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Abstract—In this work, we carry out the comparative analysis
of the geometrical properties of the sampling schemes on the
sphere. Among the sampling schemes devised on the sphere, we
focus on equiangular sampling, Gauss-Legendre (GL) quadra-
ture based sampling, optimal-dimensionality sampling, sampling
points of extremal systems and spherical design as these schemes
support the accurate representation of the band-limited signals.
We analyse sampling efficiency, minimum geodesic distance,
mesh norm, mesh ratio and Riesz s-energy for these sampling
schemes. Since these sampling schemes require different number
of samples for the accurate representation of a band-limited
signal and therefore have different sampling efficiency, we for-
mulate these geometrical properties to take into account the
sampling efficiency for a meaningful comparison. We illustrate
that the optimal dimensionality, extremal system and spherical
design sampling schemes exhibit desirable geometrical properties.
Among these schemes, extremal system sampling scheme has
superior geometrical properties. However, the accuracy of the
representation of a band-limited signal degrades with the increase
in band-limit for extremal system sampling scheme, due to which
we propose to use extremal point sampling scheme for small
band-limits. We also propose to use optimal dimensional sampling
scheme for moderate to large band-limits as it exhibits desirable
geometrical properties and has the capability to accurately
represent the band-limited signal.

Index Terms—Sampling, spherical harmonics, spherical har-
monic transform, band-limited signals, 2-sphere (unit sphere).

I. INTRODUCTION

Design of sampling schemes on the sphere finds applications

in a variety of fields of science and engineering, which include,

but not limited to, geodesy [1], computer graphics [2], cosmol-

ogy [3], astrophysics [4], medical imaging [5], acoustics [6],

and wireless communication [7]. For signals on the sphere,

harmonic domain is enabled by the well known spherical

harmonic transform (SHT) [8]. The ability to accurately and

efficiently compute SHT of the signal from its samples taken

over sphere is of significant importance for harmonic analysis

and signal representation (or reconstruction) in these appli-

cations. It is of fundamental importance that the sampling

scheme requires less number of samples for the accurate
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computation of SHT [9]. Furthermore, it is also desirable that

the samples on the sphere are uniformly distributed and/or well

separated on the sphere [10]–[12].

In the literature, many sampling schemes on the sphere have

been devised that permit accurate computation of SHT of a

band-limited signal [9]–[11], [11], [13]–[18]. Among these

sampling schemes, equiangular sampling schemes [13], [15],

[16] and Gauss-Legendre (GL) quadrature based sampling

allow theoretically exact computation of SHT. However, these

schemes exhibit poor geometrical properties, as we show later

in the paper, primarily, due to the dense sampling near the

poles. There are other sampling schemes which rely on the

quadrature rules on the sphere in order to compute SHT [10],

[11]. These schemes have well separated points and therefore

the sampling points exhibit superior geometrical properties.

However, the computation of SHT for these schemes is

computationally intensive and the accuracy of SHT of the

band-limited signal degrades with increase in the band-limit of

the signal. Geometric properties such as sampling efficiency,

minimum geodesic distance, mesh norm, mesh ratio and Riesz

s-energy of the set of sampling points give an insight of the

nature of distribution of points on the sphere [10]–[12], [19],

[20]. These geometrical properties also enable us to analyse

uniform distribution, dense sampling, regularity and flexibility

in the samples placement for a given set of sampling points.

The geometrical properties of different sampling schemes on

the sphere have been analysed [10], [11] and bounds have been

derived on geometrical properties [12], [19], [20]. To the best

of our knowledge, the comparative analysis of the geometrical

properties of sampling schemes has not been carried out in the

literature.

In this paper, we compare the geometrical properties: sam-

pling efficiency, mesh norm, mesh ratio, minimum geodesic

distance and Riesz s-energy for the sampling schemes: effi-

cient equiangular sampling [15], optimal dimensionality sam-

pling [9], GL quadrature based sampling [21], sampling points

of extremal systems [10] and spherical designs [11]. Since

the sampling schemes under consideration require different

number of samples for accurate representation of a band-

limited signal, we incorporate the sampling efficiency, defined

as the degrees of freedom in harmonic space to represent a

band-limited signal to the number of samples required on
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the sphere to accurately represent a band-limited signal, into

the formulation of the geometrical properties for consistent

comparison of the properties of different sampling schemes.

