each m ∈ {L − 2, L − 3, . . . , 0}. Such

optimized placement of samples along latitude significantly

improves the conditioning of the matrices, and consequently

allows an accurate computation of spherical harmonic coeffi-

cients. However, the minimization of condition number only

chooses from this set of L samples, which motivates us to

explore the possibility of further improvement in the condition

number of the matrix Pm for each |m| < L, if the L sample

positions along latitude are obtained from a larger set of

samples distributed along latitude. In this context, we seek

to answer to the following research question.

Q1: How does the accuracy of the SHT improve if
we choose sample positions to construct vector θ
from a larger set Θ1(M), M � L of equiangular
samples along latitude such that condition number
of the matrix Pm for each m < L is minimized?

Furthermore, the equiangular samples in the set Θ1(L) are

placed along latitude θ according to a uniform measure dθ.

Alternatively, the samples along co-latitude can be placed

according to different measures such as the standard spherical

measure sin θ dθ and the measure | tan θ|1/3dθ dφ, which is

used in the recovery of sparse band-limited signal [16]. It

has been demonstrated that the placement of sample positions

along latitude with the uniform measure dθ results in a more

accurate computation of SHT, in comparison to the placement

of samples along latitude according to the measures sin θ dθ
and | tan θ|1/3dθ. This further guides the need to address the

following research question in this work:

Q2: If the samples in the larger set are taken
according to other measures such as sin θ dθ and
| tan θ|1/3dθ, what is the distribution of samples in
the vector θ (which minimizes the condition number
of the matrix Pm for each m < L) and does such
an arrangement of sample positions along latitude
improve the accuracy of the SHT computation?

IV. OPTIMAL PLACEMENT OF SAMPLES

We analyze the construction of the optimized sample po-

sitions in a vector θ from a large set of M � L sam-

ples along latitude, where the M samples are distributed

according to different measures. In addition to the uniform

measure dθ [12], [13], [18], the other measures considered

in the literature are the standard measure sin θ dθ and tan-

gent measure | tan θ|1/3dθ [16]. We first define the set of

sample points along latitude with different measures. Define

Θ2(M) =
{
Θ2
t

}
and Θ3(M) =

{
Θ3
t

}
for t = 0, 1, . . . ,M−1

as sets of M samples along co-latitude, where samples are

placed according to the measures sin θ dθ and | tan θ|1/3dθ,

respectively. The sets Θ2(M) and Θ3(M) are formed by

choosing Θ2
0 = Θ3

0 = π (South Pole) and using the following

relation between the consecutive samples:

∫ Θ2
t−1

Θ2
t

sin θ dθ =
1

L

∫ π

0

sin θ dθ =
2

L
, (15)

∫ Θ3
t−1

Θ3
t

| tan θ|1/3dθ =
1

L

∫ π

0

| tan θ|1/3dθ =
2π

L
√
3
, (16)

for t = 1, 2, . . . ,M − 1. The samples in the set Θ2(M) can

also be formed as Θ2
t = arccos zt where zt = 2t/M − 1 for

t = 0, 1, . . . ,M − 1. Since tan θ is discontinuous at θ = π/2,

we note that the samples with the measure | tan θ|1/3dθ can

only be determined using the formulation in (16).

A. Optimal Sample Placement — Method

We propose to choose sample positions θ from a large set

of M samples using the following method:

• Choose θL−1 (where the ring of 2L−1 samples is placed)

from the set of M samples as the farthest sample ring

from the poles.

• For each m = L − 2, L − 3, . . . , 0, choose θm from the

set of M samples, such that the condition number of the

matrix Pm is minimized.

Since the proposed method minimizes the condition number

of the matrix Pm for each m < L, we refer to the proposed

method as an “optimal sample placement method”. We use

the term “optimized sample positions” to refer to the sample

positions obtained by applying this method. In optimal place-

ment method, the sequential placement of rings ensures that

the matrix Pm for each m is well-conditioned (or optimally

conditioned), resulting in a more accurate computation of the

SHT of a band-limited signal.

B. Optimal Sample Placement — Analysis

We analyze the construction of the vector θ from the set of

M samples distributed along latitude with respect to different

measures. In our analysis, we choose band-limit L = 128
and number of samples M = 20L, distributed along latitude

according to different measures. The optimal sample place-

ment method is applied to determine the optimized sample

positions θ from each of the set Θ1(M), Θ2(M) and Θ3(M).
Let the optimized sample positions be denoted by θ1, θ2

and θ3, obtained from the sets Θ1(M), Θ2(M) and Θ3(M),
respectively.

The optimized sample positions vector θ1 is shown in

Fig. 2(a) and the condition number, denoted by κm, of the

matrix Pm, constructed with optimized sample positions θ1

is plotted in Fig. 2(b) for different values of 0 ≤ m < L.

Similar plots for the optimized sample positions contained in

θ2 and θ3 are shown in Fig. 3 and Fig. 4, respectively. We note

that the optimized sample positions vector θ obtained for each

of these different sets yield well-conditioned matrices, which

is due to the fact that there are more samples, M , in each of

the set than the number of samples, L, required to construct

optimized sample positions. This is a different finding to the

analysis presented in [12], where only L samples in each of the

set Θ2(L) and Θ3(L) are taken along latitude. The comparison
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Fig. 2: (a) The optimized sample positions vector θ1 for L = 128, obtained from the set Θ1(20L) with samples taken along

latitude according to the measure dθ. (b) The condition number, denoted by κm, of the matrix Pm, constructed with optimized

sample positions θ1.
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Fig. 3: (a) The optimized sample positions vector θ2 for L = 128, obtained from the set Θ2(20L) with samples taken along

latitude according to the measure sin θ dθ. (b) The condition number, denoted by κm, of the matrix Pm, constructed with

optimized sample positions θ2.

of the plots of the condition number κm in Fig. 2(b), Fig. 3(b)

and Fig. 4(b) also suggests the optimized sample positions θ1

and θ2 comparatively attain lower condition numbers.

