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Abstract—The problems of filtering, spectral analysis and
spectral estimation have been investigated on the sphere using
azimuthally symmetric functions as kernels which treat all the
directions uniformly. In this work, we extend the concentration
problem on the sphere for an azimuthally non-symmetric spatial
region on the sphere. Our approach is different in a sense that we
obtain the family of spatially concentrated bandlimited mutually
orthogonal functions by maximizing the contribution of spherical
harmonics components of all degrees and orders within the spec-
tral bandwidth. We also provide analysis of the eigenfunctions for
different bandwidths and non-symmetric regions and illustrate
the concentration of eigenfunctions with the help of examples.
Also we formulate the definition of filtering using azimuthally
non-symmetric functions. The proposed eigenfunctions can be
used to revisit the problems of estimation, localized spectral
analysis, smoothing and filter design on the sphere.

I. INTRODUCTION

Signals processing on the unit sphere has direct applications

in many diverse fields such as geophysics [1], cosmology [2],

3D beamforming [3], image processing [4], computer graph-

ics [5], electromagnetic inverse problems [6] and medical

imaging [7]. Extending the well formulated signal processing

techniques in Euclidean domain such as convolution, filtering,

smoothing, estimation, prediction to the unit sphere domain is

a natural way to analyze the signal inherently defined on the

sphere.
Convolutional smoothing is the low pass filtering of signals

in time domain to reduce the effect of noise and the removal of

high frequency components and is carried out using a mean

filter that averages the signal at any time instant by taking

into account the values in the neighborhood. This type of

filtering is accomplished by the convolution of filter response

and the signal. Such type of filtering has been investigated

for the signals defined on the unit sphere in [4], where

azimuthally symmetric Gaussian functions as filter are used

for spherical diffusion. The azimuthally symmetric functions

vary only with the co-latitude in the spatial domain and are

defined only for zero order spherical harmonics, thus, the

spherical harmonics reduce to Legendre polynomials and are

called zonal harmonics. We also presented the design of low

pass filters using the weighted sum of azimuthally symmetric

eigenfunctions obtained from concentration problem on the

sphere [8].
The Slepian concentration problem [9, 10] on the sphere

to find the family of orthogonal eigenfunctions which are

optimally concentrated in both spatial and spectral domains

have been presented in [11], and rigorously investigated by

Simons [1]. The azimuthally symmetric eigenfunctions ob-

tained as a solution of concentration problem are applied

for spectral estimation [12] and localized spectral analysis to

study the admittance and coherence between two windowed

functions [13]. The non-trivial equivalence between various

definitions of convolution is shown in [14] for azimuthally

symmetric kernels. Filtering using azimuthally symmetric filter

functions can be thought as non-directional convolution as

the output at any spatial point on the sphere is the weighted

average of the signal over the polar cap centered at that point,

where the filter function defines the weights.

In this work, we revisit the concentration problem for

azimuthally non-symmetric region and introduce a family of

bandlimited functions on the unit sphere, whose spatial re-

sponse is concentrated in the strip region around the north pole,

and are orthonormal over the span of whole spectral domain.

To the best of our knowledge, the concentration problem on

the sphere has not been explored for non-symmetric regions.

These eigenfunctions can be used to construct the bandlimited

azimuthally non-symmetric spatially concentrated filter func-

tion to perform directional smoothing on the sphere. We first

define the non-symmetric region around the north pole and

formulate filtering as convolution for directional smoothing

using the bandlimited and optimally spatially concentrated

filter function. We briefly discuss the existing literature on

the concentration problem for symmetric case [1, 11] and

extend the work to the non-symmetric region. We also provide

analysis of the eigenfunctions for different bandwidths and

non-symmetric regions. We illustrate the work with the help of

examples and formulate a realization of the filter as a weighted

sum of concentrated eigenfunctions.

The rest of the paper is organized as follows. We briefly

review mathematical background on spherical harmonics and

rotation operations in Section II. We define the non-symmetric

region and formulate the filtering in Section III. In Section IV,

we pose and solve the concentration problem, analyze the

eigenfunctions and illustrate with the help of numerical ex-

amples. Finally, Section V concludes the paper and indicates

the future directions.