Our analysis show that extremal system of points exhibits

superior geometrical properties. We also show that spherical

designs and optimal dimensionality schemes also have desir-

able geometrical properties. Since the geometric properties

depend on the distribution of points, their analysis give us

an insight into the structure of the sampling schemes being

considered in the paper.

We structure the remainder of the paper as follows. The

necessary mathematical background and notation adopted in

this work are presented in Section II. In Section III, we briefly

review the sampling schemes under consideration. In section

IV, we formulate the geometrical properties and carry out the

comparative analysis. Finally, concluding remarks are made in

Section V.

II. MATHEMATICAL PRELIMINARIES

In this section, we present the necessary mathematical

background for signals defined on the sphere.

A. Signals on the Sphere

We consider square integrable complex functions of

the form g(x̂) defined on the unit sphere, denoted by

S
2 � {x̂ ∈ R

3 : |x̂| = 1}. Here x̂ = x̂(θ, φ) =
(sin θ cosφ, cos θ cosφ, cos θ) ∈ S

2 ⊂ R
3 denotes a point

on the sphere, where θ ∈ [0, π] denotes the co-latitude and

φ ∈ [0, 2π) is the longitude. The inner product of the two

functions g(θ, φ) and h(θ, φ) defined on S
2 is given by [8]

〈g, h〉 �
∫
S2

g(θ, φ)h(θ, φ) sin θ dθ dφ, (1)

where (·) represents the complex conjugate operation and

sin θ dθ dφ is the differential area element on the sphere. The

inner product given in (1) induces a norm ‖g‖ � 〈g, g〉1/2.

We refer to the functions with finite induced norms as signals

on the sphere S
2 [8].

B. Spherical Harmonics

Spherical harmonics [8], Y m
� (θ, φ) of all integer degrees

� ≥ 0 and integer orders m ≤ |�| form a complete orthonormal

set of basis functions, and therefore we can expand as

g(θ, φ) =

∞∑
�=0

�∑
m=−�

(g)m� Y m
� (θ, φ), (2)

where (g)m� is the spherical harmonic coefficient of degree �
and order m and is given by the spherical harmonic transform

(SHT) defined as

(g)m� �
〈
g, Y m

�

〉
=

∫
S2

g(θ, φ)Y m
� (θ, φ) sin θ dθ dφ, (3)

The signal g(θ, φ) is considered as band-limited at degree

L if (g)m� = 0 for all � ≥ L. For the representation of a

band-limited signal using (2), the summation over degree �
is truncated at L − 1. We note that the set of bandlimited

signals forms an L2 dimensional subspace of L2(S2), which

we denote by HL.

III. SAMPLING SCHEMES ON THE SPHERE

In this work, we focus on the recently developed sampling

schemes on the sphere which permit accurate computation of

SHT of a bandlimited signal from its samples. We first review

these sampling schemes before analysing their geometrical

properties in the next section. For a signal band-limited at

L, we use N to denote the spatial dimensionality, that is the

number of samples, required by each of the sampling scheme

to compute SHT or equivalently represent the band-limited

signal accurately.

A. Guass-Legendre Quadrature based Sampling

This sampling scheme is devised on the basis of the well

known Gauss-Legendre quadrature on the sphere [21] and

is therefore referred to as Gauss-Legendre (GL) sampling

scheme. The GL quadrature is used to construct a sampling

theorem such that the SHT of a band-limited signal can be

exactly computed from its samples. For a signal band-limited

at L, this scheme takes samples on L iso-latitude rings with

2L−1 equiangular placed samples along longitude φ, resulting

in a total requirement of NGL = L(2L − 1) samples, for the

exact computation of SHT. The location of the rings along co-

latitude θ is given by the roots of the Legendre polynomials

of order L as dictated by the Gauss-Legendre quadrature to

discretize the integral given in (3). The variants of the Gauss-

Legendre quadrature scheme have also been proposed (e.g.,

[22]) that require less number of samples. However, these

sampling schemes do not support exact or sufficiently accurate

computation of SHT. As an example, the samples on the sphere

for GL sampling scheme are shown in Fig.1(a) for L = 10.

