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Abstract—The Slepian concentration problem on the sphere to
maximize the energy concentration of a band-limited (in spherical
harmonic degree) function is formulated as an eigenvalue prob-
lem, the solution of which gives rise to a family of band-limited
eigenfunctions with optimal energy concentration in the spatial
region on the sphere. In the family of band-limited eigenfunctions,
the most concentrated (in the spatial region) eigenfunction is
used for spatial windowing and spatial smoothing. We develop
an iterative method to accurately compute the most concentrated
band-limited Slepian eigenfunction for a given band-limit and a
spatial region of interest. Taking into account the computational
issues around the proposed iterative method, we also present
the procedure for the practical implementation of the proposed
method. In comparison to the computation of most concentration
eigenfunction by the eigenvalue decomposition which gives a
family of eigenfunction, the proposed method is computationally
feasible even for large band-limits. Through examples, we also
show that the proposed method attains sufficient numerical
accuracy.

Index Terms—Concentration problem, spherical harmonics,
eigenfunctions, 2-sphere (unit sphere).

I. INTRODUCTION

The development of spherical signal processing techniques

finds applications in many diverse fields of science and en-

gineering, such as geophysics [1], cosmology [2], quantum

chemistry [3], acoustics [4] and wireless communication [5].

The extension of well formulated signal processing techniques

— formulated in the Euclidean domain such as convolution,

estimation, prediction, and filtering — to the spherical domain

is a natural way to analyze the signal in these applications,

where the signals and data-sets are inherently defined on

the sphere. The Slepian concentration problem (formulated in

Euclidean domain [6], [7]) has been extended and rigorously

investigated for signals on the sphere [1], [8]. The Slepian

concentration problem seeks band-limited (or space-limited)

functions with optimal energy concentration in the spatial (or

spectral) region. The solution of the Slepian concentration

problem, formulated as an eigenvalue problem, provides a

family of orthonormal eigenfunctions, referred to as Slepian

eigenfunctions or the Slepian basis, which are optimally con-

centrated in both spatial and spectral domains. Slepian eigen-

functions have been used for localized spectral analysis [9]

and spectral estimation [10]. Furthermore, exploiting the fact

the most concentrated eigenfunction obtained from the Slepian

concentration problem attains the lower bound imposed by the

uncertainty principle on the simultaneous concentration of a

signal in both spatial and spectral domains [9], [11], [12],

the most concentrated band-limited eigenfunction has been

used in obtaining the spatially localized spherical harmonic

transform [11], [13] and proposed for smoothing of signals on

the sphere [14].

In general, the computation of Slepian eigenfunctions re-

quire the quadrature to be evaluated over the spatially localized

region [1], which cannot be computed accurately using a finite

number of samples on the sphere. Therefore, the Slepian eigen-

functions can only be computed approximately. In addition, the

computational complexity to determine Slepian eigenfunctions

is large and scales with the band-limit, which causes the

numerical computation to become infeasible for large band-

limits. For applications that only require the computation of

most concentrated eigenfunction, it is clearly advantageous to

develop alternative methods to compute the most concentrated

eigenfunction rather than computing all of the eigenfunctions.

In this context, we develop an iterative method to compute

the most concentrated (in a given spatial region of interest)

band-limited Slepian eigenfunction. For the proposed method,

we also present the procedure for the practical implementation

that takes into account the computational issues around the

proposed method. We show that the proposed method to

compute most concentrated band-limited eigenfunction has

less computational complexity as compared to the computation

of all of the eigenfunctions. Furthermore, we also analyze the

numerical accuracy achieved by the use of proposed method.

The rest of the paper is organized as follows. We present

mathematical background for signals on the sphere and spher-

ical harmonics in Section II. In Section III, we briefly review

the formulation and applications of the Slepian concentration

problem on the sphere and identify the research problem
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considered in this work. The proposed iterative method along

with its implementation in practice is presented in Section IV,

where we also carry out computational complexity analysis

and numerical accuracy analysis of the proposed method.

Finally, Section V concludes the paper.

II. SIGNALS ON THE SPHERE

A. Sphere (Spherical Domain)

The spherical domain, also referred as sphere or 2-sphere

or unit sphere, is denoted by S
2 and is defined as S

2 � {x ∈
R
3 : |x| = 1} ⊂ R

3, where | · | represents Euclidean norm.