Notations and terms: (·) denotes the complex conjugate

operation. Lowercase bold symbols correspond to vectors
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whereas uppercase bold symbols denote matrices. |( · )|
and ‖( · )‖ denote the magnitude and �2-norm respectively.

( · )T and ( · )H denote the transpose and hermitian operations

respectively.

II. MATHEMATICAL PRELIMINARIES

Let f(x̂) be a square integrable function, defined on

unit sphere S
2 � {r ∈ R

3 : ‖r‖ = 1} in com-

plex Hilbert space L2(S2), where x̂ ≡ x̂(θ, φ) �
(sin θ cosφ, sin θ sinφ, cos θ)′ ∈ R

3, θ ∈ [0, π] and

φ ∈ [0, 2π). Note that θ = 0 correspond to the north pole.

The inner product of two functions f(x̂) and h(x̂) on S
2 is

defined as [14]

〈f, h〉 �
∫
S2

f(x̂)h(x̂)ds(x̂) (1)

where ds(x̂) = sin θdθdφ and integration is performed over

the whole unit sphere.

A. Spherical Harmonics

The spherical harmonics, Y m
� (θ, φ), for degree � ≥ 0 and

order |m| ≤ � are defined as [15]

Y m
� (θ, φ) = Nm

� Pm
� (cos θ)eimφ (2)

where i =
√−1 is the imaginary unit and Nm

� is the

normalization constant defined as

Nm
� =

√
2�+ 1

4π

(�−m)!

(�+m)!
(3)

and Pm
� are the associated Legendre polynomials defined as

Pm
� (x) =

(−1)m

2��!

√
(1− x2)m

d�+m

dx�+m
(x2 − 1)� (4)

P−m
� (x) = (−1)m

(�−m)!

(�+m)!
Pm
� (x) (5)

for |x| ≤ 1 and m ≥ 0. The term (−1)m in the definition

of associated Legendre polynomials is the Condon-Shortley

phase factor. Using the above definitions, spherical harmonic

functions form an orthonormal set of basis functions for

L2(S2), therefore, any function f(θ, φ) defined on unit sphere

can be expanded in terms of spherical harmonics as

f(x̂) =
∞∑
�=0

�∑
m=−�

fm
� Y m

� (x̂) (6)

where fm
� is the spherical harmonics coefficient, which is

obtained by projecting the function f(x̂) onto Y m
� (x̂) as

fm
� � 〈f, Y m

� 〉 =
∫
S2

f(x̂)Y m
� (x̂)ds(x̂) (7)

With the definition of spherical harmonics in (2), the following

relation holds [15]

Y m
� (x̂) = (−1)mY −m

� (x̂) (8)

and spherical harmonic coefficients of a real signal follow

fm
� = (−1)mf−m

� (9)

We also use the unique mapping

(�,m) ↔ c, c = �2 + �+m (10)

to express the spherical harmonics Y m
� as Yc in terms of only

one variable c instead of two variables � and m.

B. Rotation on the Sphere in Spherical Harmonics Domain

Rotations on the sphere serve as counterpart of translations

on the Euclidean domain. Rotation of a function on the sphere

is parameterized in terms of Euler angles, α ∈ [0, 2π), β ∈
[0, π], γ ∈ [0, 2π). The rotation operator D(α, β, γ) rotates the

function on the unit sphere by the γ rotation about z−axis fol-

lowed by the β rotation about y−axis and then α rotation about

z−axis. Each spherical harmonic coefficient fm
� of degree �

and order m of the rotated function
{
[D(α, β, γ)f ](θ, φ)

}m

�
is transformed into a linear combination of different order

spherical harmonics of the same degree as

{
[D(α, β, γ)f ](θ, φ)

}m

�
=

�∑
m′=−�

Dm,m′
� (α, β, γ)fm′

� (11)

where D(α, β, γ) is a rotation operator and Dm,m′
� (α, β, γ) is

the Wigner-D function given by [15, 16]

Dm,m′
� (α, β, γ) = e−imαdm,m′

� (β)e−im′γ (12)

where dmm′
� (β) is the Wigner-d function [15, 16].

