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ABSTRACT

We develop an algorithm for the extrapolation of band-limited sig-
nals on the sphere. The proposed algorithm improves the accuracy
of the extrapolation of band-limited signal by using the information
contained in the out-of-band harmonic coefficients of the signal to
update the extrapolated signal at each iteration. The estimation of
signals on the sphere from incomplete measurements finds applica-
tions in acoustics, cosmology and geophysics. The proposed algo-
rithm does not only exploit the band-limited property of the signal,
that is, force the harmonic coefficients outside the band-limit to zero,
at each iteration as carried out in the existing algorithms but also uses
the harmonic coefficients outside the harmonic domain to improve
the accuracy of signal extrapolation. To demonstrate the improve-
ment in the accuracy enabled by the proposed algorithm, we con-
duct numerical experiments and compare the results of the proposed
algorithm with the existing iterative conjugate gradient method.

Index Terms— Extrapolation, band-limited signals, equiangu-
lar sampling, spherical harmonic transform, unit sphere.

1. INTRODUCTION

Signal processing on the sphere finds applications in the field of
acoustics [1], cosmology [2], computer graphics [3] and geo-
physics [4], to name a few. In all these applications, processing
of signals on the sphere requires harmonic analysis which is enabled
by well-known spherical harmonic transform(SHT). For the exact or
accurate computation of SHT, many algorithms have been proposed
in literature [5–7] which require samples on the whole sphere. How-
ever, there are applications in geophysics and acoustics where the
measurements cannot be taken over the whole sphere. For example,
in acoustics, head related transfer function (HRTF) measurements
are not reliable in the South polar cap region due to reflections from
the ground. Another example is the problem of polar gap in geo-
physics where the inclination of satellite orbit makes the satellite
measurements on poles unreliable. To address the issue of unreli-
able and inaccessible samples on the sphere in these applications,
we consider the problem of signal extrapolation on the sphere in this
work.

In literature, many algorithms have been proposed for extrapo-
lation of band-limited signals on the sphere [1, 8–11]. An analog
of Papoulis algorithm [12] for continuous signals on the sphere ex-
ploiting the band-limiting characteristics of the signal is proposed
in [1] and its integral equation formulation is developed in [8]. For
discrete signals on the sphere, an iterative algorithm is presented
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in [9], which converges to minimum norm least-squares solution.
Conjugate gradient extrapolation algorithm on the sphere has been
presented in [10], which in comparison to the previously proposed
algorithms, enables more accurate and fast extrapolation. [13] uses
the slepian functions [14] to develop an iterative algorithm for the
extrapolation of band-limited signal on the sphere in the presence of
noise.

In this work, we develop an iterative algorithm for the signal
extrapolation over the inaccessible region on the sphere. The pro-
posed method takes samples according to the equiangular sampling
scheme which supports exact computation of SHT on the sphere.
Existing schemes focus on the use of the band-limited property of
the signal, that is, the signal extrapolation is carried out iteratively
by forcing the harmonic coefficients outside the band-limit of the
signal to zero at each iteration. In the proposed algorithm, we do
not only force the harmonic coefficients to zero but also use these to
improve the extrapolation of the signal over the inaccessible region
at each iteration. We conduct numerical experiments and compare
the accuracy of the proposed algorithm with iterative conjugate gra-
dient algorithm proposed in [10]. We also take HRTF measurements
using synthetic head model [15], extrapolate the signal on the South
pole and show that the proposed algorithm enables more accurate
extrapolation than the existing methods.

The rest of the paper is organized as follows. The necessary
mathematical background and choice of samples using equiangular
scheme are reviewed in Section 2. We pose the problem, develop the
formulation and present the proposed algorithm in Section 3. Nu-
merical experiments and accuracy analysis are carried out in Section
4. Finally, the concluding remarks are made in Section 5.