For more detailed analysis, we plot the maximum of the

condition number, denoted by max(κm) over 0 ≤ m < L for

different values of the band-limit 16 ≤ L ≤ 256 in Fig. 5 and

for optimized sample positions obtained from different sets

as indicated. As we noted earlier, it can be observed again

that the matrix Pm for each 0 ≤ m < L, constructed with

the sample positions θ3 have the smallest max(κm) over 0 ≤
m < L for the given band-limit. Furthermore, the sample

positions θ2, obtained from the set Θ2(M) with samples taken

according to standard measure on the sphere sin θ dθ, have

largest max(κm).

Remark 1: This finding is consistent with the results in

[16], where it has been proved in that a sparse band-limited

signal can be recovered from fewer measurements if samples

are drawn from the measure | tan θ|1/3dθdφ, compared to

sampling with respect to the uniform measure dθdφ, which

in turn has been shown by [18] to require fewer samples than

sampling with respect to the measure sin θ dθ.

In Fig. 5, we also plot the maximum of the condition number

max(κm) for the case when optimized sample positions in

a vector θ are determined by applying the optimal sample

placement method on the set Θ1(L) (set of only L points along

latitude distributed according to uniform measure). We refer to

such sample positions vector as the optimal sample positions

vector, denoted by θ̃, which is determined by applying the
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Fig. 4: (a) The optimized sample positions vector θ3 for L = 128, obtained from the set Θ3(20L) with samples taken along

latitude according to the measure | tan θ|1/3dθ. (b) The condition number, denoted by κm, of the matrix Pm, constructed with

optimized sample positions θ3.

optimal sample placement method on the set Θ1(L). It is

interesting to note that optimized sample positions vector

obtained from set Θ1(L) yields even lower max(κm).

Remark 2: The analysis suggests that the optimized sample

positions θ̃ obtained from the set of only L samples, taken

according to uniform measure dθ, is the best choice (in terms

of numerical accuracy of the SHT) to place the rings in the

optimal-dimensionality sampling scheme.

We carry out further analysis to justify that the placement

of sample positions with uniform measure is the best choice

to place iso-latitude rings. We show that the optimized sample

positions obtained from either of the sets Θ1(M), Θ2(M) or

Θ3(M) by applying the optimal sample placement method

approaches optimal sample positions vector θ̃ as M → ∞ (or

M � L). We determine optimized sample positions θ1, θ2,

θ3 and optimal sample positions θ̃ for L = 64 and M = 2560
and M = 5120. The absolute difference between the sorted

θ1 (or θ2, θ3) and sorted θ̃ is shown in Fig. 6(a) and (b) for

M = 2560 and M = 5120, where it is evident that each of the

optimized sample positions θi for i = 1, 2, 3, obtained from

their respective sets distributed along latitude with different

measures, well-approximates the optimal sample positions θ̃
and the approximation becomes better if more samples are

taken in each of the sets. Furthermore, we emphasize here

again that the condition number of the matrix Pm, constructed

with optimal sample positions θ̃, for all 0 ≤ m < L, is as

small as possible, resulting in a more accurate computation of

the SHT.

Remark 3: Since the optimized sample positions θ1, θ2, θ3

are distributed according to uniform measure on the sphere for

large M � L, we note that the placement of iso-latitude rings

according to the uniform measure dθ is an optimal choice,

in comparison to the other measures such as sin θ dθ and

| tan θ|1/3dθ on the sphere, for the accurate computation of

the SHT.
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Fig. 5: The maximum of the condition number, max(κm) of

the matrix Pm over 0 ≤ m < L for band-limit 16 ≤ L ≤ 256,

where the matrix Pm is constructed with the optimized sample

positions θi, i = 1, 2, 3, or optimal sample positions θ̃.

V. CONCLUSIONS

In this work, we have investigated the use of different

choices to place the samples in an optimal-dimensionality

sampling scheme — one where the total number of samples is

L2. For the accurate representation of a signal band-limited at

L, the optimal-dimensionality scheme is composed of L iso-

latitude rings of samples. Since the accuracy of the spherical

harmonic transform depends on the sample positions along

latitude, where the iso-latitude rings are placed, we have

analyzed the effect of placement of samples according to

different measures on the accuracy of SHT. We have developed

a method to determine L optimal sample positions from a
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Fig. 6: The absolute difference between the sorted θ1 (or θ2, θ3) and sorted θ̃ (the legend indicates the quantity along the

vertical axis) for (a) M = 2560 and (b) M = 5120. The small difference indicates that each of the optimized sample positions

θi for i = 1, 2, 3, well-approximates the optimal sample positions θ̃. Note that the approximation becomes better for M = 5120.

given set of M � L samples along latitude, which is used

to evaluate the effect of placement of samples according to

different measures on the accuracy of SHT. In comparison to

the other measures on the sphere used in the literature, we

have shown that the placement of iso-latitude rings according

to the uniform measure allows the most accurate computation

of spherical harmonic transform.
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