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ABSTRACT

We propose an antipodally symmetric sampling scheme of optimal
dimensionality for the sampling of band-limited signals. The pro-
posed scheme takes ∼L2 number of samples for the sampling of
spherical signal of band-limit L and the accurate computation of
its spherical harmonic transform (SHT). Since the number of sam-
ples are asymptotically equal to the degrees of freedom of the signal
in harmonic space, the proposed scheme attains optimal spatial di-
mensionality. We also formulate the SHT associated with proposed
sampling scheme. We employ the antipodal symmetry of the sam-
pling points that is exploited to separate the signal into antipodally
symmetric and asymmetric signals due to which the signal splits
in harmonic space into the signals of even and odd spherical har-
monic degrees. The exploitation of this splitting in the formulation
of the SHT makes our method computationally efficient by a factor
of four in comparison with the existing methods developed for sam-
pling schemes that attain optimal spatial dimensionality. We also
analyse the numerical accuracy of the proposed SHT by conducting
numerical experiments and show that the proposed sampling and its
associated SHT enable accurate signal reconstruction for band-limits
in the range 15 ≤ L ≤ 127.

Index Terms— 2-sphere, spherical harmonic transform, sam-
pling, signal reconstruction, band-limited signals

1. INTRODUCTION

Spherical signal processing finds applications in a variety of branches
of engineering and sciences including computer graphics [1], wire-
less communication [2], acoustics [3], medical imaging [4] and
cosmology [5]. In these applications, the signals are either in spatial
domain or spectral (harmonic) domain. Spectral domain is enabled
by the spherical harmonic transform (SHT) which serves as a coun-
terpart of Fourier transform for analysis of signals on the sphere.
To support harmonic domain analysis, the ability to compute spher-
ical harmonic transform of the signal from its measurements is of
significant importance. Since the acquisition of measurements is
time consuming, it is desirable to have a sample acquisition strategy
that takes the minimum possible number of samples for the accu-
rate computation of spherical harmonic transform, exhibits structure
in the placement of samples to facilitate the acquisition and has
spatially uniform distribution of samples.

Many sampling schemes on the sphere have been devised in the
literature (e.g., see [4, 6–11] and the references therein). A sam-
pling theorem is presented in [6] for the computation of the SHT of
the signal band-limited at L (defined in the next section) by taking
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samples on the equiangular grid of spatial dimensionality (asymptot-
ically) ∼4L2 (total number of samples). Another equiangular sam-
pling strategy is proposed in [7] that takes∼2L2 number of samples
for the exact computation of the SHT. The computational complexity
of the stable SHT associated with these sampling methods isO(L3).
Recently, an optimal dimensionality sampling scheme has been pro-
posed in [9] that takes optimal L2 number of samples equal to the
degrees of freedom of the band-limited signal in the harmonic space.
However, the computational complexity of the associated SHT is of
the orderO(L4) due to the series of matrix inversions involved in the
computation. The samples are placed in iso-latitude rings but appear
unstructured and asymmetric around the equator.

In this work, we make the following research contributions:
• We propose an antipodally symmetric sampling scheme of

asymptotic optimal dimensionality for the acquisition of
band-limited signals. For a signal band-limited at L, the
proposed scheme takes ∼L2 number of samples.

• We develop the transform associated with the proposed sam-
pling scheme for the accurate computation of the SHT. The
SHT developed in this work (having complexity of the order
O(L4)) is computationally efficient by a factor of four thanks
to the symmetry of placement of samples which is exploited
to reduce the size of the matrices required to be inverted for
the computation of the SHT.

• We also propose a method for iterative placement of rings of
samples along co-latitude and conduct numerical experiments
to analyse the accuracy of the SHT.

We organize the rest of the paper as follows. We review the
mathematical background related to signals on the sphere and sam-
pling in Section 2. Before we conclude the paper in Section 5, the
proposed sampling scheme is presented in Section 3 and the associ-
ated SHT is developed in Section 4, where we also present a method
to place the samples that enable accurate computation of the SHT
and analyse the accuracy of the SHT.