2. PRELIMINARIES

2.1. Signal on Sphere

Unit sphere is defined as S2 , {x̂ ∈ R3 : |x̂| = 1} where
x̂ = x̂(θ, φ) represents a point on the unit sphere, parameterized by
(sin θ cosφ, sin θ sinφ, cos θ) with co-latitude θ ∈ [0, π] and lon-
gitude φ ∈ [0, 2π). We consider complex-valued square integrable
functions such as f and g defined on the sphere. These functions
form a complex Hilbert space, denoted by L2(S2), equipped with
the inner product defined as [16]

〈f, g〉 ,
∫
S2
f(x̂)g(x̂) ds(x̂), (1)

where ds(x̂) = sin θ dθ dφ denotes the differential area element and
(·) represents the complex conjugate operation. The finite energy



function f ∈ L2(S2) with ‖f‖ , 〈f, f〉1/2 < ∞ are referred as
signals on the sphere. Using the Fredholm integral equation as [16],
also define a linear integral operator D with kernel D(x̂, ŷ) as [16]

(Df)(x̂) =

∫
S2
D(x̂, ŷ) f(ŷ)ds(ŷ). (2)

2.2. Harmonic Analysis

For Hilbert space L2(S2), spherical harmonic functions or spherical
harmonics, denoted by Y m` (x̂) for degree ` ≥ 0 and order |m| ≤ `
form a complete orthonormal set of basis functions and therefore
any function f on the sphere can be expanded as

f(x̂) =

∞∑
`=0

∑̀
m=−`

(f)m` Y
m
` (x̂), (3)

where

(f)m` ,
〈
f, Y m`

〉
=

∫
S2
f(x̂)Y m` (x̂) ds(x̂), (4)

is the spherical harmonic coefficient of degree ` and order m and
equation (4) is referred to as spherical harmonic transform (SHT)
(4). The signal f ∈ L2(S2) is considered as band-limited at de-
gree L if (f)m` = 0 for ` ≥ L. The band-limited signals form an
L2 dimensional subspace of L2(S2), which is denoted by HL. For
band-limited signals, the summation in (3) is truncated at L− 1 and
we express the double summation in 3 as

∑L−1
`=0

∑`
m=−` =

∑L−1
`m .

2.3. Sampling on the Sphere

In literature, many sampling distributions have been devised for
discretization of signals on the sphere. Among these sampling
schemes, we adopt equiangular sampling scheme proposed in [7] as
it requires least number of samples for exact computation of SHT of
a band-limited signal on the sphere. We use ΩM to denote the set of
equiangular sampling points taken on M iso-latitude rings placed at
the following co-latitude positions

θt =
2πt

2M − 1
, t = 0, 1, 2, ...,M − 1, (5)

with 2M -1 samples along longitude in each ring given by

φp =
2πp

2M − 1
, p = 0, 1, 2, ..., 2M − 2. (6)

We note that the SHT of the signal band-limited at M can be evalu-
ated exactly by taking samples of the signal over ΩM [7].

3. PROPOSED EXTRAPOLATION ALGORITHM

3.1. Problem Formulation

Samples are taken over the whole sphere for the accurate computa-
tion of SHT or signal reconstruction. However, in some applications,
samples over some region of the sphere cannot be taken due to prac-
tical limitations [1,11]. These applications require signal processing
methods or algorithms to extrapolate the signal over the inaccessi-
ble region [1, 8–11]. We consider the same problem in this work
and propose an iterative algorithm for signal extrapolation which,

in comparison with the existing methods, enables more accurate ex-
trapolation.

For a band-limited signal f ∈ L2(S2) with maximum spherical
harmonic degree L, we assume that the measurements or sam-
ples are available over some region R ⊂ S2. We assume that the
measurements are not available or zero over inaccessible region
Rc = S2\R ⊂ S2. For a spatial region R, we define a space-
limiting operator DR with kernel given by

DR(x̂, ŷ) , IR(x̂)δ(x̂, ŷ), (7)

where δ(x, y) denotes the Dirac delta function [16] and

IR(x̂) ,

{
1 x̂ ∈ R,
0 x̂ ∈ Rc,

(8)

is an indicator function of the region R. Using the operator DR,
we define the problem under consideration is to extrapolate the
signal f ∈ HL when only fR(x̂) , (DRf)(x̂) is known and
fRc(x̂) , (DRcf)(x̂) is unreliable or not known. With these
definitions, we can express f as

f(x̂) = fR(x̂) + fRc(x̂), (9)

with representation in harmonic domain given by

(f)m` = (fR)m` + (fRc)m` . (10)

We note that the signals fR and fRc are not band-limited due to the
space-limiting operation.