B. Equiangular Sampling

For the exact computation of SHT of a signal band-limited

at L, an equiangular scheme was first proposed in [13] which

requires 2L iso-latitude equiangular spaced rings of samples

with 2L equiangular samples along longitude φ. Recently,

an equiangular scheme has been developed [15] that takes

samples on an equiangular grid defined by the following

sample positions:

θt =
π(2t+ 1)

(2L− 1)
, t = 0, 1, 2, ..., L− 1, (4)

and

φk =
2πk)

(2L− 1)
, k = 0, 1, 2, ..., 2L− 2, (5)

that is, it requires L−1 iso-latitude rings with 2L−1 samples

along longitude in each ring and a sample at one of the

poles (θ = 0 or θ = π) and therefore reduces the number

of equiangular samples required for the computation of SHT

by a factor of two. In total, the number of samples required

by equiangular scheme are NE = (L − 1)(2L − 1) + 1, that

is, 3(L− 1) fewer samples in comparison to the GL scheme.

As an example, the samples on the sphere for equiangular

sampling scheme are shown in Fig.1(b) for L = 10.



(a) Gauss-Legendre sampling (b) Equiangular sampling (c) Optimal-dimensionality sampling

(d) Spherical design sampling (e) Samples of extremal points

Fig. 1: The sampling schemes on the sphere, (a) Guass-Legendre quadrature based sampling, (b) equiangular sampling,

(c) optimal dimensionality sampling scheme, (d) spherical desings and (e) extremal points, presented in Section III for the

representation of the signal band-limited at L = 10.

C. Optimal-Dimensionality Sampling Scheme

The spatial dimensionality of both GL and equiangular

sampling schemes is twice the optimal spatial dimensional-

ity given by the dimensionality of HL, that is, the degree

of freedom in harmonic space to represent a signal band-

limited at spherical harmonic degree L. Recently, an optimal-

dimensionality sampling scheme [9] has been proposed that

requires L2 points to compute the accurate SHT for signals

band-limited at L and therefore the scheme has optimal

spatial dimensionality. Although the SHT associated with the

optimal dimensionality sampling is not theoretically exact, the

accuracy of the SHT has been demonstrated for band-limits up

to L = 2048 with errors on the order of numerical precision.

Like GL and equiangular sampling schemes, it is also an iso-

latitude sampling scheme of the sphere and takes L rings

along each latitude. Let θk, k = 0, 1, · · · , L − 1 denotes the

sample position of the ring along latitude, where these sample

locations are chosen such that the accuracy of the computation

of SHT is maximized. For a ring placed at θk, the samples in

the ring along φ are given by

φk
n =

2πn

2k + 1
, n = 0, 1, . . . , 2k (6)

that is 2k + 1 equiangular samples. In total, the number of

samples required by optimal-dimensionality sampling scheme

is

NO =

L−1∑
k=0

(2k + 1) = L2. (7)

As an example, the samples on the sphere for optimal dimen-

sionality sampling scheme are shown in Fig.1(c) for L = 10.

D. Spherical Designs

A set of points on the sphere is called a spherical design

such that the integral of the signal of maximum spherical

polynomial degree t or maximum band-limit t + 1 over the

sphere can be evaluated as an average value over the samples

of the signal [11]. Since the spherical design is parameterized

by t, the set of points is often referred to as spherical t-design.

Spherical t-designs, by definition, enable exact evaluation of

the integral of polynomial of maximum degree t. For the



computation of SHT using the points given by spherical

design, we first note that the SHT requires to evaluate the

integral given in (3), where the integrand is the product of a

signal band-limited at L and spherical harmonic Y m
� (θ, φ).

Since we require to evaluate the integral for all � < L,

|m| ≤ �, the maximum polynomial degree of integrand is

2L − 2. Consequently, we require (2L − 2)-spherical design

for the sampling of band-limited signal such that the SHT can

be computed accurately. In our work, we choose the spherical

t-designs1 [11] which takes t2/2+ t+O(1) samples. We use

NSD to denote the number of samples of (2L − 2)-spherical

design. Due to high computational cost associated with the

computation of spherical design, we note that the spherical

t-designs have been proposed for maximum t = 180 and

therefore the SHT can be computed for band-limits up to

L = 91. As an example, the samples of the (2L−2)-spherical

design are shown in Fig.1(d) for L = 10.