2. MATHEMATICAL PRELIMINARIES

2.1. Signals on the Sphere and Spherical Harmonics

We consider the complex-valued square integrable functions defined
on the unit sphere S2 of the form f(θ, φ), where the angles θ ∈ [0, π]
and φ ∈ [0, 2π) symbolise co-latitude and longitude respectively. θ
and φ parameterise a 3D point (sin θ cosφ, sin θ sinφ, cos θ)′ ∈
R3 on S2. These square integrable complex-valued functions form
a Hilbert space L2(S2) equipped with the inner product defined for
two functions f , g as [8]

〈f, g〉 ,
∫
S2
f(θ, φ)g(θ, φ) sin θ dθ dφ, (1)
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which induces a norm ‖f‖ , 〈f, f〉1/2. Here the integration is
carried out over the whole sphere and (·) denotes the complex con-
jugate operation. The functions with finite energy (induced norm)
are referred to as signals on the sphere.

2.2. Spherical Harmonic (Fourier) Domain Representation

For integer degree ` ≥ 0 and integer order |m| ≤ `, the spherical
harmonics, denoted by Y m` (θ, φ), serve as a complete orthonormal
set of basis functions for L2(S2) [8,12]. Due to the completeness of
the spherical harmonics, any signal f ∈ L2(S2) on the sphere can
expanded be as

f(θ, φ) =

∞∑
`=0

∑̀
m=−`

(f)m` Y
m
` (θ, φ), (2)

where (f)m` represents the spherical harmonic coefficient of degree
` and order m of the signal f . The coefficients (f)m` form the har-
monic domain representation of the signal and are given by the fol-
lowing spherical harmonic transform (SHT)

(f)m` = 〈f, Y m` 〉 =

∫ π

θ=0

∫ 2π

φ=0

f(θ, φ)Y m` (θ, φ) sin θdθdφ. (3)

We refer to the signal as band-limited at degree L if the signal can
be completely represented in terms of the spherical harmonic basis
functions Y m` (θ, φ) with ` < L and |m| ≤ `. For a signal band-
limited at L, the number of non-zero coefficients are L2.

2.3. Optimal Dimensionality Sampling Scheme

We here briefly review the optimal dimensionality sampling scheme
that enables accurate computation of spherical harmonic transform
of the signal band-limited at L using optimal number L2 samples of
the signal [9]. This scheme, denoted by S(L), for signals of band-
limit L take L iso-latitude rings of samples located at the positions
θn, n = 0, 1, . . . , (L − 1) along co-latitude. In the ring placed
at θn, the sampling grid takes 2n + 1 equiangular samples along
longitude for the accurate computation of the SHT. We note that the
total number of samples in S(L) is L2, that is equal to the number
of degrees of freedom required to represent a signal band-limited at
L.

3. ANTIPODALLY SYMMETRIC OPTIMAL
DIMENSIONALITY SAMPLING

3.1. Proposed Sampling Scheme — Structure and Design

We propose to place L+ 1 iso-latitude rings (of samples) symmetric
around the equator (θ = π/2). With this consideration, we define
the vector θ containing the location of these L+ 1 iso-latitude rings
as

θ , [θ0, π − θ0, . . . , θL−3, π − θL−3, θL−1, π − θL−1], (4)

for odd L and

θ , [θ0, π − θ0, . . . , θL−4, π − θL−4, θL−2, π − θL−2, π/2],
(5)

for even L. Here θ0 = 0 for both odd and even band-limits and θn
denotes the n-th entry in the vector θ. We shortly present the loca-
tion of the remaining rings along the co-latitude. We note that the
placement of rings is symmetric around equator. In the iso-latitude

ring placed at θn, we propose to place the samples along φ as

φnk ,

{
2kπ
2n+1

, n = 0, 2, . . . , L− 1, k ∈ [0, 2n],
π(2k+1)
2n−1

, n = 1, 3, . . . , L, k ∈ [0, 2(n− 1)],
(6)

for odd L and

φnk ,

{
2kπ
2n+1

, n = 0, 2, . . . , L− 2, k ∈ [0, 2n],
π(2k+1)
2n−1

, n = 1, 3, . . . , L− 1, k ∈ [0, 2(n− 1)],

(7)