3.2. Proposed Signal Extrapolation - Formulation

To reconstruct the original signal f(x̂), we assume that the signal
is sampled over the sampling grid ΩM where we assume M > L1.
Since the original signal f is band-limited at L, we have (f)m` = 0
for all ` ≥ L, equation (10) implies

(fRc)m` = −(fR)m` , L ≤ ` < M, |m| ≤ `. (11)

We also define function h(x̂) as

h(x̂) , fRc(x̂)IR(x̂), (12)

which can be written in the harmonic domain as

(h)m` =

M−1∑
`′m′

(fRc)m
′

`′ (Z)m
′,m

`′,` , (13)

where

(Z)m
′,m

`′,` = (IR(x̂)Y m
′

`′ (x̂))m` ,

=

M−1∑
`′′m′′

(IRc)m
′′

`′′ T
`′,m′,`′′,m′′

`,m . (14)

1Due to the fact that the known signal fR is not band-limited.



Here

T `
′,m′,`′′,m′′

`,m =

∫
S2
Y m

′
`′ (x̂)Y m

′′
`′′ (x̂)Y m` (x̂) ds(x̂). (15)

3.3. Proposed Signal Extrapolation - Algorithm

Since fRc = 0 by definition, we have h(x̂) = 0 as defined in (12),
which implies (h)m` = 0. Consequently, we have the following
system

M−1∑
`′m′

(fRc)m
′

`′ (Z)m
′,m

`′,` = 0, (16)

which can be equivalently expressed as

Zf = 0, (17)

where Z is an M2 × M2 matrix containing all the spherical har-
monic coefficients of the expression derived in (14) and f is vector
of lengthM2 containing spherical harmonic coefficients (f)m` . Dur-
ing the construction of f in our proposed algorithm, we use (11) to
replace the unknown coefficients with the negative of the known
coefficients in each iteration. In order to solve the system in (17),
we divide the matrix Z and vector f into two partitions of different
sizes namely Za,Zb and fa, fb respectively. The system now is

[Za|Zb]
[
fa
fb

]
= 0. (18)

Note that we ensure the system proposed in (18) is always overde-
termined by selecting a suitable band-limit which is M = d

√
2Le.

Using (11) and (18), the unknown coefficients can be determined by

fa = Λfb, (19)

where Λ = (−1)(ZTaZa)−1ZTaZb. In our algorithm, we take sam-
ples of f over the equiangular sampling grid ΩM where M > L.
We first pre-compute (Z)m

′,m
`′,` using (14) and form matrix Z to de-

termine Λ. We apply the space limiting operator defined in (7) to get
space-limited function f̂(x̂). In order to find the vector f in (17), we
take the SHT of space-limited function f̂(x̂), first modify it using
(11) and then modify it again by updating fa after computing fa us-
ing (19). We take the inverse SHT of f and update the space-limited
function. We use the same procedure iteratively for K number of
iterations and summarize the evaluation of the unknown coefficients
in the form of procedure 1 given below2.

4. ANALYSIS

In this section, we conduct two numerical experiments to illustrate
the accuracy of the proposed iterative extrapolation method. We
compare the proposed algorithm with the the iterative conjugate
gradient method [10]. In both the experiments, we consider the
accessible region as

R =
{
x̂(θ, φ) ∈ S2|0 ≤ θ ≤ π − θc

}
, (20)

2We represent the inverse SHT of f as ĝ(x̂).