C. Slepian’s Concentration Problem on the Sphere

Concentration problem on the sphere analogous to Slepian

concentration problem in time-frequency domain was first

investigated in [11] for bandlimited functions, and revisited in

detail by Simons [1, 13]. Here we discuss their work briefly

to lay the mathematical background. In general, to maximize

the spatial concentration of a bandlimited signal f(x̂) having

maximum spherical harmonic degree L within the region R,

we maximize the spatial concentration ratio [1]

λ =

∫
R
f(x̂)f(x̂)ds(x̂)

〈f, f〉 (13)

where 0<λ<1 is a measure of spatial concentration. Using

spherical harmonics representation of f(x̂) in (6), the con-

centration problem in (13) can be expressed as

λ =

L∑
�=0

�∑
m=−�

L∑
�′=0

�′∑
m′=−�′

fm
� fm′

�′ E��′,mm′

L∑
�=0

�∑
m=−�

‖fm
� ‖2

(14)

where

E��′,mm′ =

∫
R

Y m
� (x̂)Y m′

�′ (x̂)ds(x̂) (15)

The concentration problem in (14) is solved as an eigenvalue

problem and the solution of this eigenvalue problem gives

(L+1)2 orthonormal eigenvectors. Eigenvalue associated with

eigenvector is a measure of concentration of corresponding

spectral limited spatial eigenfunction in the desired region, R.



The number of optimally concentrated eigenfunctions N with

eigenvalues close to unity is related to area A of the region R
under consideration

N ≈ (L+ 1)2
A

4π
(16)

III. PROBLEM FORMULATION

Convolutional smoothing on the sphere has been presented

as spherical diffusion using azimuthally symmetric Gaussian

kernels [4] and low pass filtering using weighted sum of

eigenfunctions as a filter function [8]. Filtering or localization

using azimuthally symmetric kernels treat all the directions

uniformly in the neighborhood, whereas, if we use the non-

symmetric functions, we can attain the directional smoothing

i.e., the averaging of the values in the neighborhood which has

larger width in one direction than the other. Here, we revisit

the concentration problem for azimuthally non-symmetric case

on the unit sphere such that the resulting eigenfunctions are

spatially concentrated in the strip region around the north

pole. We first parameterize the strip region around the north

pole and then formulate the filtering using non-symmetric

filter functions, which can be constructed using our proposed

eigenfunctions.

A. Problem Parametrization

We seek the family of bandlimited eigenfunctions such that

each function f(x̂) is bandlimited in spectral domain with

maximum spherical harmonic degree L and optimally con-

centrated in the spatial strip region at the north pole bounded

by the maximum colatitude θc and a maximum absolute value

in the y coordinate equal to sin−1 φc. Thus, the maximum

colatitude θc and the longitude φc parameterize the region.

We can think of this region as two planes at y = sin−1 φc and

y = − sin−1 φc cutting through the polar cap region of central

angle θc. The plane y = sin−1 φc intersects the equatorial

latitude θ = π/2 at φ = φc in the first quadrant. This region

is shown in Fig. 1 as shaded region. Mathematically, we are

seeking a signal f(x̂) such that

(A1) Spherical harmonic coefficients should satisfy

fm
� = 0; L < �, −� ≤ m ≤ � (17)

and all of the eigenfunctions are orthorormal over

the whole spectral domain within maximum spherical

harmonic degree.

(A2) The spatial response is optimally concentrated within

the strip region R ∈ S
2 defined as

R =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 ≤ θ ≤ φc, 0 ≤ φ < 2π

φc < θ ≤ θc, 0 ≤ φ < φ0

π − φ0 ≤ φ < π + φ0

2π − φ0 ≤ φ < 2π

(18)

with φ0 = sin−1
(
sinφc/sin θ

)
, 0 ≤ θc ≤ π, 0 ≤

φc ≤ π/2 and θc > φc.