E. Extremal Points on the Sphere

For a given band-limit L, the extremal (maximum de-

terminant) systems are sets of L2 extremal points on the

sphere which, by definition, maximize the determinant of a

basis matrix (see [10] for details). For spherical harmonic

basis, extremal points are supported by interpolatory cubature

rule with positive weights and therefore enables the accurate

computation of SHT of a signal band-limited at L using

NES = L2 sampling points of extremal system. We analyse

the accuracy of SHT computation later in the paper. The

sampling scheme based on the points2 of the extremal system

will be referred to as extremal system sampling scheme. As

an example, the extremal points on the sphere are shown in

Fig.1(e) for L = 10.

IV. ANALYSIS OF GEOMETRICAL PROPERTIES

For each of the sampling scheme on the sphere presented in

previous section, we here analyse the geometrical properties

of the sampling scheme and review the accuracy and compu-

tational complexity of the SHT associated with each of the

sampling scheme.

A. Sampling Efficiency

The sampling efficiency, defined as a ratio of the dimension-

ality of the subspace formed by the band-limited signals, that is

the number of coefficients required to represent a band-limited

signal in the harmonic domain, to the number of samples re-

quired to accurately compute SHT, is the fundamental property

of any sampling scheme. For a band-limit L, we define the

sampling efficiency, denoted by EL, of any sampling scheme

as a ratio of the dimension of the subspace HL formed by the

band-limited signals to the number of samples, denoted by N ,

required to compute SHT of a band-limited signal f ∈ HL.

It is evident that the optimal dimensionality sampling and

1The spherical designs are available at http://web.maths.unsw.edu.au/∼rsw/
Sphere/EffSphDes/index.html.

2We use the the points of extremal systems publicly available at http://web.
maths.unsw.edu.au/∼rsw/Sphere/Extremal/New/extremal1.html.
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Fig. 2: Normalized minimum geodesic distance σn(S), given

in (10) for band-limits 10 ≤ L ≤ 50.

extremal points attain almost the twice (exactly as L → ∞)

of the sampling efficiency achieved by equiangular, GL and

spherical designs sampling schemes.

B. Minimum Geodesic Distance and Packing Radius

For a set of sampling points on the sphere, the minimum

geodesic distance is defined as the minimum distance between

any two points in the set. It is also defined as twice the packing

radius on the sphere. It is desirable to design a sampling

scheme on the sphere such that the minimum geodesic dis-

tance is maximized (well-known sphere packing problem). For

points of an extremal system for a band-limit L, the minimum

geodesic distance is lower bounded by π/2(L − 1) [19]. For

a set of sampling points on the sphere denoted by S, the

minimum geodesic distance is defined as

σ(S) � min
x̂, ŷ∈S

Δ(x̂, ŷ), (8)

where Δ(x̂, ŷ) denotes the geodesic (great circle or spherical)

distance between two points x̂(θx, φx) and ŷ(θy, φy) and is

given by

Δ(x̂, ŷ) = cos−1(x̂ · ŷ)
= cos−1

(
cos θx cos θy + sin θx sin θy cos(φx − φy)

)
.

(9)

Since the sampling schemes under consideration do not have

the same sampling efficiency, we need to incorporate sampling

efficiency in defining the minimum geodesic distance for a

meaningful comparison of different sampling schemes. We

define the normalized minimum geodesic distance as

σn(S) � 1

EL
σ(S) =

1

EL
min

x̂, ŷ∈S
Δ(x̂, ŷ). (10)

Analysis: For each of the sampling schemes presented in

Section III, we plot the normalized minimum geodesic σn(S)
for different band-limits 10 ≤ L ≤ 50 in Fig. 2, where it can

be observed that extremal system of points, spherical design
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Fig. 3: Mesh norm λ(S), given in (11), for band-limits 10 ≤
L ≤ 50 and different sampling schemes.

and optimal dimensionality, all have well separated points

on the sphere. The nomralized minimum geodesic distance

curves, obtained by using the points of equiangular and Gauss-

Legendre quadrature based sampling schemes, are well below

the lower bound values for all degrees 10 ≤ L ≤ 50. It is

because, these sampling schemes exhibit dense sampling near

the poles.