A point on S
2 is given by a unit vector x̂ ≡ x̂(θ, φ) �

(sin θ cosφ, sin θ sinφ, cos θ)′ ∈ R
3, where (·)′ denotes the

vector transpose operation, θ ∈ [0, π] is the co-latitude that is

measured with respect to the positive z−axis and φ ∈ [0, 2π)
is the longitude which is measured with respect to the positive

x−axis in the x− y plane.

B. Signals on Sphere

We consider the complex-valued square-integrable functions

defined on the sphere. The set of such functions form a Hilbert

space denoted by L2(S2) equipped with the inner product

given by

〈f, h〉 �
∫
S2

f(x̂)h(x̂) ds(x̂), (1)

for two functions f and h defined on S
2. Here ds(x̂) =

sin θ dθ dφ is the differential area element on S
2. The inner

product induces a norm ‖f‖ � 〈f, f〉1/2. We refer the

functions with finite energy (finite induced norm) as “signals

on the sphere”. We also define 〈f, g〉R �
∫
R
f(x̂)g(x̂) ds(x̂)

and ‖f‖R � 〈f, f〉1/2R as the energy of the signal f with in

the region R.

C. Operator on the Sphere

Using general Fredholm integral equation, we define an

operator S for signals on the sphere as [15]

(Sf)(x̂) =
∫
S2

S(x̂, ŷ) f(ŷ)ds(ŷ), (2)

where S(x̂, ŷ) is the kernel for an operator S .

D. Spherical Harmonics and Spectral (Fourier) Domain

Spherical harmonic functions form a complete orthonormal

set of basis functions for L2(S2). The spherical harmonic

function (or spherical harmonic for short) Y m� (θ, φ) for integer

degree � ≥ 0 and integer order |m| ≤ � is defined as [15]

Y m� (θ, φ) =

√
2�+ 1

4π

(�−m)!

(�+m)!
Pm� (cos θ)e

imφ, (3)

where Pm� denotes the associated Legendre function of integer

degree � and integer order m and is defined as [15]

Pm� (u) =
(−1)m
2��!

(1− u2)m/2
d�+m

du�+m
(u2 − 1)�

P−m� (u) = (−1)m (�−m)!

(�+m)!
Pm� (u),

for |u| ≤ 1.
By the completeness of spherical harmonics, we can expand

any signal f ∈ L2(S2) as

f(x̂) =
∞∑
�=0

�∑
m=−�

(f)m� Y
m
� (x̂), (4)

where equality is understood in the sense of convergence in

the mean and

(f)m� � 〈f, Y m� 〉 =
∫
S2

f(û)Y m� (û) ds(û) (5)

denotes the spherical harmonic (Fourier) coefficient of degree

� and order m. The spherical harmonic coefficients (f)m� form

the spectral domain representation of a signal. The signal f ∈
L2(S2) is defined to be band-limited at degree L if (f)m� =
0 for � ≥ L. The set of bandlimited signals forms an L2

dimensional subspace of L2(S2), which is denoted by HL.

Let the column vector f of size L2, given by

f =
(
(f)00, (f)

−1
1 , (f)01, (f)

1
1, (f)

−2
2 , · · · , (f)LL)′,

contains all spherical harmonic coefficients (f)m� of a band-

limited signal f ∈ HL and represents the spectral domain

representation of the signal.

III. PROBLEM FORMULATION

A. Slepian Concentration Problem on the Sphere

The concentration problem on the sphere for finding the

functions with simultaneous concentration in both spatial and

spectral domains has been extensively investigated [1], [8]. In

order to maximize the spatial concentration of a bandlimited

signal f ∈ HL within the spatial region R ⊂ S
2, we seek

to maximize the spatial concentration (energy) ratio λ given

by [1],

λ =
‖f‖2R
‖f‖2 , 0 < λ < 1. (6)

which can be equivalently expressed in spectral domain as

λ =

L∑
�=0

�∑
m=−�

L∑
�′=0

�′∑
m′=−�′

(f)m� (f)
m′
�′ E��′,mm′

L∑
�=0

�∑
m=−�

(f)m� (f)
m
�

, (7)

where

E��′,mm′ =

∫
R

Y m� (x̂)Y
m′
�′ (x̂)ds(x̂). (8)

By defining a matrix E of size L2×L2 with entries E��′,mm′

such that the same ordering as in f is used for indexing of

rows (identified by �,m) and columns (identified by �′,m′),
the concentration ratio in (7) can be compactly written as

λ =
fHEf

fHf
, (9)

where the superscript H denotes Hermitian operation. The

problem to maximize the concentration ratio in (9) can be

solved as an algebraic eigenvalue problem

Ef = λf , (10)



the solution of which gives L2 orthonoromal eigenfunctions.