North Pole

y

x

z

( c , 0 )

-y
sin-1

c

c

Fig. 1. Azimuthally non-symmetric region on the Sphere defined in (18) in
terms of θc and φc.

B. Filtering Operation

Filtering on the unit sphere may be defined as spherical

convolution. If g(θ, φ) represents the signal which is filtered

using the filter function h(θ, φ), the filtered output y(θ, φ) is

given by

y(θ, φ) = h(θ, φ) ∗ g(θ, φ) (19)

where ‘*’ denotes the convolution operation. There are dif-

ferent notions of spherical convolution available in the litera-

ture [14]. We define the output of the filter to be the integral

sum of the signal and the rotated filter function, where the

rotations are performed using the rotation operator D(α, β, γ)
which projects the output of the filter on SO(3) [8]. We use

the function that meets the specifications (A1) and (A2) as

a filter to perform smoothing operation. For fixed rotation γ,

the output of filter will be a function on S
2 parameterized by

φ = α and θ = β. For fixed γ = ψ rotation, the output of

filter y(θ, φ) is given by

y(θ, φ) =

∫
S2

[D(φ, θ, ψ)h](θ′, φ′)g(θ′, φ′) sin θ′dθ′dφ′ (20)

The rotation ψ is the orientation of the filter function with

respect to north pole and defines the direction of larger width

θc of the strip region R in (18), where the filter function is

concentrated. Due to the symmetry of the region R around

x-axis, the range of orientation is 0 ≤ ψ < π. Using the

effect of rotation operator on spherical harmonics coefficients

as defined in (11), we express the filter output y(θ, φ) in terms

of spherical harmonic coefficients of the filter and the signal

as

y(θ, φ) =

∞∑
�=0

�∑
m=−�

L∑
p=0

p∑
q=−p

p∑
q′=−p

(21)

gm� Dq,q′
p (φ, θ, ψ)hq′

p

∫
S2

Y m
� (x̂′)Y q

p (x̂
′) ds(x̂′)



Fig. 2. Spectral domain for signals defined on the unit sphere (a) Shaded
region shows the region of fixed spherical harmonics order m = 1 and m = 2
within maximum spherical harmonics degree L. (b) Shaded region shows the
whole spectral domain within the maximum spherical harmonic degree L.

which can be simplified using orthonormal property of spher-

ical harmonics as

y(θ, φ) =

L∑
p=0

p∑
q=−p

(−1)q g−q
p

( p∑
q′=−p

hq′
p

)
Dq,q′

p (φ, θ, ψ)

(22)

which indicates that the filter output is the weighted sum

of Wigner-D functions. The Wigner-D function Dq,q′
p when

expanded in terms of spherical harmonics basis indicates that

it does not depend on spherical harmonics of degree greater

than p. Thus, the convolution of a signal with the bandlimited

filter function results in a bandlimited output function.

In the next section, we find a family of orthogonal bandlim-

ited spatially concentrated eigenfunctions in a region R which

can be used to perform filtering as defined in (20).

IV. CONCENTRATION PROBLEM FOR AZIMUTHALLY

NON-SYMMETRIC REGION

It is well appreciated that signals cannot be concentrated

simultaneously in both finite time domain and finite frequency

domain [9, 10]. If we make an analog of this for signals on the

sphere, signals cannot have finite support at the same time both

in spatial and spectral domains. The concentration problem to

find the signals which are optimally concentrated in both the

time and frequency domains has been investigated by Slepian,

Pollak and Landau in 1960s [10].

Simons and his coauthors provided in-depth analysis of con-

centration problem on the sphere where the problem of finding

bandlimited spatially concentrated functions and spacelimited

spectrally concentrated functions has been formulated [1].

