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ABSTRACT

We develop a method to compute spherical harmonic transform (SHT)
of a band-limited signal on the sphere discretized over a minimum
dimensionality regular sampling grid on the sphere. For the compu-
tation of SHT of a signal band-limited at L, the proposed method
requires L2 number of samples on a regular grid composed of L
iso-latitude rings of samples with only L samples in each ring along
longitude. Since a signal band-limited at L is represented by L2

degrees of freedom in the spectral (spherical harmonic) domain,
the proposed method requires the minimal number of samples for
the computation of SHT. In comparison to the other schemes that
require 2L − 1 samples along each iso-latitude ring, we show that
the SHT can be computed, by exploiting the structure of spectral
domain, from only L samples in each iso-latitude ring. We also
analyse the numerical accuracy and the computational complexity
of our proposed SHT for a regular grid with equiangular sampling.
We demonstrate, through numerical experiments, that the proposed
SHT is sufficiently accurate for band-limits of interest in diffusion
magnetic resonance imaging.

Index Terms— spherical harmonic transform; sampling; band-
limited signals; unit sphere.

1. INTRODUCTION

We consider a Hilbert space L2(S2) formed by a set of square inte-
grable complex valued functions defined on the two dimensional unit
sphere (or 2-sphere), denoted by S

2. The space L2(S2) is equipped
with the inner product defined for two functions f and h defined on
S
2 as [1]

〈f, h〉 �
∫
S2

f(θ, φ)h(θ, φ) sin θ dθ dφ, (1)

where θ ∈ [0, π] denotes the latitude that is measured from positive
z-axis, φ ∈ [0, 2π) denotes the longitude that is measured from the
positive x-axis in the x−y plane, (·) denotes the complex conjugate
operation, sin θ dθ dφ denotes the differential area element on the
sphere and the integration is carried out over S2. The inner product
in (1) induces a norm ‖f‖ � 〈f, f〉1/2, and the functions with finite
induced norm are referred as signals on the sphere.

The development of signal processing techniques for signals de-
fined on S

2 finds applications in various fields of science and engi-
neering (e.g., [1–7])). In these applications, the signal is analysed
either in the spatial domain or spectral domain or both. The spectral
domain is enabled by the spherical harmonic transform (SHT) – the
well-known counterpart of the Fourier transform for signals on the
sphere [1]. It is desirable that the SHT of a signal can be computed
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from the least number of measurements (samples) of the signal taken
over the sphere. This is particularly important in applications, for ex-
ample, diffusion magnetic resonance imaging (dMRI) [8, 9], where
the time required to acquire a single measurement is large.

1.1. Relation to Prior Work

Many sampling schemes on the sphere, supported by accurate com-
putation of SHT, have been proposed in the literature. In this work,
we restrict our attention to the sampling schemes [10–13] which per-
mit the accurate computation of the SHT of a signal that is band-
limited at L (formally defined in Section 2) and are composed of
samples on the sphere taken over a regular (or equiangular) grid - a
grid formed by samples along latitude and longitude. We note that
the minimum number of samples, denoted by NO, attainable by any
sampling scheme that allows the accurate computation of SHT of a
band-limited signal is given by NO = L2, which is revealed by the
degrees of freedom required to represent a band-limited signal in the
spectral domain [13, 14].

An exact method to compute the SHT was first developed in
1994 in [10] for an equiangular sampling scheme comprised of 2L
iso-latitude rings of samples with 2L− 1 samples in each ring along
longitude. Thus the total number of samples required by the sam-
pling scheme proposed in [10] is of the order of 4L2. Recently,
in 2011 in [13], a new sampling theorem has been proposed for
an equiangular sampling which asymptotically requires 2L2 num-
ber of samples. Moreover, the Gauss-Legendre quadrature on the
sphere [15, 16] may also be used to construct a sampling theorem
and exact SHT from asymptotically 2L2 samples on the sphere. Al-
though the placement of samples dictated by the Gauss-Legendre
quadrature is on a regular grid, the samples along latitude are not
equiangular. The SHT using the least squares approach have also
been developed for equiangular sampling schemes [17, 18] that also
require 2L2 samples for the accurate computation of SHT. A least
squares method can also be used to compute SHT for the L2 sam-
ples, but it may not yield accurate SHT as we show later in the paper.
More recently, a sampling scheme, referred as optimal spatial dimen-
sionality sampling scheme, has been proposed in [14] that requires
only L2 (minimum) number of samples on the sphere and allows ac-
curate computation of SHT. However, the samples in the scheme are
not defined on a regular grid.

