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Abstract—Spherical harmonics serve as basis functions on the
unit sphere and spherical harmonic transform is required in
analysis and processing of signals in the spectral domain. We
investigate the possibility of parallel computation of spherical
harmonic transform using Compute Unified Device Architec-
ture (CUDA) with no communication between parallel kernels.
We identify the parallel components in the widely used spherical
harmonic transform method proposed by Driscoll and Healy.
We provide the implementation details and compare the com-
putational complexity with the sequential algorithm. For a given
bandlimited signal with maximum spherical harmonics degree L,
using the O(L) number of parallel processing kernels, we present
that the spherical harmonic coefficients can be calculated in
O(Llog2L) time as compared to O(L2log2L). For corroboration,
we provide the simulation results using CUDA which indicate the
reduction in computational complexity

I. INTRODUCTION

There has been growing interest in developing and extending

the signal processing techniques to the non-Euclidean spaces

such as unit sphere, as it has direct applications in various

branches of physical sciences and engineering, such as ge-

ology [1], cosmology [2], computer graphics [3], medical

imaging [4, 5] and wireless communication systems [6]. A

fundamental analogy is the existence of spherical harmonics

which corresponds to Fourier transform and serve as ba-

sis functions for signals on the unit sphere. The spherical

harmonic transform is a neceassary step towards frequency

analysis on the sphere. However, the transform lacks a fast

algorithm, as the computational complexity of the direct

computation using the definition is O(L3), where L denotes

the maximum spherical harmonic degree of a given signal.

Much research have been done to improve the computational

complexity, among which the most widely used efficient

algorithm is presented by Driscoll and Healy [7] that reduces

the overall complexity to O(L2log2L).

With the rapid advances in Graphics Processing Units

(GPUs) and its current easy access to perform computations,

parallel processing in hardware have been used to accelerate

many non-graphical area, including biology, cryptography and

other fields [8–10]. The large input data size and the high

maximum spherical harmonic degree required in practical

usage, makes it attractive to explore computing of the the

spherical harmonic transform in parallel. Compute Unified

Device Architecture (CUDA) is one of the most commonly

used parallel computational architectures developed by Nvidia,

which enables parallel computation on GPUs. Research work

has been done to parallelize and accelerate the spherical har-

monic transform. For example, Inda et al. [11] uses fast Cheby-

shev transform and bulk synchronous parallel model to make

the overall computational complexity reduce to 4.25L2

p log2L,

where p is the number of processors and is assumed as L.

However, there are many data transfers between different pro-

cessors, which makes it slower in practical implementation and

the alternate method with no communication between different

processors is given by [12] but it took the direct transform

using classical spherical harmonics into consideration rather

than the relatively efficient Driscoll and Healy algorithm.

In this work, we evaluate the parallel implementation of

Driscoll and Healy spherical harmonic transform algorithm [7]

which is widely used to calculate the spherical harmonic trans-

form for a given bandlimited signal. We provide the survey of

existing literature on efficient spherical harmonic transform

methods. We classify the independent sequential operations

in the existing method [7] and present the modified algorithm

which is suitable to run on the parallel architecture. For a given

badlimited signal with maximum spherical harmonics degree

L, the modified algorithm uses the O(L) number of processors

and has a reduced computational complexity O(Llog2L) as

compared to O(L2log2L). We provide an implementation

procedure and present a comparison of theoretical computa-

tional complexities. We simulate the modified algorithm using

CUDA and show that the parallel algorithm performs better for

maximum spherical harmonic degree greater than for a specific

spherical harmonics degree, which is hardware architecture

dependent.

This paper is organized as follows. In section II, we give the

mathematical background, define the spherical harmonic trans-

form operation, survey the relevant research work and provide

a brief introduction to CUDA. We revisit the sequential algo-

rithm [7], present the modified parallel algorithm section III

and discuss computational complexity. The experimental result

is shown in Section IV, and Section V concludes the paper.

II. PROBLEM FORMULATION

In this section, we first present the mathematical background

related to signals defined on the unit sphere and spherical

harmonics. Later, we present spherical harmonic transform,
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followed by the literature review of fast spherical harmonics

and an introduction to Compute Unified Device Architec-

ture (CUDA) which will be used in this work for parallel

implementation.

