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ABSTRACT

To support the applications where the measurements can only be
taken over spatially limited region on the sphere due to practical
limitations, we design a spatially-limited sampling scheme on the
sphere for the computation of spherical harmonic transform (SHT)
of band-limited signals. By enclosing the inaccessible region with
the (anisotropic) ellipsoidal region followed by the rotation of the
region to the pole or the equator, we propose an iso-latitude sam-
pling scheme on the sphere. We also present a method to place the
samples over the spatially-limited region such that the SHT can be
computed accurately. Moreover, we formulate the SHT associated
with the proposed sampling scheme and analyse its accuracy through
numerical experiments. We also provide an illustration where we re-
construct the head-related transfer function (HRTF) from spatially-
limited measurements and demonstrate that the proposed sampling
design enables more accurate computation than the existing sam-
pling schemes.

Index Terms— sampling; spherical harmonic transform (SHT);
unit sphere; band-limited signals; acoustics

1. INTRODUCTION

Signal analysis on the unit sphere, denoted by S
2, has widespread

applications in several fields of science and technology, namely
cosmology, geodesy, geomagnetics, acoustics, planetary sciences,
etc [1–5]. Signal analysis and processing in these applications is
carried out in either spatial (spherical) domain or harmonic (Fourier
or spectral) domain that is enabled by the spherical harmonic trans-
form (SHT) which transforms the signal from spatial domain to
harmonic domain.

Many sampling schemes and pixelizations on the sphere have
been devised in the literature for sampling band-limited signals
which result in theoretically exact or accurate computation of the
SHT(e.g., see [6–11] and the references therein). All of these sam-
pling schemes require the samples to be taken over the whole sphere.
However there are applications where the measurements and sam-
ples are available over the spatially-limited region due to practical
limitations. For example satellites collecting Earth’s data follow
an inclined orbit, meaning they cannot take samples near the North
and South Pole. This is known as the problem of “polar gap” [12].
In problems related to the measurement of the Earth’s gravitational
field, we see an unsampled area of about 10◦ co-latitudinal ra-
dius [13]. In an effort to fill in the missing measurements, scientists
have recently developed methods for collecting the gravity data over
the poles using specially equipped aircrafts [14]. However, the polar

Wajeeha Nafees is supported by HEC NRPU Project no. 5925. Zubair
Khalid and Rodney A. Kennedy are supported by the Australian Research
Council’s Discovery Projects funding scheme (Project no. DP170101897).

gap problem remains largely unsolved in other fields of science. For
instance, studies related to geomagnetism indicate that it is better to
exclude the data sampled closer than 30◦ to either pole because they
tend to exhibit higher noise contamination as compared to the data
sampled near the equator [15]. In cosmology, the sky is considered
an analog to the sphere where observations are made from inside out.
Hence, we can see only a limited region of the sky from a particular
location on Earth [16]. In addition, large portions of the sky remain
unobservable owing to the position of the Sun in the Milky Way
galaxy and the surrounding stars, gas and dust [17]. Furthermore,
the measurements of the head-related transfer function (HRTF) in
acoustics in the South polar region (i.e., closer than 36◦ to the pole)
are not considered reliable due to the ground reflections [4, 18].

There exist methods in the literature for the computation of the
SHT when the measurements are unavailable or unreliable over the
single or double polar cap region. The spherical harmonic basis
functions are orthogonal over the sphere. When spatially-limited
samples are used for the computation or estimation of the SHT, er-
rors are introduced since the spherical harmonic basis functions no
longer remain orthogonal. In other words, the spherical harmonic
spectrum suffers from leakage due to the polar gap [19]. In [15],
Slepian functions have been used as basis functions for the represen-
tation of functions exploiting the orthogonality of Slepian functions
over the spatially-limited region. For the accurate computation of
the SHT of the HRTF, a novel sampling scheme is proposed in [18]
that does not require unreliable measurements samples in the South
polar cap for sufficiently accurate computation of the SHT over the
band-limits of interest in acoustics.