Procedure 1 Iterative Extrapolation

Require: (f)m` , ∀ 0 ≤ ` < L, |m| ≤ `
1: procedure ITERATIVE EXTRAPOLATION(fR(x̂))

2: f̂(x̂) = fR(x̂)

3: compute Z using (14) and evaluate Λ

4: for k = 1, 2, . . . ,K do
5: compute f from f̂(x̂) using SHT

6: update f using (11)

7: compute fa using (19)

8: update f with fa

9: compute ĝ(x̂) as inverse SHT of f
10: update f̂(x̂)← f̂(x̂) + (DRc ĝ)(x̂)
11: end for

12: evaluate (f)m` by taking SHT of f̂(x̂)
13: return (f)m`
14: end procedure

where θc represents the excluded polar cap region, that is, it repre-
sents the region where the measurements are unreliable or unacces-
sible. In both the experiments, we compute the mean extrapolation
error defined as

Emean ,
1

L2

L−1∑
`,m

|(f)m` − (f̂)m` |, (21)

where we take the mean of the absolute difference between actual
(f)m` and the extrapolated values (f̂)m` in the harmonic domain.

Experiment 1: In the first experiment, we consider random com-
plex valued band-limited test signal with band-limit L = 30. We
generate such test signal first randomly selecting (f)m` with real
and imaginary parts uniformly distributed in the interval [-1,1] and
then synthesizing signal over ΩM using (3). For different values of
θc = π/8, π/6, and M = 60, we apply the proposed algortihm
and iterative conjugate gradient method to extrapolate the signal in
regionRc and compute the error as defined in (21). We run both the
algorithms for K = 100 number of iterations and plot the mean er-
ror in Fig. 1, where it is evident that the proposed algorithm enables
more accurate extrapolation.

Experiment 2: In the second experiment, we apply the pro-
posed method to extrapolate the head related transfer function
(HRTF) on the sphere. We use spherical head model [15] to ob-
tain synthetic HRTF data for the following parameters:head radius,
a = 0.09 m, distance from head, r = 1 m, audible frequency range,
fr = [5, 20] kHz, and speed of sound, c = 340 ms−1. The effective
HRTF band-limit is estimated by L(λ) = d eπafr

c
e + 1, where λ

is a wave number and is directly proportional to the frequency fr .
HRTF measurements are not reliable in South polar cap region due
to the reflections from the ground and hence the samples cannot
be taken on the South pole. For a given frequency, fr , we obtain
the HRTF measurements, h(x̂) over the sampling grid ΩM and
compute spherical harmonic coefficients, (h)m` using (4). We then
apply the proposed algorithm to extrapolate the signal in the region
beyond θc = π/6 and compute the mean error as defined in (21).
The results of extrapolation of HRTF measurements of different
frequencies fr = 5 kHz,10 kHz, effective band-limits, L = 15, 27
and M = 40, 70 for K = 100 using the proposed and iterative con-
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Fig. 1: Mean extrapolation error Emean given in (21), for Experiment 1, for a random signal, band-limited at L = 30 and sampled over ΩM
with M = 60 for (a) θc = π/8 and (b) θc = π/6 .
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Fig. 2: Mean extrapolation errorEmean given in (21), for Experiment 2, for HRTF measurements overR with θc = π/6 taken at (a) frequency
fa = 5kHz, effective band-limit L = 15 and M = 40 and (b) frequency fr=10kHz, effective band-limit L = 27 and M = 70.

jugate gradient method are plotted in Fig. 2. Again the numerical
analysis reveals that the proposed method gives more accurate result
than the well-known iterative conjugate gradient method.

5. CONCLUSIONS

In this work , we develop an iterative algorithm for extrapolation of
band-limited signals on the sphere from limited or incomplete mea-
surements. Existing schemes focus on the use of the band-limited
property of the signal, that is, the signal extrapolation is carried out

iteratively by forcing the harmonic coefficients outside the band-
limit of the signal to zero at each iteration. In the proposed algo-
rithm, we do not only force the harmonic coefficients to zero but
also use these to improve the extrapolation of the signal over the
inaccessible region at each iteration. We conduct numerical experi-
ments in order to check the accuracy of the proposed algorithm and
use Iterative Conjugate Gradient method as benchmark for compar-
ison. We also take HRTF measurements using synthetic head model
and extrapolate the signal on the South pole. The numerical analysis
show that the proposed algorithm enables more accurate extrapola-
tion than the existing methods.
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