C. Mesh Norm

For a set S of points on the sphere, mesh norm is defined

as the largest geodesic distance from a point x̂ ∈ S
2 to the

nearest point in the set S. For a set S of sampling points of

the sampling scheme parameterized by L, we define the mesh

norm as

λ(S) � 1

EL
max
x̂∈S2

min
ŷ∈X

Δ(x̂, ŷ), (11)

where EL is the sampling efficiency of the sampling scheme

and Δ(x̂, ŷ) is given in (9). We note that the mesh norm is

also referred to as the covering radius as the spherical caps

of radius equal to mesh norm and centered at sampling points

cover the whole sphere. It is desirable to design a sampling

scheme that minimizes the mesh norm [10]. For points of

an extremal system for a band-limit L, Reimer [12] obtained

an upper bound on the mesh norm of any system of points

associated with positive weight cubature rule for a band-limit

L. The upper bound is λ(S) ≤ 2jo/(L−1) ≈ 4.8097/(L−1),
where jo is the smallest positive zero of the Bessel function Jo.

It is worth noting here that we have incorporated the sampling

efficiency in the formulation of mesh norm in (11). This is

due to the fact that the sampling schemes under consideration

require different number of samples for the representation

of band-limited signal and therefore have different sampling

efficiency.

Analysis: For each of the sampling schemes, we numer-

ically compute the mesh norm by 1) randomly taking the

M number of uniformly distributed number of points on the

sphere, 2) taking the minimum distance between the sampling
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Fig. 4: Mesh ratio Γ(S), given in (12), for band-limits 10 ≤
L ≤ 50 and different sampling schemes.

points and the randomly chosen points on the sphere and 3)

then obtaining the maximum over the minimum distances. We

choose M such that the numerically computed mesh norms by

taking M random points and 2M random points do not differ

more than 1%. We plot the mesh norm for different sampling

schemes in Fig. 3. It is evident that extremal system of points

has the smallest mesh norm. As compared to equiangular

and GL sampling schemes, spherical designs and optimal

dimensionality sampling schemes have smaller mesh norm.

D. Mesh Ratio

Mesh ratio is the ratio of the covering to the packing radius

of the identical spherical caps on the surface of a sphere. For

a set S of sampling points on the sphere, we define the mesh

ratio as

Γ(S) =
2λ(S)

σn(S)
> 1, (12)

where we have used normalized geodesic distance in the

formulation of mesh ratio as we also normalize the mesh norm

with the sampling efficiency. Since the mesh ratio serves as

a good measure of the quality of the uniform distribution of

points, the sampling schemes should have smaller mesh norm.

Analysis: In Fig. 4, we plot the mesh ratio for different

sampling schemes and different band-limits, where we observe

that the mesh ratio for equiangular and GL sampling schemes

increase with the band-limit, whereas the mesh ratio remains

(almost) constant with the increase in band-limit. It can also

be observed that the extremal system sampling scheme has the

smallest mesh ratio.

E. Riesz s-energy

The Riesz s-energy (s > 0) of a set S of points of the

sampling scheme on the unit sphere may be defined as [23]–

[25]

Ẽs =
∑

x̂,ŷ∈S x̂�=ŷ

EL

2
(
Δ(x̂, ŷ)

)s , (13)



where Δ(x̂, ŷ) is given in (9), EL is the sampling efficiency of

the sampling scheme and we have normalized the Riesz energy

measure by a factor of two as the distance for each distinct

pair of sampling points appears twice in the summation. We

also normalize with the sampling efficiency for a meaningful

comparison. We note that the s-energy serves as a measure

of the uniform distribution of points. Although this is not the

focus of this work, we note that the sampling schemes have

been proposed in the literature to determine sampling points

that minimize their s-energy [24]–[26]. Here, we are only

interested in analysing the s-energy for the sampling schemes

that permit accurate computation of SHT.