1.2. Contributions

In all of the developments for sampling on the regular grid on the
sphere, 2L − 1 number of samples are taken along longitude for
each sample along latitude with an objective to avoid aliasing in the
computation of SHT, where the aliasing occurs due to the method
chosen to compute SHT and should not be confused with the alias-
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ing due to undersampling of the signal. In this work, we show that
the aliasing errors can be avoided with much fewer samples by ex-
ploiting the structure of the spectral domain. We develop a method
to compute SHT of the signal band-limited at L and sampled on a
regular sampling (or equiangular sampling) grid that is composed
of L iso-latitude rings of samples with only L samples in each ring
along longitude. Thus, the SHT transform can be computed from
the minimum, L2, number of samples taken over a regular grid on
the sphere. We develop a matrix formulation for the proposed SHT
and show that the aliasing errors can be avoided by solving a series
of linear systems. We also evaluate the numerical accuracy and the
computational complexity of our proposed SHT and show that the
SHT is sufficiently accurate for band-limits of interest in diffusion
magnetic resonance imaging (dMRI) application [8, 9]. In compar-
ison to the proposed SHT, we note that SHT for an optimal dimen-
sionality sampling scheme proposed in [14] is numerically superior
but requires samples on a non-regular grid.

The rest of the paper is organized as follows. We review the har-
monic analysis in Section 2. In Section 3, we develop SHT for min-
imum dimensionality sampling scheme on the sphere. The numeri-
cal accuracy and computational complexity of the proposed SHT is
analysed in Section 4. Finally, conclusions are made in Section 5.

2. HARMONIC ANALYSIS ON THE SPHERE

Spherical harmonics, denoted by Y m
� (θ, φ), are defined for integer

degree � ≥ 0 and integer order m ∈ [−�, �] as [1]

Y m
� (θ, φ) �

√
2�+ 1

4π

(�−m)!

(�+m)!
Pm
� (cos θ)eimφ,

where Pm
� denotes the associated Legendre function [1]. Spher-

ical harmonics form archetype complete orthonormal set of basis
functions for L2(S2), and therefore we can expand any signal f ∈
L2(S2) as

f(x̂) =
∞∑
�=0

�∑
m=−�

(f)m� Y m
� (x̂), (2)

where (f)m� denotes the spherical harmonic coefficient of degree
� and order m, and is given by the spherical harmonic trans-
form (SHT):

(f)m� � 〈f, Y m
� 〉,=

∫
S2

f(θ, φ)Y m
� (θ, φ) sin θ dθ dφ. (3)

The spherical harmonic coefficients (f)m� form the spectral domain
representation of the signal. The reconstruction of signal on the
sphere from its spectral domain representation (spherical harmonic
coefficients), given in (2), is referred to as inverse SHT. The signal f
is said to be band-limited at degree L if (f)m� = 0, ∀� > L and the
set of all such band-limited signals form an L2 dimensional subspace
of L2(S2), denoted by HL. Thus, any band-limited signal f ∈ HL

has only L2 degrees of freedom.

3. SPHERICAL HARMONIC TRANSFORM FOR

REGULAR GRID SAMPLING

3.1. Sampling Scheme Structure

We propose an iso-latitude sampling of the sphere, denoted by SK
L ,

composed L iso-latitude rings of samples with only K samples in
each ring along longitude. Let θt for t = 0, 1, . . . , L − 1 denotes
the position of samples along latitude. We develop SHT for the arbi-
trary placement of samples along latitude. We analyse the proposed

SHT for equiangular placement of samples along latitude later in the
paper. For the discretization along longitude for each iso-latitude
ring, we choose K equiangular samples with sample locations given
by

φp =
2π(t+ 1)

K
, p = 0, 1, . . . , K − 1. (4)

We show later in the paper that the equiangular placement of samples
along longitude is an optimal choice. When K = L, the total num-
ber of samples in the proposed sampling SL

L scheme is NO = L2

and the sampling scheme is referred to as a minimal dimensionality
sampling scheme on the sphere.