The problem to find the bandlimited spatially concentrated

functions with maximum spherical harmonics degree L is

formulated in (14) but has been analyzed only for azimuthally

symmetric regions in the spatial domain. For azimuthally

symmetric region on the sphere, due to the orthogonality

of different orders spherical harmonics along longitude, the

solution of concentration problem is equivalent to the solution

of different subproblems, each for a fixed order 0 ≤ m ≤ L.

For the subproblem of fixed order m, the resulting eigenfunc-

tions contain the contribution of spherical harmonics of degree

m ≤ � ≤ L. These fixed order regions are shown in the

spherical harmonics domain as shaded regions in Fig. 2(a) for

m = 1 and m = 2.

Here, we revisit the concentration problem on the sphere to

find the orthonormal family of bandlimited functions which

have optimal spatial concentration in the azimuthally non-
symmetric region R ∈ S

2 defined in (18). For the azimuthally

non-symmetric region, the concenration problem does not

reduce to subproblems of fixed order, therefore, we take into

account the whole spectral domain up to maximum spherical

harmonics degree and maximize the contribution of spherical

harmonics of all orders and degrees within the spectral band-

width. The resulting eigenfunctions are orthonormal over the

span of whole spectral domain shown as the shaded region in

Fig. 2(b).

Definition 1: If f(x̂) is the bandlimited function with max-

imum spherical harmonics degree L, we define f to be the

spectral response of f(x̂) as

f = [f0, f1, · · · , fC ] (23)

where fc = fm
� = 〈f, Y m

� 〉 and C = L2+L and the mapping

(�,m) ↔ c as defined in (10) is used.

In order to maximize the concentration of f(x̂) in the strip

region R, we pose the concentration problem equivalent to

(14) as

λ =

C∑
c=0

C∑
d=0

fcfdKcd

C∑
c=0

‖fc‖2
(24)

and in matrix form as

λ =
fHK f

fHf
(25)

where K is a two dimensional matrix of size (C+1)×(C+1)
of the form

K =

⎛
⎜⎜⎜⎝
K00 K01 · · · K0C

K10 K11 · · · K1C

...
...

. . .
...

KC0 KC1 · · · KCC

⎞
⎟⎟⎟⎠

(26)

with each entry Kcd is given by

Kcd �
∫
R
Yc(x̂)Yd(x̂)ds(x̂) (27)

where Yc = Y m
� and Yd = Y s

r with the mappings (�,m) ↔ c
and (r, s) ↔ d. Instead of solving different concentration
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Fig. 3. Eigenvalues corresponding to L2 + 2L+ 1 eigenvectors are plotted
which are obtained as a solution of the concentration problem in (29) for
L = 30 and L = 35. The parameters of the region R are θc = π/4 and φc

as indicated in the plot.

problems for different orders [13], we want to maximize the

contribution of spherical harmonics of all degrees and orders

within the bandwidth within our desired spatial region. Con-

sequently, and the resulting eigenfunctions are orthonormal to

each other over the whole spectral domain. Our region R of

interest in (18) is not azimuthally symmetric but symmetric

around y-plane or around φ = 0 and φ = π longitude. As the

complex part of non-zero order spherical harmonics is anti-

symmetric and real part is symmetric around y-plane, the each

entry Kcd of matrix K would be real and matrix itself would

be positive definite (fKfH > 0). Also, using the identity in

(8), we can write

Y s
r (x̂)Y

m
� (x̂) = (−1)s+mY −s

r (x̂)Y −m
� (x̂) (28)

and infer that K is also Hermitian symmetric, but due to

the symmetric properties of spherical harmonics, the Condon-

Shortley phase as defined in the definition of Legendre poly-

nomial in (4) would be missing if m+ s is even.

The concentration problem in (27) gives rise to following

eigenvalue problem

Kf = λf (29)

whose solution gives family of C + 1 = L2 + 2L + 1
orthonormal real eigenvectors because K is real, symmetric

and positive definite. The eigenvalue 0 < λ < 1 associated

with each eigenvector is a measure of concentration of the

corresponding eigenfunction in the region R.