The eigenvalue 0 < λ < 1 associated with each band-

limited eigenfunction serve as a measure of the concentration

of the eigenfunction in the region R. Let the eigenfunctions be

denoted by fp, p ∈ [1, 2, . . . , L2] and the associated eigenvalue

for each eigenfunction is denoted by λp, where we index the

eigenfunctions such that 1 ≥ λ1 ≥ λ2 ≥ · · · ≥ λL2 ≥ 0.

B. Use of Concentrated Slepian Eigenfunction

The solution of Slepian concentration problem provides

spatially concentrated and band-limited eigenfunctions. Due

to the reason that the most concentrated band-limited eigen-

function attains the lower bound imposed by the uncertainty

principle on the simultaneous concentration of the function

in both spatial and spectral domains, the most concentrated

eigenfunction is of great use in applications. We briefly review

the use of eigenfunction with maximal spatial concentration in

azimuthally symmetric and elliptical regions on the sphere.

Concentration in Azimuthally Symmetric Region

For a band-limited eigenfunction with the band-limit L and

maximal spatial concentration in an azimuthally symmetric

polar (North pole) cap region R(θc) ⊂ S
2, given by

R(θc) �
{
(θ, φ) : θ ≤ θc

}
, (11)

where θc and the band-limit L are related by

θc =
2π

L+ 1
, (12)

it is established that one eigenfunction is at least 99% concen-

trated [9], [11]. Therefore, using (12) we have a one parameter

maximally band-limited eigenfunction with concentration of

99% in the polar cap region R. Such an eigenfunction has been

used for obtaining spatially localized spherical harmonic repre-

sentation of the signal. Furthermore, it has also been proposed

as a suitable candidate for spatial smoothing (azimuthally

symmetric convolution [16]) of signals on the sphere [14].

Example 1: As an example, we obtain the most concentrated

band-limited eigenfunction f1 using the formulation of Slepian

concentration problem in (10) for L = 17 and azimuthally

symmetric spatial region R(θc) with θc given in (12). The

eigenfunction f1 with spatial concentration λ1 = 0.9944 in

the region R(θc) is plotted in Fig. 1(a) on the sphere and its

spectral domain representation formed by spherical harmonic

coefficients, (f1)
m
� , is shown in Fig. 1(b). We note that the

eigenfunction, f1(θ, φ) = f1(θ), is azimuthally symmetric and

therefore all non-zero order spherical harmonic coefficients

(f1)
m
� are zero, that is, (f1)

m
� = 0 for m 
= 0.

Concentration in Elliptical Region

A band-limited eigenfunction with minimum band-limit and

maximal spatial concentration in the elliptical region on the

sphere has been used as a window function in obtaining direc-

tional spatially localized spherical harmonic transform [13].

We parameterize the elliptical region using the focus co-

latitude θc of the elliptical region along the positive x-axis

and the arc length a of the semi-major axis [13]:

R(θc,a) �
{
(θ, φ) : �s

(
(θ, φ), (θc, 0)

)
+�s

(
(θ, φ), (θc, π)

) ≤ 2a}, (13)

where 0 ≤ θc ≤ a ≤ π/2. Here �s
(
(θ, φ), (θ′, φ′)

)
=

arccos
(
sin θ sin θ′ cos(φ − φ′) + cos θ cos θ′

)
denotes the

angular distance between the two points parameterized by

(θ, φ) and (θ′, φ′) on the sphere.

The eigenfunction with minimum band-limit and maximal

spatial concentration is determined by finding the minimum

value of the band-limit L which ensures that λ1 is greater than

or equal to the desired energy concentration (90% or 99%).

Thus, the band-limit L, focus of an elliptical region θc and

the arc length a of the semi-major axis fully parameterize the

eigenfunction.
Example 2: As an illustration, we obtain the eigenfunction

f1 for band-limit L = 17 and spatial concentration in the

elliptical region R(θc,a) with focus θc = π/6 and a = π/6 +
π/60. The eigenfunction f1 with spatial concentration of λ1 =
0.9919 in the region R(θc,a) is shown in the spatial (sphere)

domain in Fig. 2(a) and in the spectral domain in Fig. 2(b).