3.2. Spherical Harmonic Transform

We develop a method to compute SHT of a band-limited signal f ∈
HL discretized over the sampling scheme SK

L . Changing the order
of summation in (2), we can write a sampled signal f(θt, φp) as

f(θt, φp) =

L−1∑
m=−(L−1)

eimφpGm(θt), (5)

with

Gm(θt) �
L−1∑
�=|m|

(f)m� P̃m
� (cos θt), (6)

where P̃m
� (θt) � Y m

� (θt, 0) =
√

2�+1
4π

(�−m)!
(�+m)!

Pm
� (cos θt) denotes

scaled associated Legendre functions. Note that Gm(θt) depends
on the m-th order spherical harmonic coefficients. For the sampled
signal f(θt, φp) and order |m| < L, define Am(θt) as K point
discrete Fourier transform (DFT) along φ, given by

Am(θt) �
K−1∑
p=0

f(θt, φt)e
−imφp . (7)

Since |m| < L, Am(θt) = KGm(θt) for K ≥ 2L−1 (Nyquist cri-
terion), which can be verified by substituting f(θt, φp), given in (5),
in (7), and employing the orthogonality of discrete complex expo-
nentials. Thus, Gm(θt) can be computed exactly from the sampled
signal over the grid SK

L when at least K = 2L−1 samples are taken
along φ in each iso-latitude ring. Once Gm(θt) is computed for each
θt, the spherical harmonic coefficients can be computed using the
Gauss-Legendre quadrature [15, 16] or the quadrature rules dictated
by sampling theorems [10, 13]. If the samples are not equiangular
along longitude, the orthogonality of discrete complex exponentials
cannot be directly applied. Nevertheless, Gm(θt) can still be com-
puted from K ≥ 2L−1 samples along longitude as the Nyquist cri-
terion is satisfied. We propose that an equiangular placement along
longitude is an optimal choice as this allows to use the orthogonality
of complex exponentials.

When K < 2L−1, Gm(θt) cannot be computed from the sam-
pled signal due to the aliasing along longitude. We again highlight
that the aliasing occurs due to the formulation of SHT given in (5)
and (7). We show that this aliasing can be avoided by exploiting the
structure of the spectral domain and the spherical harmonic coeffi-
cients can be computed from the samples of the signal taken over
SL

L. For K = L, the substitution of the sampled signal f(θt, φp),
given in (5), in (7) yields

Am(θt) = LGm(θt) + δm,0 LGm−L(θt), m ≥ 0, (8)

where δm,0 is the Kronecker delta function: δm,0 = 1 for m = 0
and is zero otherwise. The formulation in (8) indicates that Am(θt)
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Fig. 1: The graphical representation of the spectral domain (formed
by spherical harmonic coefficients) of a signal band-limited at L. For
each |m| < L, L−m number of spherical harmonic coefficients of
order m and m number of coefficients of order m− L contribute in
Am(θt). This is depicted for m = 1 and m = 2.

contains the contribution of spherical harmonic coefficients of or-
ders m and m − L. As an example, this is depicted in Fig. 1 that
shows the graphical representation of the spectral domain of a sig-
nal band-limited at L and the components contribute in Am(θt) for
m = 1 and m = 2. For each m ≥ 0, there are L − m number
of coefficients of order m and m number of coefficients of order
m − L, therefore the total number of coefficients to be recovered
from Am(θt) for each m is always L. Since we have Am(θt) for
each θt, t =∈ [0, L − 1], L number of spherical harmonic coeffi-
cients can be recovered from Am(θt) by setting up a linear system.

Define a vector fm for m ≥ 0 containing spherical harmonic
coefficients of orders m and m− L given by

fm =
[
(f)mm, (f)mm+1, . . . , (f)

m
L−1, (f)

m−L
|m−L|,

(f)m−L
|m−L|+1, . . . , (f)

m−L
L−1

]T
, (9)

and a vector am containing Am(θt) for each θt given by

am =
1

L

[
Am(θ0), Am(θ1), . . . , Am(θL−1)

]T
. (10)

By defining a matrix Pm, for m ≥ 0, of size L × L with t-th row
given by

[Pm]t,: �
[
P̃m
m (θt), P̃

m
m+1(θt), . . . , P̃

m
L−1(θt), P̃

m−L
|m−L|(θt),

P̃m−L
|m−L|+1(θt), . . . , P̃

m−L
L−1 (θt)

]
, (11)

we can write (8), noting (6), as
Pmfm = am, m ≥ 0. (12)

The solution of a system in (12) for each m yields the spherical
harmonic coefficients of order m and order m − L. Thus, we can
recover all of the spherical harmonic coefficients by solving a series
of systems of the form, given in (12), for all non-negative orders
0 ≤ m < L. We summarise the computation of proposed SHT of a
band-limited signal f ∈ HL sampled over minimal dimensionality
sampling scheme SL

L as a two step procedure:

1. Compute Am(θt), given in (7), for all 0 ≤ m < L by taking
L point DFT along longitude for each ring placed at each θt.