including 2L−1 equiangular samples along φ on the ring θL = π/2
for even L. We use EL and OL to denote the sampling schemes
defined above for even and odd L respectively.
Antipodal Symmetry of Sampling Points: We note that the sam-
ples along φ in the proposed sampling schemes are placed such that
the samples in the ring located at θn are antipodal to the samples in
the ring located at θn−1, that is, (θn−1, φ

n−1
k ) = (π−θn−1, π+φnk )

for n = 2, 4, . . . , L−1. As an example, Fig. 2 shows the proposed
sampling scheme for L = 21.
Number of Points: The total number of samples in the proposed
sampling schemes is given by

2

L−1∑
n=0
neven

(2n+ 1) = L2 + L, L odd. (8)

2L− 1 + 2

L−2∑
n=0
neven

(2n+ 1) = L2 + L− 1, L even. (9)

We note that the proposed sampling schemes for odd and even band-
limits take the optimal number of samples asymptotically. Optimal
number of samples is L2 given by the degrees of freedom of the
band-limited signal in harmonic space.

4. SPHERICAL HARMONIC TRANSFORM

We develop an algorithm for the computation of the spherical har-
monic transform of the signal band-limited at L from its samples
taken using the proposed sampling scheme. Following the philoso-
phy proposed in [9], we here present the spherical harmonic trans-
form algorithm for the case when the band-limit of the signal is odd.
For signals with even band-limits, an equivalent formulation can be
developed.

We assume that the samples of the band-limited signal f ∈ HL
are taken on the scheme OL proposed in the previous subsection.
Exploiting the antipodal structure of the sampling scheme, we first
split the band-limited signal f into antipodally symmetric (fs) and
antipodally asymmetric signals fa given by

fs(θn, φn) =
1

2

(
f(θn, φn) + f(π − θn, π + φn)

)
, (10)

fa(θn, φn) =
1

2

(
f(θn, φn)− f(π − θn, π + φn)

)
(11)

for all (θn, φn) ∈ OL. It is trivial to show that f = fs + fa. Due to
the antipodal symmetry and asymmetry of the spherical harmonics
of even and odd degrees respectively, we have the following expan-
sion of fs and fa

fs(θn, φn) =

L−1∑
`=0,` even

(f)m` Y
m
` (θn, φn), (12)

fa(θn, φn) =

L−2∑
`=1,` odd

(f)m` Y
m
` (θn, φn). (13)
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Fig. 1: Representation of non-zero coefficients of the signal band-
limited at odd degree L. The coefficients of the symmetric signal
fs and asymmetric signal fa are indicated as black and blue dots
respectively.

The separation of the signal into antipodally symmetric and asym-
metric signals enabled by the proposed sampling structure also splits
the signal in the harmonic space into even degree harmonics and odd
degree harmonics respectively. We illustrate this in Fig. 1, where we
plot the spectral domain of the band-limited signal and indicate the
non-zero coefficients of antipodally symmetric (even degrees, black
solid dots) and antipodally asymmetric (odd degrees, blue dots).

4.1. Formulation of Spherical Harmonic Transform (SHT)

To formulate the SHT, we first define an iso-latitude transform, that
is, the Fourier transform along φ for symmetric and asymmetric sig-
nals as

sGm(θ) ,
∫ 2π

0

fs(θ, φ)e−imφdφ (14)

= 2π

L−1∑
`=2d|m/2|e,` even

(f)m` Ỹ
m
` (θ), (15)

aGm(θ) ,
∫ 2π

0

fa(θ, φ)e−imφdφ (16)