In this work, we devise a sampling scheme for the computa-
tion of the SHT when an arbitrary region on the sphere is inacces-
sible. Since the ellipsoidal region is anisotropic (directional) in na-
ture, we use it to enclose any arbitrary region on the sphere and de-
velop a sampling scheme for the inaccessible ellipsoidal region on
the sphere. We propose iso-latitude sampling where we place rings
of samples along co-latitude. Based on the parameters of the ellip-
soidal region, we rotate the ellipsoidal region to either polar region
or equatorial belt region to maximize the surface area available for
the placement of iso-latitude rings of samples. We develop the for-
mulation of the SHT for the proposed sampling scheme and present
a method for the placement of iso-latitude rings in such a way that
ensures accurate computation of the SHT. We also carry out the ac-
curacy analysis of the SHT associated with the proposed sampling
scheme and provide an illustration to demonstrate that the proposed
scheme enables more accurate computation of the HRTF than the
existing schemes.

The remainder of the paper is compiled as follows. We review
the mathematical background and present the problem statement in
Section 2. The proposed sampling scheme for spatially-limited sam-
pling of band-limited signals when some region is inaccessible is



presented in Section 3, where we also carry out accuracy analysis
and provide an illustration. The concluding remarks are then made
in Section 4.

2. MATHEMATICAL PRELIMINARIES AND PROBLEM
FORMULATION

2.1. Unit Sphere and Regions on the Sphere

A unit-sphere or 2-sphere, denoted by S
2, is defined as S

2 �{
û ∈ R

3 : ‖û‖ = 1
}

where û denotes a vector in 3D Euclidean
domain and ‖·‖ is the Euclidean norm. In terms of spherical coor-

dinates, a point on the sphere is parameterized by û ≡ û(θ, φ) �
(sin θ cosφ, sin θ sinφ, cos θ) ∈ S

2, where θ ∈ [0, π] denotes the
co-latitude and φ ∈ [0, 2π) denotes the longitude. We also define
different types of regions on the sphere which will be used in the
subsequent sections. The (South) polar cap region, parameterized
by co-latitudinal radius θp and denoted by Rp(θp), is defined as

Rp(θp) � {û(θ, φ) ∈ S
2|θp ≤ θ ≤ π, 0 ≤ φ < 2π}, (1)

with surface area |Rp(θp)| =
∫
Rp(θp)

ds(û) = 2π(1 − cos θp),

where ds(û) = sin θdθdφ represents the differential surface ele-
ment on S

2.

We also define the equatorial belt region of co-latitudinal width
2θe as

Re(θe) � {(θ, φ)|π
2
− θe ≤ θ ≤ π

2
+ θe, 0 ≤ φ < 2π}, (2)

and note that |Re(θe)| = 4π sin θe. Lastly, we define an ellipsoidal
region RE(θc, a) on the sphere, centered at the North pole, given as

RE(θc, a) �
{
û(θ, φ) ∈ S

2 |Δ(û , v̂1) + Δ (û, v̂2) ≤ 2a
}
, (3)

where v̂1 ≡ v1(θc, 0) and v̂2 ≡ v2(θc, π) represent the two foci,
Δ(û, v̂) measures the angular distance between two points û, v̂ ∈
S
2 [20] and a is the length of the semi-major axis aligned with the

x-axis. The semi-minor axis of RE(θc, a) having length b, such that
Δ(ŵ , v̂1) + Δ (ŵ, v̂2) = 2a, is aligned with the y-axis and ŵ ≡
w(b, π/2).

2.2. Signals on the Sphere

We consider complex-valued, square integrable functions h(û) ≡
h(θ, φ) on S

2, which form a complete Hilbert space L2(S2)
equipped with the inner product

〈h1, h2〉 �
∫
S2

h1(θ, φ)h2(θ, φ) sin θ dθ dφ, (4)

for any two functions h1, h2 defined on S
2, (·) denotes the complex

conjugate operation and

∫
S2

=

∫ π

θ=0

∫ 2π

φ=0

. The inner product in

(4) induces a norm ‖h‖ � 〈h, h〉1/2. Functions with finite energy
(or induced norm) are referred to as “signals on the sphere”.

2.3. Spherical Harmonic Transform

For the Hilbert space L2(S2), the spherical harmonic functions, de-
noted by Y m

� (θ, φ) for degree � ≥ 0 and order −� ≤ m ≤ �, form
a set of complete, orthonormal basis functions and therefore, any
function h ∈ L2(S2) can be expanded as

h(θ, φ) =

∞∑
�=0

�∑
m=−�

(h)m� Y m
� (θ, φ), (5)

where

(h)m� � 〈h, Y m
� 〉 =

∫
S2

h(θ, φ)Y m
� (θ, φ) sin θ dθ dφ, (6)

is the spherical harmonic coefficient of degree � and order m. The
spherical harmonic coefficients form the harmonic (spectral) domain
representation of the signal h. Equations (6) is referred to as the
spherical harmonic transform (SHT) and (5) is the inverse SHT. For
a signal h ∈ L2(S2) band-limited at L such that (h)m� = 0 ∀� ≥ L,
the summation in (5) over � is truncated at L−1. These band-limited
signals form a subspace, denoted byHL, of dimensionality L2.