2. Solve (12) for each 0 ≤ m < L to obtain the spherical har-
monic coefficients (contained in a vector fm) of order m and
order m− L.

We solve (12) using least squares method in this work, which re-
quires the matrix Pm to be well-conditioned. We analyse the nu-
merical accuracy and computational complexity of the spherical har-
monic transform later in the paper.

Remark 1. This is due to the structure of spectral domain formed
by spherical harmonic coefficients that there are always L number of
coefficients contribute to Am(θt) in (8), which allows us to recover
these coefficients from a series of systems of the form, given in (12).

Remark 2. We also highlight that the proposed method to com-
pute SHT can only be used for odd band-limit L. When the band-
limit L is even, the columns of the matrix Pm are composed of
scaled associated Legendre functions P̃m

� (θt) of orders m = L
2

and
m−L = −L

2
and degrees L

2
≤ � < L−1 evaluated over the sample

points θt, t = 0, 1, . . . , L− 1. Since P̃−m
� (θt) = (−1)mP̃m

� (θt),
the matrix PL

2
becomes singular for even band-limit L, and there-

fore the spherical harmonic transform cannot be computed using the
proposed method.

3.3. Inverse Spherical Harmonic Transform

The inverse SHT yields the signal on the sphere over the proposed
minimal dimensionality sampling scheme SL

L from its spherical har-
monic coefficients. For the proposed sampling scheme, the inverse
SHT can be obtained using the formulation of the sampled signal
given in (5) by first computing Gm(θt) in (6) for each |m| < L.

3.4. Computation of Scaled Associated Legendre Functions

Both SHT and inverse SHT require the computation of scaled associ-
ated Legendre function P̃m(θt) for each θt and for all degrees � < L

and orders |m| < L. Since P̃m
� (θt) = (−1)mP̃−m

� (θt), we only
compute P̃m(θt) for non-negative orders 0 ≤ m < L. Since the en-
tries in the matrix m requires to compute P̃m

� (θt) for |m| ≤ � < L

and P̃m−L
� (θt) for |m − L| ≤ � < L, we adopt the three-term re-

cursion [14, 19], for the computation of scaled associated Legendre
functions, which grows with degree � and computes P̃m

� (θt) for all
|m| ≤ � < L − 1 for a given m. Furthermore, the recurrence rela-
tion that grows with degree � for a given m is also a suitable choice
for inverse SHT, where the computation of Gm(θt) in (6) requires
P̃m
� (θt) to be computed for each θt and for all degrees |m| ≤ � < L

for a given order m.

4. ANALYSIS OF PROPOSED SHT

4.1. Accuracy Analysis

We analyse the accuracy of the proposed SHT for minimal di-
mensionality regular grid sampling scheme SL

L, where we choose
equiangular placement of iso-latitude rings for simplicity, that is,

θt =
π(t+ 1)

L+ 1
, t = 0, 1, . . . , L− 1. (13)

A SHT for any sampling scheme is accurate if the SHT (or inverse
SHT) of a band-limited signal followed by the inverse SHT (or SHT)
yields the same band-limited signal. In order to evaluate the numeri-
cal accuracy of the proposed SHT, we generate a complex valued test
signal fT over the proposed sampling grid SL

L, where the real and
complex components of the value at each sample are chosen from a
uniform distribution on the interval [−1, 1]. We apply the SHT fol-
lowed by the inverse SHT on the signal, to obtain the reconstructed
signal fR. We repeat this experiment 20 times and obtain the aver-
age values for the maximum and mean reconstruction errors, given
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Fig. 2: (a) The reconstruction errors, Emax and Emean, for the proposed SHT and the least squares based computation for odd band-limits in the
range 2 ≤ L ≤ 23. (b) The condition number as log10 κm, of the matrix Pm for 0 ≤ m < L and odd band-limits in the range 2 ≤ L ≤ 23.
The condition number κm is maximum for m = L+1