C. Research Problem under Consideration

The most concentrated eigenfunction for the given band-

limit L and the spatial region R is obtained by numerically

solving an algebraic eigenvalue problem in (10). Such com-

putation of the most concentrated eigenfunction requires the

eigenvalue decomposition of the matrix E which becomes

infeasible and inaccurate due to the following reasons: 1) the

entries of the matrix E given in (8) may not be computed

accurately for an arbitrary region R, and 2) the computational

complexity to carry out eigenvalue decomposition naively is

of the order O
(
(L2)3

)
= O

(
L6

)
, which is computationally

intensive and becomes infeasible for large band-limit L.

However, the complexity can be reduced to O
(
(L2)2.376

)
by employing efficient algorithms for matrix multiplications

and eigenvalue decomposition [17]. In applications where

we only require one eigenfunction (most concentrated), it

is sensible and advantageous to seek alternative methods to

accurately compute eigenfunction with reduced computational

complexity rather than the eigenvalue decomposition which

computes L2 eigenfunctions.

In this work, we propose an iterative method to accu-

rately (not exactly) compute the maximally concentrated band-

limited eigenfunction. In comparison, the proposed method has

much reduced complexity. We also show, through numerical

experiments, that the sufficient accuracy is attained by the

proposed method.

We again emphasize that the computation of eigenfunction

through the solution of eigenvalue problem in (10) is also

approximate for an arbitrary spatial region R as the matrix E
can only be computed approximately for an arbitrary region.

However, if the region R is azimuthally symmetric as given in

(11), the entries of the matrix E given in (8) can be analytically
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Fig. 1: The most concentrated band-limited eigenfunction f1 obtained from the solution Slepian concentration problem in (10)

for band-limit L = 17 and azimuthally symmetric spatial region R(θc) with θc given in (12). The eigenfunction f1 in (a) spatial

domain (on the sphere) and (b) spectral domain as (f1)
m
� . Since the eigenfunction f1 is azimuthally symmetric, all non-zero

order spherical harmonic coefficients (f1)
m
� are zero.
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Fig. 2: The most concentrated band-limited eigenfunction f1 obtained from the solution Slepian concentration problem in (10)

for band-limit L = 17 and spatial concentration in the elliptical region R(θc,a) with focus θc = π/6 and a = π/6+ π/60. The

eigenfunction f1 in (a) spatial domain (on the sphere) and (b) spectral domain as (f1)
m
� .

computed. Furthermore, for the azimuthally symmetric region,

the eigenfunctions can also be determined by the eigenvalue

decomposition of the matrix G (with simple analytic entries)

that commutes with E, that is, EG = GE [1], [9].

IV. ITERATIVE COMPUTATION OF SLEPIAN

EIGENFUNCTION

We present an iterative method to compute the maximally

spatially concentrated band-limited eigenfunction for a given

band-limit L and a spatial region R. We note that the band-

limit L and spatial region R fully characterize the Slepian con-

centration problem. We first define the selection operators [15]

on the sphere, following the operator action in (2).

Definition 1 (Spatial Selection Operator): Define the spatial

selection operator SR which selects the function in a spatial

region R ⊂ S
2 with kernel given by

SR(x̂, ŷ) � IR(x̂)δ(x̂, ŷ), (14)

where IR(x̂) = 1 for x̂ ∈ R ⊂ S
2 and IR(x̂) = 0 for

x̂ ∈ S
2\R is an indicator function of the spatial region R

and δ(x̂, ŷ) is a Dirac delta function on the sphere [15].

Definition 2 (Spectral Selection Operator): Define the spec-

tral selection operator SL which band-limits the signal at L
with kernel given by

SL(x̂, ŷ) �
L−1∑
�=0

�∑
m=−�

Y m� (x̂)Y
m
� (ŷ). (15)



A. Proposed Iterative Method

Here, an iterative method is presented to compute the

maximally concentrated band-limited eigenfunction. For the

given band-limit L and the spatial region R, the following

characteristics of the most concentrated eigenfunction f1 has

been observed for different spatial regions:

• f1(x̂) is positive for x̂ ∈ R ⊂ S
2, and

• f1(x̂) is monotonic over the spatial region R, that is,

f1(x̂) monotonically decreases towards the boundaries

of the region R.

Although these characteristics of the most concentrated eigen-

function are not supported by theoretical evidence, the most

concentrated eigenfunction for different values of the band-

limit L and different spatial region exhibits these properties.