2.4. Rotation on the Sphere

We define the rotation operator D(α, β, γ) that rotates a function
on the sphere, following the ’zyz’ Euler convention, in the sequence
of γ ∈ [0, 2π) rotation around z-axis, β ∈ [0, π] rotation around
y-axis and α ∈ [0, 2π) rotation around z-axis. The effect of the
rotation operator on the signal h ∈ L2(S2) can be realized as the
inverse rotation of the coordinates, that is,(D(α, β, γ)h)(û) = h(R−1û) (7)

where R is the rotation matrix associated with the rotation operator
D(α, β, γ) [20] and therefore depends on the rotation parameters
α, β, γ. We also note that the spherical harmonic coefficients of the
original signal h and the rotated signal D(α, β, γ)h are related by

(D(α, β, γ)h)m� =

�∑
m′=−�

D�
m,m′(α, β, γ)(h)m

′
� , (8)

where D�
m,m′(α, β, γ) denotes the Wigner-D function [20].

2.5. Problem Under Consideration

Spherical signal processing techniques analyse signals in both the
spatial and spectral domains. To extract spectral information of a
signal, the spherical harmonic transform (SHT) given in (6) com-
putes the spherical harmonic coefficients using samples of the sig-
nal in spatial domain. Sampling schemes have been proposed which
lead to either theoretically exact or accurate computation of the SHT.
All of these schemes assume that samples are available on the en-
tire sphere. However, there are applications where samples cannot
be taken over some region, for instance, the polar gap problem in
geodesy [15], south polar cap region in HRTF measurements [4] and
SDSS DR7 quasar binary mask in cosmology [21]. In this paper, we
consider a problem to compute the SHT when some region on the
sphere is inaccessible. By enclosing the inaccessible region within
an ellipsoidal region, followed by the rotation of the ellipsoidal re-
gion either to a polar cap region or the equatorial belt region, we
propose spatially-limited iso-latitude sampling on the sphere for the
computation of the SHT.

3. SPATIALLY-LIMITED SAMPLING ON THE SPHERE

3.1. Sampling Design - Inaccessible Ellipsoidal Region

We first devise a sampling scheme on the sphere when the ellipsoidal

region R
′
E(θc, a) is inaccessible. We later take into account the ar-

bitrary shaped region by enclosing it with the ellipsoidal region. We
propose to take iso-latitude rings of samples of the band-limited sig-
nal h ∈ HL on the sphere over the accessible region. For the inac-

cessible ellipsoidal region R
′
E(θc, a), the iso-latitude rings of sam-

ples of the signal h can be taken on S
2\Rp(a) and therefore the sur-

face area available for sampling is 4π − |Rp(a)| = 2π(1 + cos a).



If we rotate the signal and inaccessible ellipsoidal region by π/2
along z-axis and then by π/2 along y-axis, its semi-major and mi-
nor axes get aligned with the y-axis and z-axis respectively and the
iso-latitude rings of samples of the rotated signal D(0, π/2, π/2)h
can now be taken on S

2\Re(b) of surface area 4π(1 − sin b). If
(1+cos a) > 2(1−sin b) for a given inaccessible ellipsoidal region

R
′
E(θc, a), we rotate the signal prior to sampling such that the major

axis of the inaccessible ellipsoidal region is aligned with the y-axis
as such judicious choice ensures the availability of larger area for the
sampling of the signal. With this consideration, we propose to take
L iso-latitude rings of samples at locations such that θk ∈ Θ where

Θ =

{
θ ∈ [0, π − a] (1 + cos a) < 2(1− sin b)

θ ∈ [0, π
2
− b] ∪ [π

2
+ b, π] otherwise.

(9)
For a ring placed at θk, we take 2k+1 equally spaced points along φ.
Before we present a method to determine the ring locations θk, k =
0, 1, . . . , L− 1 such that the SHT of the band-limited signal can be
computed accurately, we first review the formulation of the spherical
harmonic transform [11].