A. Mathematical Background - Signals on the Unit Sphere

On the unit sphere, L2(S2) is the domain of square in-

tegrable functions f(x̂) = f(θ, φ) where (x̂) = (θ, φ) �
(sin θ cosφ, sin θ sinφ, cos θ)′ ∈ R

3 is the unit vector,

θ ∈ [0, π] denotes the co-latitude and φ ∈ [0, 2π) denotes

the longitude. θ is measured with respect to the positive z-

axis and φ is measured with respect to the positive x-axis in

the x− y plane. The inner product on L2(S2) is defined as

〈f, g〉 �
∫
S2

f(x̂)g(x̂)ds(x̂) (1)

where, f, g ∈ L2(S2), ds(x̂) = sin θdθdφ and the integration

is carried out over the unit sphere.

The spherical harmonics are orthonormal basis functions

and spherical harmonic coefficients serve as spectral domain

for signals defined on the unit sphere. The spherical harmonics,

Y m
� (θ, φ), for degree � ≥ 0 and order |m| ≤ � are defined

as [13]

Y m
� (θ, φ) = Nm

� Pm
� (cos θ)eimφ (2)

where i =
√−1 is the imaginary unit, Pm

� (.) are the

associated Legendre polynomials and are defined for m ≥ 0
as

Pm
� (x) =

(−1)m

2��!

√
(1− x2)m

d�+m

dx�+m
(x2 − 1)� (3)

P−m
� (x) = (−1)m

(�−m)!

(�+m)!
Pm
� (x) (4)

where |x| ≤ 1 and Nm
� is the normalization constant

Nm
� =

√
2�+ 1

4π

(�−m)!

(�+m)!
(5)

and is chosen such that the spherical harmonics form an

orthonormal set of basis functions for L2(S2) with inner

product defined as 〈Y m
� , Y m′

�′ 〉 = δ��′δmm′ . Thus, any function

f(θ, φ) on S
2 can be expressed using spherical harmonics as

basis functions

f(x̂) =
∞∑
�=0

�∑
m=−�

fm
� Y m

� (x̂) (6)

where fm
� is the spherical harmonic coefficient and can be

defined as an inner product of f(x̂) and Y m
� (x̂)

fm
� � 〈f, Y m

� 〉 =
∫
S2

f(x̂)Y m
� (x̂)ds(x̂) (7)

Also, the spherical harmonic coefficients of a real signal satisfy

fm
� = (−1)mf−m

� (8)

B. Spherical Harmonic Transform

The spherical harmonic transform of a given bandlimited

signal f(θ, φ) with maximum spherical harmonics degree L
is defined as the calculation of all the spherical harmonic

coefficients fm
� for all 0 ≤ � ≤ L and 0 ≤ |m| ≤ �. Each

spherical harmonic coefficient fm
� is obtained by projecting

the signal f(θ, φ) onto the spherical harmonics Y m
� (θ, φ) as

given in (7). Numerically, the integration involved in spherical

harmonic transform over the whole unit sphere is carried

out as summation over the number of sample points on the

sphere. Equal area sampling on the unit sphere results in the

number of points on the sphere which are equidistant from

each other [14]. The drawback of this type of sampling is

that we will not have an independent control over latitude θ
and longitude φ. We can have uniform and equiangular grid

sampling of a signal on the unit sphere over the latitude and

longitude, which keeps the independence between θ and φ for

fix value of θ, but the number of samples are denser near

the poles. Since, we evaluate the integration as summation,

therefore, there must be a weighting factor which depends on

θ and normalizes the effect of dense sampling. We present the

result in [7] (Theorem 3) that relates the number of sample

points needed to accurately determine the spherical harmonic

coefficients of the bandlimited signal.

Theorem 1: If f(θ, φ) denotes the bandlimited signal on the

unit sphere with maximum spherical harmonics degree L, we

only need a equiangular grid 2b× 2b samples over θ ∈ [0, π]
and φ ∈ [0, 2π) on the sphere to determine all of the spherical

harmonic coefficients fm
� of degree 0 ≤ � ≤ L and all orders

−� ≤ m ≤ �, i.e.,

fm
� =

√
2π

2b

2b−1∑
j=0

2b−1∑
k=0

ajf(θj , φk)Y m
� (θj , φk) (9)

where b = 2n, n = �log2 2L	 and the grid is defined for

θj = πj/2b and φk = πk/b. aj is the normalization factor to

compensate the effect of denser sampling as we move towards

poles (θ = 0, π) from equator (θ = π/2) and is dependent on

θj = πj/2b

aj =
2
√
2

2b
sin

(
πj

2b

) b−1∑
q=0

1

2q + 1
sin

(
[2q + 1]

πj

2b

)
, (10)

j = 0, . . . , 2b− 1

We discuss fast algorithms for computing spherical harmonic

transform of a bandlimited signal in the next subsection.