Let g0 ∈ HL be the band-limited function such that the

spatially localized function SRg0 satisfies these properties. We

propose that the function gk ∈ HL given by

gk =
SLSRgk−1

‖SLSRgk−1‖ , (16)

for k = 1, 2, . . ., converges to the most concentrated eigen-

function f1 as k → ∞. During each iteration, the proposed

method increases the energy of a band-limited function in

the spatial region R, that is, ‖gk‖R ≥ ‖gk−1‖R, where the

equality means that gk has maximum energy with in the

spatial region. The presence of the term ‖SLSRgk−1‖ in (16)

ensures that gk has unit energy after each iteration step, that is,

‖gK‖ = 1. Since we enforce ‖gK‖ = 1 at each iteration step,

0 < ‖gK‖R < 1 measures the spatial (energy) concentration

of gK with in the spatial region R. One of the simplest choice

for g0 ∈ HL is g0(x̂) = 1. Another possible choice to choose

g0 ∈ HL is to band-limit the indicator function I(x̂) of the

region at degree L.

B. Implementation in Practice

The iterative computation of an eigenfunction using (16)

requires the implementation of selection operators on the

sphere. For the representation of a function on the sphere,

it is necessary to adopt sampling scheme on the sphere to

discretize the function. We consider a sampling scheme on the

sphere that requires the optimal number (L2) of samples on

the sphere for an accurate computation of spherical harmonic

transform (SHT) of a signal band-limited at L [18]. Let S(L)
denotes the sampling grid proposed in [18] on the sphere

which consist of L2 samples on the sphere.

The spatial selection operator SR can be simply imple-

mented as masking of the signal in the spatial domain using the

indicator function IR(x̂) of the spatial region R. Since SRgk−1
is spatially localized, it is not band-limited and therefore, the

spherical harmonic transform cannot be computed accurately

in practice using the finite number of samples on the sphere

due to the aliasing errors. Consequently, SRgk−1 cannot be

band-limited using the selection operator SL.

In order to implement the proposed iterative method, we

use the high resolution spatial grid S(M), M > L so that

the error in computing spherical harmonic transform due to

the aliasing is reduced. We later show, through numerical

experiments, that M = 5L is sufficient resolution of the grid

to sample the signals during the implementation. Furthermore,

since the energy of a band-limited function in the spatial

region R should be increased during each iteration, that is,

‖gk‖R ≥ ‖gk−1‖R, we check this condition during each

iteration and stop the procedure once (‖gk‖R−‖gk−1‖R) < ε
for some small ε. Using the property of an eigenfunction noted

in [1] that ‖f1‖R = ‖SLSRf1‖, we implement the condition

‖gk‖R ≥ ‖gk−1‖R as ‖SLSRgk‖ ≥ ‖SLSRgk−1‖ because it

can be computed readily during implementation.

We here outline the procedure to implement the iterative

computation of an approximate eigenfunction, formulated in

(16), for a given band-limit L and the spatial region R. Let

gK denotes the function computed after K iterations which is

obtained using the procedure, Compute Eigenfunction, sum-

marized below:

Procedure 1 Compute Eigenfunction

Require: gK ∈ HL on S(L), given g0 ∈ HL on S(M)
1: procedure COMPUTE EIGENFUNCTION(gk)

2: for k = 1, 2, . . . ,K do
3: compute (SRgk−1)(x̂) = I(x̂)gk−1(x̂) over

S(M)

4: compute SLSRgk−1 by taking SHT of (SRgk−1)
over S(M) and reconstructing on the grid S(M) using

inverse SHT after truncating in spectral domain at band-

limit L

5: obtain gk =
SLSRgk−1

‖SLSRgk−1‖
6: if then‖SLSRgk‖ − ‖SLSRgk−1‖ ≤ ε
7: break
8: end if

9: end for
10: Take SHT of gk and reconstruct gk on the grid S(L)

using inverse SHT

11: return gk
12: end procedure

C. Computational Complexity

Now we analyse the computational complexity of the pro-

posed iterative method to compute concentrated eigenfunction.

The complexity of the proposed procedure scales with the

band-limit L. The major computational burden during each

iteration of the proposed method is due to spherical har-

monic transform, which can be implemented with complexity

O(M3) ≡ O(L3) [18], [19]. For K iterations, the complexity

is scaled by K and therefore the overall asymptotic complexity

of the proposed method is O(KL3). In comparison to the

computation of eigenfunction through eigenvalue decomposi-

tion, we note that the proposed method has much reduced

complexity.
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Fig. 3: An iteratively constructed eigenfunction gK , with band-limit L = 17, spatial concentration in an azimuthally symmetric

spatial region R(θc) and K = 12, in (a) spatial domain in and in (b) spectral domain as (gK)
m
� . The difference between the

iteratively constructed gK and f1 (obtained from the Slepian concentration problem) in (c) spatial domain as gK(x̂)− f1(x̂)
and in (d) spectral domain as (gK)

m
� − (f1)m� .
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Fig. 4: The SNRk after each iteration of the computation of

gk with band-limit L = 17 and spatial concentration in an

azimuthally symmetric spatial region R(θc).