Analysis: We compare the Riesz s-energy measure for

different sampling schemes and different band-limits in Fig. 5

for s = 1 and Fig. 5 for s = 2. For s = 2, s-energy measure

is referred to as the potential energy [23]. It is evident that the

extremal system, spherical design and optimal dimensionality

sampling schemes have almost equal values of Riesz s-energy

for s = 1 and s = 2. The uniform geometrical distribution

of both these schemes is presented in Fig. 2, Fig. 3 and Fig. 4.

Equiangular and GL sampling schemes have same trend for

energy as spherical designs for s = 1. But, as s is increased,

s-energy for both equiangular and GL sampling points goes

away from the extremal system sampling scheme.

F. Discussion

Among the geometrical properties analysed for different

sampling schemes, sampling efficiency, mesh norm and Riesz

s-energy encapsulates the other properties and therefore serve

as the measures of the uniform distribution of sampling points.

Analysis of geometrical properties of the sampling scheme re-

veals that the mesh ratio and s-energy grow with the band-limit

for the equiangular and Gauss-Legendre sampling schemes

which is a consequence of the fact that these sampling schemes

require dense sampling at the poles. In contrast, the optimal di-

mensionality, spherical design and extremal systems sampling

schemes exhibit desired geometrical properties. Furthermore,

the optimal dimensionality and extremal system sampling

schemes have almost twice of the sampling efficiency attained

by equiangular, Gauss-Legendre and spherical design sampling

schemes. The mesh ratio achieved by optimal dimensionality

is a little higher than extremal system, yet, it is very small

compared to the equiangular schemes.

Sampling points of extremal systems have not been deter-

mined for large band-limits as the problem of finding these

points becomes ill-conditioned and computationally expensive

for large band-limits [10]. As mentioned earlier, extremal

systems sampling points have only been computed for band-

limits up to L = 192. As the problem becomes ill-conditioned

for large band-limits, the accuracy of the computation of SHT

degrades with the increase in the band-limit. To compare the

accuracy of computation of SHT of a band-limited signal

from its samples taken over the extremal system and optimal-

dimensionality sampling schemes, we conduct a numerical

experiment and compute the maximum absolute error between

the original spherical harmonic coefficients and reconstructed
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Fig. 5: Riesz energy Ẽs, given in (13), for s = 1, band-limits

10 ≤ L ≤ 50 and different sampling schemes.
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Fig. 6: Riesz energy Ẽs, given in (13), for s = 2, band-limits

10 ≤ L ≤ 50 and different sampling schemes.

spherical harmonic coefficients. In our experiment, 1) we

randomly generate the spherical harmonic coefficients (g)m�
of the band-limited signal g ∈ HL with real and imaginary

parts uniformly distributed in (−1, 1), 2) we obtain the signal

in the spatial domain over the samples of the respective

sampling scheme using spherical harmonic expansion given

in (2), 3) we compute the SHT using the samples of the

signal [9], [10]. We carry out this experiment for L = 16, 32
and 64 and obtain the maximum error on the order of

10−15, 10−14 and 10−14, and, 10−16, 10−15 and 10−15 for

extremal points sampling scheme and optimal-dimensionality

sampling scheme respectively, illustrating that the optimal-

dimensionality sampling scheme enables accurate computation

of SHT for the representation of band-limited signal for

large band-limits. Furthermore, the SHT associated with the

extremal system sampling scheme is based on least-squares

approach, and therefore the complexity to compute SHT of

the band-limited signal g ∈ HL is O(L6). In comparison,



the SHT for optimal dimensionality sampling scheme has the

complexity O(L3.37). Summarizing our analysis, we propose

that the extremal system sampling scheme is suitable for

applications [27], [28] where the signals have smaller band-

limits (L = 10 − 50) due to superior geometrical properties.

However, optimal dimensionality sampling scheme is better

suited for applications [29], [30] where the data-sets or signals

are supported by large band-limits (L = 1000− 2000).

V. CONCLUSIONS

We have carried the comparative analysis of the geometrical

properties of those sampling schemes that support the accurate

representation of band-limited signals on the sphere. These

schemes included equiangular sampling, Gauss-Legendre (GL)

quadrature based sampling, optimal-dimensionality sampling,

sampling points of extremal systems and spherical design.