C. Relevant Research Work

The spherical harmonic transform lacks a fast transform

algorithm. The computational complexity of the direct com-

putation of the transform algorithm is O(L3) [15]. Much

research has been done to search for a fast and stable transform

algorithm. In this subsection, we survey and compare some

algorithms for the fast spherical harmonic transform.

Orszag [16] has described a fast evaluation scheme based

on the low-order WKB approximation for Sturm-Liouville



eigenfunction transforms including the associated Legendre

transform. His algorithm enables the computational complex-

ity O(L2logL) for m = 0. However, for higher spherical

harmonics order m, although his scheme is applicable, it is

unlikely to be effective in both the precision and computational

time [17]. Mohlenkamp [18] proposed a wavelet approach

method which attains fast transform algorithms run in time

O(L5/2logL) and O(L2log2L).
Several researchers accelerate the spherical harmonic trans-

form through the improvement of associated Legendre func-

tion. Alpert and Rokhlin [19] showed that the Chebyshev

polynomial expansion can transform into associated Legendre

polynomial expansion within O(L2) computation. Beylkin et

al. [20] showed the same result using a wavelet approach. The

L degree Chebyshev polynomial expansion can be evaluated

in time O(LlogL) using FFT. As L degree spherical harmonic

transform requires L different Legendre transform, the overall

computational complexity of spherical harmonic transform to

O(L2logL). However, their approaches are based on the sim-

ilarity of both the Legendre polynomials and the Chebyshev

polynomials, so the computation will be slower of larger m.

Apart from the methods mentioned above, Driscoll and Healy

presented the precise, relatively efficient and most widely

used spherical harmonic transform algorithm with complexity

O(L2log2L), which takes into account the power of FFT and

recurrence relation of Legendre polynomials. We provide the

details of this algorithm in the next section.

In this work, we extend the method proposed presented by

Driscoll and Heally to calculate the spherical harmonic trans-

form of a bandlimited signal. We identify the components and

independent elements of the method that can be implemented

in parallel and present the modified algorithm so that the

overall computational complexity can be reduced by running

these identified parts in parallel. We use the Compute Unified

Device Architecture (CUDA) to run the modified algorithm

in parallel. The brief introduction of CUDA is given in next

subsection.

D. CUDA and its Toolbox in Matlab - Jacket

CUDA is a parallel architecture developed by Nvidia and

it enables parallel computation on GPUs. Because originally

GPUs are designed to devote to data processing rather than

data caching and flow control, the main difference between

CPUs and GPUs is that GPUs have a parallel throughput

architecture that performs relatively independent computations

on large quantities of threads on different kernels in parallel

and therefore are very suitable for computations of large size.

We use Matlab to simulate the computational time costs

of parallel and sequential spherical harmonic transform algo-

rithms. Jacket, developed by AccelerEyes, provides thousands

of Matlab functions to run on GPUs and enables implementing

parallel computation based on CUDA to run on Matlab.

It accomplishes this by automatically wrapping the Matlab

language into a GPU compatible form. By simply casting

input data to Jacket’s GPU data structure, MATLAB functions

are transformed into GPU functions. Jacket also preserves

the interpretive nature of the Matlab language by providing

realtime, transparent access to the GPU compiler. It has been

used by Tubbs and Tsai to accelerate lattice Boltzmann model

for shallow water flow and mass transport [21].

III. SPHERICAL HARMONIC TRANSFORM IN PARALLEL

COMPUTATION

In this section, we revisit the most commonly used algo-

rithm to calculate the spherical harmonic transform, proposed

by Driscoll and Healy [7]. We then present the modified

algorithm suitable to run on parallel architecture. Finally, we

discuss the parallel implementation of their algorithm and

compare the computational complexity.

A. Driscoll and Healy Algorithm

Driscoll and Healy used the classical definition of spher-

ical harmonics (2) and exploited the power of FFT and

the recurrence relation of associated Legendre polynomials

to calculate the spherical harmonic transform for the ban-

dlimited signal more efficiently. The algorithm employs the

fast Fourier transform (FFT) to determine the contribution of

signal component along φ component and uses the recurrence

relation of associated Legendre transform to calculate the

signal component which varies with θ.