D. Numerical Accuracy Analysis
We illustrate that the sufficient accuracy is attained by the

proposed method. In order to quantify the level of accuracy,

we define the signal-to-noise ratio (SNR) for the computed

eigenfunction gk after k-th iteration as gk as

SNRk = 20 log
‖f1‖

‖f1 − gk‖ .

We revisit the concentration problems considered in Ex-

ample 1 and Example 2 and iteratively construct the most

concentrated eigenfunction using our proposed method. In our

implementation, we choose M = 5L and ε = 10−3.

Example 1 - Revisit: The parameters of the Slepian con-

centration problem are: band-limit L = 17 and azimuthally

symmetric spatial region R(θc) with θc given in (12). We

consider g0(x̂) = 1 and iteratively compute the eigenfunction

gK . The procedure is stopped at K = 12 when ‖SLSRgk‖ −
‖SLSRgk−1‖ ≤ ε. The iteratively constructed eigenfunction

gK with spatial concentration ‖gK‖R = 0.9984 is shown in

spatial domain in Fig. 3(a) and in spectral domain in Fig. 3(b)

as (gK)
m
� . In order to further analyze the accuracy, we also

plot the difference between gK and f1 in the spatial domain
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Fig. 5: An iteratively constructed eigenfunction gK , with band-limit L = 17, spatial concentration in an elliptical region R(θc,a)

with focus θc = π/6 and a = π/6 + π/60 and K = 34, in (a) spatial domain in and in (b) spectral domain as (gK)
m
� . The

difference between the iteratively constructed gK and f1 (obtained from the Slepian concentration problem) in (c) spatial

domain as gK(x̂)− f1(x̂) and in (d) spectral domain as (gK)
m
� − (f1)m� .

in Fig. 3(c) as gK(x̂) − f1(x̂) and in the spectral domain in

Fig. 3(d) as (gK)
m
� − (f1)m� . The SNRk after each iteration

is shown in Fig. 4, where it can be observed that the SNRk

improves with the iteration step.

Example 2 - Revisit: The parameters of the Slepian concen-

tration problem are: band-limit L = 17 and elliptical spatial

region R(θc,a) with focus θc = π/6 and a = π/6 + π/60. We

consider g0(x̂) = 1 and iteratively compute the eigenfunction

gK . The procedure is stopped at K = 34 as ‖SLSRgk‖ −
‖SLSRgk−1‖ ≤ ε. The iteratively computed eigenfunction gK
with spatial concentration ‖gK‖R = 0.9933 in the region

R(θc,a) is shown in the spatial domain in Fig. 5(a) and in

the spectral domain in Fig. 5(b). We also plot the difference

between gK and f1 in the spatial domain in Fig. 5(c) as

gK(x̂) − f1(x̂) and in the spectral domain in Fig. 5(d) as

(gK)
m
� − (f1)

m
� . The SNRk after each iteration is shown

in Fig. 6, demonstrating the improvement in SNRk with the

iteration step.

The improvement in SNR with the iteration step and the

error between gK and f1 in both examples indicate that

the proposed iterative computation of the eigenfunction is

sufficiently accurate.

V. CONCLUSIONS

Among a family of Slepian eigenfunctions obtained as

solutions of the Slepian concentration problem on the sphere,

which seeks to maximize the concentration of a band-limited

function in the spatial region of interest, the eigenfunction

with maximum concentration in the spatial region is used in

many applications for spatial windowing and spatial smooth-

ing. We have developed an iterative method for the accurate

computation of the most concentrated band-limited Slepian

eigenfunction for a given band-limit and a spatial region

of interest. In comparison to the computation of the most

concentrated eigenfunction by solving an eigenvalue problem,

we have shown that the proposed method has much reduced

computational complexity. Furthermore, We have presented

examples to obtain the most concentrated eigenfunction for
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Fig. 6: The SNRk after each iteration of the computation of

gk with band-limit L = 17 and spatial concentration in an

elliptical region R(θc,a) with focus θc = π/6 and a = π/6 +
π/60.

azimuthally symmetric and elliptical spatial regions. We have

also carried out the numerical accuracy analysis of the pro-

posed method and demonstrated that the sufficient accuracy is

attained by the proposed method.
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