3.2. SHT Formulation

Define a vector hm of spherical harmonic coefficients of angular
order |m| < L, such that

hm =
[
(h)m|m|, (h)

m
|m|+1, . . . , (h)

m
L−1

]T
, (10)

and a matrix Pm of dimension (L−|m|)×(L−|m|) with elements
given by

Pm(k, j) = Y m
|m|+j−1(θ|m|+k−1, 0), k, j = 1, 2, . . . , L− |m|.

(11)

Also define a vector fm for each order |m| < L as

fm �
[
Fm(θ|m|), Fm(θ|m|+1), . . . , Fm(θL−1)

]T
, (12)

such that

Fm(θk) �
∫ 2π

0

h(θk, φ)e
−imφdφ = 2π

L−1∑
�=|m|

(h)m� Y m
� (θk, 0),

(13)

where the second equality follows from (5) and the orthogonality of
the complex exponentials.

Noting the structure of Fm(θk) in (13), we can write

Fm(θk) = Pm(k, :)hm, (14)

which implies that

fm = Pmhm. (15)

3.3. Placement of Iso-latitude Rings

The vector hm containing the SHT coefficients of order m can be
recovered by solving a system of linear equations provided Pm is
well-conditioned and fm can be computed correctly. For the pro-
posed sampling scheme, Fm(θk) for k = |m|, |m+1|, . . . , L−1 can
be computed correctly by employing FFT as we have taken 2k + 1
samples along φ on a ring placed at θk [11]. We use the following
method to determine the optimal location of L iso-latitude rings, that
is θk, k = 0, 1, . . . , L − 1 , in a spatially limited region (θk ∈ Θ)
such that the matrix Pm given in (11) is well-conditioned for each
m.

• Consider a set of N � L equiangular points taken over Θ.

• Choose the θL−1 from Θ as the point farthest away from the
poles (θ = 0 or θ = π).

• For k = L− 2, L− 3..., 1, 0, choose θk from the remaining
elements of Θ for which the condition number of the matrix
Pm defined in (11) is minimum.

Determining the location of the rings by using the method described
above ensures well-conditioning of Pm matrix for every m. Con-
sequently, the spherical harmonic transform can be accurately com-
puted by solving the system given in fm = Pmhm for each |m| =
0, 1 . . . , L− 1. For the case when the ellipsoidal region and the sig-
nal are rotated to align the inaccessible region along equatorial belt
region, we recover, through SHT, the coefficients of the rotated sig-
nal D(0, π/2, π/2)h which we can use in (8) to obtain the SHT of
the signal h.

3.4. Multi-pass SHT

To further improve the accuracy of the computation of the SHT from
the samples over the spatially limited region, we use a multi-pass
algorithm [22]. For a signal h(θ, φ) in the spatial domain, we ob-
tain the spherical harmonic coefficients (hk)

m
� and re-synthesize the

signal as h̃k(θ, φ) =
L−1∑
�=0

�∑
m=−�

(hk)
m
� Y m

� (θ, φ), where k indicates

the iteration number. The residual between h(θ, φ) and h̃k(θ, φ) is
calculated as

rk(θ, φ) = h(θ, φ)− h̃k(θ, φ). (16)

The spherical harmonic coefficients of the residual, denoted by
(rk)

m
� , are then computed and used to update the spherical har-

monic coefficients of the signal as

(hk+1)
m
� = (hk)

m
� + (rk)

m
� . (17)

We repeat this process until the stopping criterion: rk(θ, φ) >
rk−1(θ, φ).

3.5. Inaccessible Arbitrary Region

We have devised the sampling scheme when ellipsoidal region is
inaccessible on the sphere. For the case when an arbitrary shaped re-
gion R ⊂ S

2 is inaccessible, we propose to rotate the signal and the
region R such that the region R is enclosed by the ellipsoidal region
RE(θc, a), where we choose rotation parameters and ellipsoidal re-
gion parameters which ensure that RE ∩ R = R and |RE − R| is
minimized.