The equiangular grid sampling on the sphere to separate

the projection of signal on spherical harmonics along θ and φ.

Using the spherical harmonics definition in (2), the transform

representation in (9) can be expanded as

fm
� = (−1)mNm

�

√
2π

2b

2b−1∑
j=0

aj (11)

× ( 2b−1∑
k=0

f(θj , φk)e
−imφk

)
Pm
� (cos θj)

we see that the inner sum is independent of θ component and is

equivalent to the 2b length Fourier transform with respect to φ.

By taking the FFT along φk for each θj (each row), f(θj , φk)
is transformed into f(θj ,m) and the the inner summation

become a function of θj and m and fm
� in (11) can be written

as

fm
� = (−1)mNm

�

√
2π

2b

2b−1∑
j=0

ajf(θj ,m)Pm
� (cos θj) (12)

and the problem is reduced to apply Legendre transform along

θ to determine the spherical harmonic coefficients.

B. Parallel Implementation

The main idea of the above mentioned algorithm is to deal

with the signal components along latitude θ and longitude φ
separately by taking advantage of their different structure in

(11). The FFT is used to determine the component along φ
and the associated Legendre transform is applied to calculate

the component along θ, which is efficiently computed by

projecting the signal onto cosine basis using discrete cosine



Fig. 1. (a)f(θj , φk) is transformed into (b) f(θj ,m) by taking FFT along
φk for each θj . The Legendre transform is then applied along θj for each
fixed m to compute the spherical harmonic coefficients.

transform (DCT) which gives the spherical harmonic coef-

ficients fm
m as Pm

m (cos θ) is a multiple of(cos θ)m [7]. The

recurrence relation is then employed to determine the spherical

harmonic coefficients fm
� for m < � ≤ L. The pictorial view

of this algorithm is given in Fig. 1.

For the ease of parallel implementation, we divide the

algorithm into two parts. First, we take the FFT for the

longitude φ part of the given bandlimited signal f(θj , φk)
with size 2b× 2b to make the result f(θj ,m) suitable for the

usage of the recurrence algorithm in the Legendre transform.

We identify that we can distribute the 2b rows of the signal

matrix of size 2b × 2b, which varies with the longitude φ in

different kernels of the GPU.

Now, we have a signal matrix f(θj ,m) which is a function

of spherical harmonics order m and samples across latitude θj ,

where the spherical harmonics order m is of the order L. So,

we need to employ the DCT and then the recurrence relation

on each row of the signal matrix for each fixed m. Instead of

running the same algorithm O(L) times sequentially, we can

distribute f(θj ,m) for different spherical harmonics orders m
into each kernel of GPU and use the recurrence calculations of

different data with the same algorithm in each kernel. Again,

we need O(L) number of processors as compared to O(L2)
number of processors which are needed in the algorithm given

by [11]. The algorithm of the above process is presented in

Algorithm 1. We provide the analysis of improvement in the

computational complexity in the next subsection.

C. Computational Complexity

For a given bandlimited signal with maximum spherical

harmonic degree L, we need the 2b × 2b number of samples

where b is of the order O(L) as defined in Theorem 1. First,

we consider the computational complexity of the sequential

Driscoll and Healy algorithm to calculate the spherical har-

monic coefficients, which is a two step process and composed

of FFT followed by the Legendre transform as discussed

in previous section. The computational time to determine

Algorithm 1 Parallel Algorithm of input f(θj , φk)

distribute 2b rows, varying along the longitude φk in differ-

ent kernel of GPU

for EACH kernel of GPU do
do FFT for the distributed row

end for
{We can get f(θj ,m) after this}
distribute 2b columns, each with a fixed m, in different

kernel of GPU

for EACH kernel of GPU do
do DCT for the distributed column

generate fm
� for all m ≤ � ≤ L using fast Legendre

transform of given in [7] for this fix m
end for

Legendre transform is O(L2log2L) which is dominant over

the time O(L2logL) to calculate the FFT, thus, the overall

complexity of the sequential algorithm is O(L2log2L) [7].