We have focused on analysing sampling efficiency, minimum

geodesic distance, mesh norm, mesh ratio and Riesz s-energy

for these sampling schemes. As all the schemes required

different number of samples for the representation of the band-

limited signal on the sphere, we have introduced sampling

efficiency in the formulation of mesh norm and Riesz s-

energy in order to carry out a meaningful comparison. We

have illustrated that the optimal dimensionality, extremal sys-

tem and spherical design sampling schemes have a uniform

distributions and the points are well separated on the sphere.

Equiangular and GL sampling schemes exhibit poor geomet-

rical properties due to the dense sampling near the poles.

Extremal system sampling scheme has superior geometrical

properties, which we propose to use for the representation

of band-limited signal at small band-limits. However, the

accuracy of computation of SHT degrades and computational

complexity to compute SHT increases with the band-limit, due

to which we propose to use optimal dimensionality sampling

scheme for large band-limits as it allows exact computation of

SHT.

REFERENCES

[1] A. Amirbekyan, V. Michel, and F. J. Simons, “Parametrizing surface
wave tomographic models with harmonic spherical splines,” Geophys.
J. Int., vol. 174, pp. 617–628, Aug. 2008.

[2] R. Ng, R. Ramamoorthi, and P. Hanrahan, “Triple product wavelet
integrals for all-frequency relighting,” ACM Trans. Graph., vol. 23, no. 3,
pp. 477–487, Aug. 2004.

[3] G. Lavaux and B. D. Wandelt, “Fast and optimal cosmic microwave
background lensing using statistical interpolation on the sphere,” Astro-
phys. J., Suppl. Ser., vol. 191, no. 1, p. 32, Oct. 2010.

[4] N. Jarosik, C. L. Bennett, J. Dunkley, B. Gold, M. R. Greason,
M. Halpern, R. S. Hill, G. Hinshaw, A. Kogut, E. Komatsu, D. Larson,
M. Limon, S. S. Meyer, M. R. Nolta, N. Odegard, L. Page, K. M. Smith,
D. N. Spergel, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L.
Wright, “Seven-year wilkinson microwave anisotropy probe (wmap)
observations: Sky maps, systematic errors, and basic results,” Astrophys.
J., Suppl. Ser., vol. 192, no. 2, p. 14, Jan. 2011.

[5] M. K. Chung, K. M. Dalton, L. Shen, A. C. Evans, and R. J. Davidson,
“Weighted fourier series representation and its application to quantifying
the amount of gray matter,” IEEE Trans. Med. Imag., vol. 26, no. 4, pp.
566–581, Apr. 2007.

[6] W. Zhang, M. Zhang, R. A. Kennedy, and T. D. Abhayapala, “On
high-resolution head-related transfer function measurements: An effi-
cient sampling scheme,” IEEE/ACM Trans. Audio, Speech, Language
Process., vol. 20, no. 2, pp. 575–584, Feb. 2012.

[7] T. S. Pollock, T. D. Abhayapala, and R. A. Kennedy, “Introducing space
into mimo capacity calculations,” Telecom. Sys., vol. 24, no. 2, pp. 415–
436, Oct. 2003.

[8] R. A. Kennedy and P. Sadeghi, Hilbert Space Methods in Signal
Processing. Cambridge, UK: Cambridge University Press, Mar. 2013.

[9] Z. Khalid, R. A. Kennedy, and J. D. McEwen, “An optimal-
dimensionality sampling scheme on the sphere with fast spherical
harmonic transforms,” IEEE Trans. Signal Process., vol. 62, no. 17,
pp. 4597–4610, Sep. 2014.

[10] I. H. Sloan and R. S. Womersley, “Extremal systems of points and
numerical integration on the sphere,” Adv. Comput. Math., vol. 21, no. 1,
pp. 107–125, Jul. 2004.

[11] I. H. Sloan and R. S. Womersley, “A variational characterisation of
spherical designs,” J. Approx. Theory, vol. 159, no. 2, pp. 308 – 318,
Aug. 2009.

[12] M. Reimer, “Spherical polynomial approximations: a survey,” MATH
RES, vol. 107, pp. 231–252, Nov. 1999.