3.6. Accuracy Analysis

We here analyse the numerical accuracy of the proposed spatially-
limited sampling scheme on the sphere and the associated multi-
pass SHT. In order to analyse the accuracy, we carry out numerical
experiments where we obtain a band-limited test signal ht ∈ HL

by randomly generating its spherical harmonic coefficients (ht)
m
�

with uniform distribution in the interval [−1, 1] for both the real and
imaginary parts and then synthesizing a signal ht over the proposed
sampling scheme when the ellipsoidal region RE(θc, a) is inacces-
sible. We use multi-pass SHT to recover the spherical harmonic co-
efficients denoted by (hr)

m
� and compute the mean error given by

Emean � 1

L2

L−1∑
�=0

|(ht)
m
� − (hr)

m
� | , (18)

which is averaged over 10 realizations of the experiment and plot-
ted for the band-limit L = 32, semi-major axis length a = 2π/10,

3π/20 and π/10 and different values of the flattening 0 ≤ f �
a−b
a
≤ 1 of the ellipsoidal region in Fig. 1, where it can observed
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Fig. 1: Mean error observed when flattening varies in the range 0 ≤
f < 1 for a constant band-limit L = 32 and semi-major axis a =
0.2π, 0.15π and 0.1π.
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Fig. 2: Mean error observed when ellipse remains at the North pole
(f = 0.5) and when it is rotated to the equatorial belt (f = 0.95) as
band-limit varies in the range 8 ≤ L ≤ 64. Here a = 0.1π

that the rotation of the ellipsoidal region to the equatorial belt re-
gion enables accurate reconstruction for the larger values of f (di-
rectional ellipsoidal region). For the smaller values of f , the re-
construction error is smaller if the ellipsoidal region is not rotated
which is due to the fact that the surface area for sampling is larger
when the ellipsoidal region of smaller f is enclosed by the polar cap
region than the equatorial belt region. We also extend our analy-
sis and plot the mean error Emean in Fig. 2 for different band-limits
8 ≤ L ≤ 64, semi-major axis length a = π/10 and two values of
flattening f = 0.5 (when the ellipsoidal region remains at the North
pole) and f = 0.95 (when the ellipsoidal region is rotated to the
equatorial belt). Accuracy analysis reveals that the proposed sam-
pling design on the sphere enables accurate computation of the SHT
when the samples of the band-limited signal are inaccessible over
some region on the sphere. For a given inaccessible region R ⊂ S

2,
we note that the bounds on the reconstruction error can be obtained
by taking into account the surface area 4π − |R| available for sam-
pling and the signal band-limit L. However, it is the subject of future
work.

(a) |h(x̂)| (b) Proposed Sampling Design

(c) |h(x̂)|, x̂ ∈ S2\R (d) |h(x̂)− ̂h(x̂)|
Fig. 3: HRTF signal (a) |h|, (b) the proposed sampling points for
L = 32, (c) the known signal |h| and (d) the reconstruction error

|h− ĥ|.

3.7. Illustration

Here we use the proposed sampling scheme and the associated multi-
pass SHT algorithm for the computation of the SHT of the signal
obtained from the analytical HRTF model [23]. The following pa-
rameters are used in the model to obtain the HRTF signal h: head
radius a = 0.09 m, distance from the center of the sphere to the
source r = 1 m, sound frequency fs = 15 kHz and speed of sound
c = 340 m/s. Since the HRTF measurements are unreliable at the
South polar region, we design the sampling scheme for the region
R = {(θ, φ)|0 ≤ θ ≤ 8π/10, 0 ≤ φ < 2π} for band-limit
L = 38. We then use multi-pass SHT algorithm to obtain the re-

constructed signal ĥ. We plot the absolute value of the signal |h|,
sampling points of the proposed scheme over the accessible region,

samples of the signal |h| and the error |h− ĥ| in Fig. 3, where it can
be observed that the proposed sampling scheme enables the accurate
reconstruction, with error on the order of 10−7, over the inaccessible
region.

4. CONCLUSIONS

In this work, we propose a spatially-limited sampling scheme for
the computation of spherical harmonic coefficients (using a multi-
pass SHT algorithm) of a band-limited signal when an arbitrary re-
gion on the sphere is inaccessible for taking signal measurements or
samples. We propose to place iso-latitude rings of samples on the
sphere after the exclusion of the minimum area ellipsoidal region
enclosing the inaccessible region. Prior to sampling, the ellipsoidal
region may be rotated to the polar cap or the equatorial belt depend-
ing upon the surface area available for placement of samples in each
case. Placement of the rings according to the proposed method re-
sults in accurate computation of the SHT. The numerical accuracy
of the proposed sampling scheme was analysed and gives promising
results. As an illustration we compute the SHT of the HRTF signal
using the proposed spatially-limited sampling method and note that
its accuracy has improved as compared to the existing schemes.
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