In our modified algorithm, we proposed to parallelize both

the FFT and Legendre transform. Using the O(L) number of

processors, the complexity to compute FFT along φ direction

reduces to O(LlogL). Followed by FFT, we determine the

Legendre transform as given in (12) for each order m in

parallel to determine the spherical harmonic coefficients fm
�

for all � ≤ m ≤ L. Since the m is of the order L, we

again need O(L) number of processors and the time taken

by each processor would be O(Llog2L) which is the overall

computational complexity of the proposed algorithm.

IV. SIMULATION RESULTS AND DISCUSSION

We compare the time complexity of conventional sequential

algorithm [7] and proposed parallel algorithm to determine

spherical harmonic transform for a given bandlimited signal.

The architecture used for the experiments is a dual core

with Intel Core i5 M 480 2.67 GHz, with a Nvidia GeForce

GTX s480 with 1536 MB GDDR5 (480 cores in the GPU).

The algorithms were run under Windows 7 64bits, MATLAB

R2011a, Jacket 1.8 and CUDA 4.0. We expect to obtain the

similar comparative results on other GPU’s with a difference

of shift of intersection point between performance curves

of CPU and GPU. The signal under consideration is the

topographic map of Mars with maximum spherical harmonic

degree 791. We simulate the computational complexity for

different bandwidths. For each bandwidth, we first truncate

the signal spectrum up to that degree and determine the

signal using spherical harmonics synthesis equation (6). Since

there is a symmetry between fm
� and f−m

� given in (8),

we only compute the spherical harmonic coefficients fm
� for

0 ≤ m ≤ l.
Fig. 2 shows the computational time to compute all spherical

harmonic coefficients fm
� with 0 ≤ � ≤ L, 0 ≤ m ≤ l

for a bandlimited signal with maximum spherical harmonic

degree L. We present the simulation result for maximum

spherical harmonics degree of 250. It is evident that the

proposed parallel implementation of the algorithm using GPU
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Fig. 2. Comparison of computational time taken by CPU and GPU to
calculate the spherical harmonic coefficients fm

� for 0 ≤ � ≤ L, � ≤ m ≤ �
for a given bandlimited signal with maximum spherical harmonic degree.

performs efficiently than the sequential algorithm running

on CPU for degree L > 190 and the trend is similar to

theoretical asymptotic computational complexity. If we an-

alyze the computational complexities of two steps involved

in computations separately as shown in Fig. 3, we see that

GPU performs better in computing FFT and DCT for L > 35,

but inefficient in computing the Legendre transform for lower

spherical harmonics degree which contributes significantly in

the overall complexity. This is due to the fact that the time

taken by GPU to perform one mathematical operation is more

than the time taken by CPU, but the GPU has a power that

it can run multiple instances in parallel and there are more

number of operations O(Llog2L) than the number of parallel

instances L because of inherent recursion involved in Legendre

transform.

The proposed parallel algorithm, although, asymptotically

better, calculates the spherical harmonic coefficients more

efficiently than the sequential algorithm for higher maximum

spherical harmonic degree. This is because of the recursion

involved in the algorithm that we can not further decouple the

computation of fixed order different degree spherical harmonic

coefficients.

V. CONCLUSIONS AND FUTURE WORKS

We considered and analyzed the parallel implementation of

Driscoll and Healy spherical harmonic transform algorithm

using CUDA. We extracted the independent operations in the

existing method, presented the modified algorithm to calculate

the spherical harmonic coefficients using parallel architec-

ture for a given bandlimited signal with maximum spherical

harmonics degree L and provided parallel implementation

details using O(L) number of processors. The theoretical

analysis shows that the proposed parallel algorithm reduces

the computational complexity to O(Llog2L) as compared

to the sequential algorithm complexity O(L2log2L). This
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Fig. 3. Computational time taken by CPU and GPU to determine the
Legendre transform and a combination of FFT and DCT.

reduction in computational complexity has been also shown

in simulation using CUDA.

The inherent coupling in the recursive definition of the

associated Legendre polynomials puts the limitation on fur-

ther parallelization of the algorithm. Parallel computation is

quite suitable for the large data input and the non-recursive

algorithm that determines each spherical harmonic coefficient

independently. The future research direction is to explore and

develop the suitable parallel algorithm to determine spherical

harmonic transform that eradicates the recursion in Legendre

transform so that each spherical harmonic coefficient can be

computed independently and efficiently. In this way, we will

need O(L2) number of processors and we expect that the

computational complexity can be considerably reduced.
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