A. Analysis of Bandlimited Spatially Concentrated Eigenfunc-
tions

Each eigenvector obtained as a solution of eigenvalue prob-

lem in (29) denotes the spectral response of corresponding

eigenfunctions. Similar to the case of azimuthally symmetric

region, we find that most of the eigenvalues are near to zero

which indicate that they are not concentrated in the desired
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Fig. 4. Eigenvectors (a) f1, (b) f2 and (c) f3 which are obtained as a solution of
the concentration problem in (29) for L = 35, φc = π/16 and θc = π/4.

region. We are only interested in the eigenvectors whose

concentration measure λ is near unity. If N ′ denotes the

number of such concentrated eigenvectors, we order them in

the decreasing order of their eigenvalues as f1, f1, · · · , fN ′

such that the corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λN ′ .

Each eigenvector fa denotes the spectral response of corre-

sponding eigenfunction fa(x̂) and can be written in the form

of (23) as

fa = [fa,0, fa,1, · · · , fa,C ] (30)

for a = 1, 2, 3 · · ·N ′ and fa,c = fm
a,� with mapping (�,m) ↔

c. Since we have used the orthonormalized spherical harmon-

ics, the resulting eigenvectors are also orthonormal over the

whole spectral domain, i.e.,

fafb
H = δab (31)

where δab denotes the kronecker delta and is equal to 1 for

a = b and zero otherwise.

Fig. 3 shows the eigenvalues corresponding to eigenvectors

which are obtained as a solution of the concentration problem

posed in (29) for different bandwidths and strips of different

widths. The eigenvalues are plotted for maximum spherical

harmonic degree L = 30 and L = 35, and considering two

different regions R parameterized by φc = π/8, θc = π/4
and φc = π/16, θc = π/4 for each L. We see that most of

the eigenvalues either lie near zero or unity and there is a

sharp transition between the two extremes. This observation

is in accordance with the findings in the existing literature for

azimuthally symmetric case [1]. In addition, we observe that

the spectral parameter L and the number of eigenvalues which

have more than 80%(λ > 0.8) concentration in the spatial

region R ∈ S
2 are approximately related by (16), where A

denotes the area of the region R. The relation in (16) holds if

there is direct transition from zero to one in the eigenvalues

as N denotes the sum of all of the eigenvalues and serve



TABLE I
NUMBER OF SIGNIFICANT EIGENVALUES - CALCULATED SUM (N ) IN (16),

NUMBER OF EIGENVALUES ≥ 0.8 (N ′) AND SUM OF ALL

EIGENVALUES (N ′′). (φc, θc) DEFINES THE REGION R.

(θc, φc) L N N ′ N ′′
π/8, π/16 35 30.2 23 30.4
π/4, π/16 30 46.6 34 46.3
π/4, π/16 35 62.8 50 62.5
π/4, π/8 30 88.7 74 88.3
π/4, π/8 35 119.7 102 119.1

(a)

(b)

(c)

Fig. 5. Eigenvectors (a) f1(θ, φ), (b) f2(θ, φ) and (c) f2(θ, φ) which
are obtained as a solution of concentration problem in (29) for L = 30,
φc = π/8 and θc = π/4.

as an upper bound on the number of significant eigenvalues.

This is illustrated in Table I which shows the calculated N
in (16), the sum of all eigenvalues N ′′ and the number of

significant eigenvalues N ′ with concentration measure λ ≥ 0.8
for different bandwidths L and regions R.

As we have ordered the eigenvectors in the order of decreas-

ing eigenvalue, the Condon-Shortley phase may be missing in

some of the eigenvectors. Fig. 4 shows the first three most

spatially concentrated eigenvectors f1, f2 and f3 for L = 35,

φc = π/16 and θc = π/4. For each of the eigenfunction fa,

we see that |fm
a,�| = |f−m

a,� | but the information about Condon-

(a)

(b)

(c)

Fig. 6. Eigenvectors (a) f1(θ, φ), (b) f2(θ, φ) and (c) f3(θ, φ) which
are obtained as a solution of concentration problem in (29) for L = 35,
φc = π/16 and θc = π/4.