2
and m = L−1

2
for the band-limit L as indicated by a dashed line.

by

Emax � max |fT(θt, φp)− fR(θt, φp)|, 0 ≤ t, p < L (14)

Emean � 1

L2

L−1∑
t=0

L−1∑
p=0

|fT(θt, φp)− fR(θt, φp)|. (15)

Since a least squares method can also be employed to compute SHT
by setting up a linear system that determines L2 number of spherical
harmonic coefficients from L2 samples, we also use least squares
approach to compute SHT in our experiments and record Emax and
Emean. The reconstruction errors for the proposed SHT and the least
squares based computation of SHT are plotted in Fig. 2(a) for odd
band-limits in the range 2 ≤ L ≤ 23, where it is evident that the
proposed method to compute SHT method is more accurate than the
least squares based SHT. It can also be observed that both the max-
imum error Emax and the mean error Emean, for the proposed SHT,
grows with the band-limit L, which is due to the reason that the ma-
trices Pm for 0 ≤ m < L does not remain well-conditioned for
large odd band-limit L. The condition number (ratio of the largest
eigenvalue to the smallest eigenvalue), denoted by κm, of the matrix
Pm for 0 ≤ m < L and odd band-limits in the range 2 ≤ L ≤ 23
is plotted in Fig. 2(b), which illustrates that the condition number
κm increases with the band-limit L for a given m. It can also be
noted that the condition number κm is maximum for m = L+1

2
and

m = L−1
2

for the band-limit L. The matrix Pm, composed of scaled
associated Legendre functions of order m and order m−L, becomes
ill-conditioned as the associated Legendre functions of different or-
ders are not orthogonal.

Since the SHT becomes inaccurate for large band-limits, the pro-
posed sampling scheme is not suitable for geophysical or cosmolog-
ical applications [20], where the band-limit L of the signal is of the
order 102 – 104. Since the maximum error Emax is on the order
of 10−10 and 10−5 for the band-limits L = 11 and L = 21 re-
spectively, the proposed SHT is useful in the dMRI application [9],
where the band-limit is of the order 10–20. We also highlight that
the matrix Pm also depends on the samples along latitude, which are
placed with equiangular spacing in this work. The consideration of
alternative choices for the placement of samples along latitude and
the optimisation of placement of samples, such that condition num-
ber κm of the matrix Pm for each 0 ≤ m < L is improved, remains

a subject of future work.

4.2. Computational Complexity Analysis

We discuss the computational complexity of SHT and inverse
SHT. For the computation of proposed SHT, the fast Fourier trans-
form (FFT) can be used to compute Am(θt) for all 0 ≤ m < L
and all θt, with computational complexity O(L2 log2 L). Next, the
entries of the matrix Pm of size L × L are computed recursively
in O(L2) time for each m. Finally, we determine the spherical
harmonic coefficients contained in a vector fm by solving the linear
system in (12) with complexity O(L3) for each m. Since this step
needs to be repeated for each 0 ≤ m < L, the overall asymp-
totic complexity of the proposed SHT scales as O(L4), which is
similar to the complexity of the spherical harmonic transform for
the sampling scheme that requires minimum number of samples on
iso-latitude (irregular) grid [14]. The inverse SHT is formulated in
(5) by exploiting the iso-latitude structure of the sampling scheme
and using the separation of variables, that allows us to compute the
summation of O(L) over the L2 samples with complexity O(L3),
which is similar to the complexity of the transforms that exist in
literature for different sampling schemes on the sphere.

5. CONCLUSIONS

In this paper, a method has been proposed to compute spherical har-
monic transform (SHT) of a signal band-limited at L from its L2

number of samples taken over a regular grid composed of L iso-
latitude rings of samples with only L samples in each ring along
longitude. The proposed method requires minimum number of sam-
ples for the accurate computation of SHT as the signal band-limited
at L is represented by L2 degrees of freedom in the spectral do-
main. In comparison to the existing regular grid sampling schemes
on the sphere that require 2L − 1 samples along longitude in each
iso-latitude ring to avoid aliasing errors, we have considered L sam-
ples in each iso-latitude ring and shown that the aliasing errors can
be avoided by exploiting the structure of the spectral domain. We
have also analysed the numerical accuracy and the computational
complexity of the proposed SHT, where we have shown that the
proposed method to compute SHT is more accurate than the least
squares based SHT.
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