[13] J. Driscoll and D. Healy, “Computing fourier transforms and convolu-
tions on the 2-sphere,” Adv. Appl. Math., vol. 15, no. 2, pp. 202 – 250,
Jun. 1994.

[14] R. G. Crittenden and N. G. Turok, “Exactly azimuthal pixelizations of
the sky,” Arxiv preprint astro-ph/9806374, Jun. 1998.

[15] J. D. McEwen and Y. Wiaux, “A novel sampling theorem on the sphere,”
IEEE Trans. Signal Process., vol. 59, no. 12, pp. 5876–5887, Dec. 2011.

[16] K. M. Huffenberger and B. D. Wandelt, “Fast and exact spin-s spherical
harmonic transforms,” Astrophys. J., Suppl. Ser., vol. 189, no. 2, p. 255,
Aug. 2010.

[17] M. J. Mohlenkamp, “A fast transform for spherical harmonics,” J.
Fourier Anal. Appl., vol. 5, no. 2, pp. 159–184, Mar. 1999.

[18] J. A. R. Blais and M. A. Soofi, Spherical Harmonic Transforms Using
Quadratures and Least Squares. Berlin, Heidelberg: Springer Berlin
Heidelberg, May. 2006, pp. 48–55.

[19] M. Reimer, Constructive theory of multivariate functions: with an
application to tomography. BI-Wissenschaftverlag, 1990.

[20] X. Chen, A. Frommer, and B. Lang, “Computational existence proofs
for spherical t-designs,” Numer. Math., vol. 117, no. 2, pp. 289–305,
Feb. 2011.

[21] A. G. Doroshkevich, P. D. Naselsky, O. V. Verkhodanov, D. I. Novikov,
V. I. Turchaninov, I. D. Novikov, P. R. Christensen, and Chiang, “Gauss
Legendre Sky Pixelization (GLESP) for CMB maps,” Int. J. Mod. Phys.
D., vol. 14, no. 02, pp. 275–290, Feb. 2005.

[22] D. S. Seljebotn and H. K. Eriksen, “Sympix: A spherical grid for efficient
sampling of rotationally invariant operators,” Astrophys. J., Suppl. Ser.,
vol. 222, no. 2, p. 17, Apr. 2015.

[23] P. Leopardi, “Distributing points on the sphere: partitions, separation,
quadrature and energy,” Ph.D. dissertation, University of New South
Wales, Apr. 2007.

[24] J. S. Brauchart, “About the second term of the asymptotics for optimal
riesz energy on the sphere in the potential-theoretical case,” INTEGR.
TRANSF. SPEC. F., vol. 17, no. 5, pp. 321–328, Jan. 2006.

[25] A. Kuijlaars, E. Saff, and X. Sun, “On separation of minimal riesz energy
points on spheres in euclidean spaces,” J. Comput. Appl. Math., vol. 199,
no. 1, pp. 172–180, Feb. 2007.

[26] D. Hardin and E. Saff, “Minimal riesz energy point configurations for
rectifiable d-dimensional manifolds,” Adv. Math., vol. 193, no. 1, pp.
174–204, May. 2005.

[27] A. P. Bates, Z. Khalid, and R. A. Kennedy, “An optimal dimensionality
sampling scheme on the sphere with accurate and efficient spherical
harmonic transform for diffusion mri,” IEEE Signal Process. Lett.,
vol. 23, no. 1, pp. 15–19, Jan. 2016.

[28] A. P. Bates , Z. Khalid, and R. A. Kennedy, “Novel sampling scheme on
the sphere for head-related transfer function measurements,” IEEE/ACM
Trans. Audio, Speech, Language Process., vol. 23, no. 6, pp. 1068–1081,
Jun. 2015.

[29] N. Sneeuw, “Global spherical harmonic analysis by least-squares and
numerical quadrature methods in historical perspective,” Geophys. J.
Int., vol. 118, no. 3, pp. 707–716, Sep. 1994.

[30] Y. Wiaux, L. Jacques, and P. Vandergheynst, “Fast spin 2 spherical
harmonics transforms and application in cosmology,” J. Comput, Phys.,
vol. 226, no. 2, pp. 2359–2371, Oct. 2005.