Shortley phase of (−1)m for m < 0 is missing for f3 and

needs to be corrected so that the corresponding eigenfunction

will be real. If f̂a be the eigenvector after the Condon-Shortley

phase correction such that the spherical harmonic coefficients

satisfy f̂m
a,� = (−1)mf̂−m

a,� , we can get the corresponding real

eigenfunction fa(x̂) using spherical harmonics synthesis as

fa(x̂) =

C+1∑
c=0

f̂a,cY
m
� (x̂) =

L∑
�=0

∑
m=−��

f̂m
a,�Y

m
� (x̂) (32)

where the mapping (�,m) ↔ c has been used.

B. Illustrations

We illustrate that the bandlimited eigenfunctions, corre-

sponding to eigenvectors which are obtained as a solution of

concentration problem in (29), are spatially concentrated in the

spatial strip region at the north pole. We demonstrate with the

first three most concentrated eigenfunctions f1(x̂), f2(x̂) and

f3(x̂) for different bandwidths and different spatial regions R.

Fig. 5 and Fig. 6 show the magnitude of the eigenfunctions

for L = 35,φc = π/16, θc = π/4 and L = 30, φc = π/8,



θc = π/4 respectively. As the functions are localized around

north pole, we have shown these functions on the unit sphere

domain and on the displaced unit sphere for an illustration.

C. Filter Realization

We see that these bandlimited eigenfunctions are spatially

concentrated in the desired region R and can be used as

building blocks to construct a desired filter for directional

smoothing as defined in (20). One simpler realization to

construct a desired filter h would be the weighted sum of

eigenvectors. If w = [w1, w2, · · · , wN ′ ] denotes the weights,

the filter ĥ be the weighted sum of N ′ eigenvectors whose

corresponding eigenfunctions are spatially concentrated and

can be expressed as

ĥ = w [f1, f2, · · · fN ′ ]T (33)

where the weights are calculated such that error ‖h − ĥ‖ is

minimized. Note that since there are N ′ degrees of freedom to

design the (L+1)2 spectral coefficients of the filter, we have

an overdetermined linear system which can be solved using

standard �2−minimization technique [17].

V. CONCLUSIONS AND FUTURE WORK

In this work, we defined the filtering operation on the unit

sphere using the azimuthally non-symmetric functions. We

posed and solved the concentration problem to find a family of

bandlimited functions which are spatially concentrated in the

azimuthally non-symmetric region and orthonormal over the

whole spectral domain within maximum spherical harmonic

degree. We also presented an analysis of eigenfunctions ob-

tained as a solution of concentration problem and found that

the number of eigenfunctions with significant concentration in

the desired spatial region are upper bounded by the result in

derived in [1]. We illustrated with the help of examples and

then finally presented the simple realization of bandlimited

filter as a weighted sum of computed eigenfunctions. This is

the first step towards concentration problem for azimuthally

non-symmetric region with the whole spectral domain under

consideration. Following directions of future work can also be

pursued:

1) We have considered only one type of azimuthally non-

symmetric strip region at the north pole to solve the

concentration problem as this type of region can be

used to perform directional smoothing on the sphere.

The north pole at θ = 0 is only a convention and any

point on the sphere can be considered as north pole. One

can solve the concentration problem for different types

of non-symmetric regions.

2) Filtering as convolution using azimuthally symmetric fil-

ter functions, when evaluated in spectral domain, results

in the multiplication of spherical harmonics components

of the signal and the filter function, but the component

of all orders for a particular degree are multiplied by

same component i.e., the zero order component of the

filter [14]. There is a need to define a filter of non-

zero order components such that the convolution in

spatial domain corresponds to multiplication of spherical

harmonics components. Such a filter can be constructed

using the proposed eigenfunctions.

3) The problem of spatially localized cross spectral analysis

and spectral estimation on the sphere has been con-

sidered using azimuthally symmetric eigenfunctions as

spatial windows, but needs to be revisited for the non-

symmetric regions.
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