= 2π

L−2∑
`=2b|m/2|c+1,` odd

(f)m` Ỹ
m
` (θ), (17)

where Ỹ m` (θ) , Y m` (θ, 0). We also define vectors sfm and afm as

sfm =
[
(f)m2d|m/2|e, (f)m2d|m/2|e+2, . . . , (f)mL−1

]
, (18)

afm =
[
(f)m2b|m/2|c+1, (f)m2b|m/2|c+3, . . . , (f)mL−2

]
, (19)

containing m-th order spherical harmonic coefficients of even de-
grees and odd degrees respectively. Be defining

sgm = [sGm(θ2d|m/2|e), sGm(θ2d|m/2|e+2), . . . , sGm(θL−1)],

agm = [aGm(θ2d|m/2|e), aGm(θ2d|m/2|e+2), . . . , aGm(θL−1)],

for each |m| < L, we can express sgm using the formulation of
sfm, which respectively contains spherical harmonic coefficients of
order |m| < L and even degrees m ≤ ` < L and iso-latitude
transforms of order |m| < L evaluated along the rings placed at
θ2d|m/2|e, θ2d|m/2|e+2, . . . , θL−1, we can write (14) as

sgm = 2πsP
m
L fm, |m| ≤ L, (20)

where sPm
L , containing Ỹ m` (θn) consistent with the formulation of

sGm(θ) in (14), is a square matrix of number of rows (or columns)
equal to (L− 2d|m/2|e+ 1)/2. We can similarly express agm as

agm = 2πaP
m
L fm, |m| ≤ L. (21)

Using (20) and (21) for each order |m| < L, we can recover the
spherical harmonic coefficients of orderm and even and odd degrees
respectively provided the rings are placed such that sPm

L and aP
m
L

are well-conditioned (invertible) and iso-latitude transform along φ
can be computed accurately. For the structure of the samples along φ
of the proposed sampling scheme, an iso-latitude transform sGm(θ)
and aGm(θ) can be computed accurately by taking FFT over the
samples of symmetric and asymmetric signals respectively.

Remark 1. We note that the computation of the spherical harmonic
coefficients, that is, the spherical harmonic transform using the for-
mulation proposed above requires the inversion of matrices sP

m
L

and aP
m
L for each |m| < L. Therefore the computational complex-

ity of the proposed transform is (O(L4)) equal to the complexity of
the transform associated with optimal dimensionality sampling with-
out antipodal symmetry [9]. Although we require twice the number
of matrices to be inverted, the size of the matrices in our formulation
is half the size of matrices required to be inverted for the computa-
tion of SHT proposed in [9]. We therefore note the improvement in
the SHT computation time by a factor of (approximately) 4 using the
proposed scheme.

4.2. Placement of Rings of Samples along Co-latitude

We now present a method to place the rings of samples along co-
latitude, that is, we determine positions indexed in (4) such that the
matrices sPm

L and aP
m
L are well-conditioned. We first note that ei-

ther sPm
L or aP

(m−1)
L depend on θ2d|m/2|e, θ2d|m/2|e+2, . . . , θL−1

and sP
−m
L = (−1)msP

m
L and aP

−m
L = (−1)maP

m
L .

Since the locations of the rings indexed in θ given in (4) appear
in pairs due to the antipodal symmetry of the proposed sampling
scheme, we are only required to find the locations of the rings in the
Northern hemisphere (θ ∈ [0, π/2)). We take a set of equiangular
M > L samples in the Northern hemisphere along co-latitude given
by

Θ =

{
π(t)

2M

}
, t = 0, 1, . . . ,M − 1. (22)

We propose the following method to iteratively place the rings of
samples along co-latitude.
• Choose θL−1 = π(M − 1)/2M , that is the farthest sample

from the poles in the set Θ from the poles.
• For eachm = L−3, L−5, . . . 2, choose θm from the set Θ

such that sum of the condition numbers of the four matrices
sP

m, sPm−1, aPm−1 and aP
m−2 is minimized.

• Choose the last ring location θ0 = 0.
As an example, we plot the sampling positions on the sphere for
L = 21 in Fig. 2, where we use M = 15L equiangular points in
the set Θ. Such placement ensures that the SHT can be accurately
computed by taking samples using the proposed sampling scheme
and the associated SHT developed in the previous section.
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(a)

(b)

Fig. 2: Samples of the proposed sampling schemes are plotted for
L = 21 with (a) North pole view and (b) South pole view. The
points in the Northern hemisphere are are shown in black and the
antipodally symmetric points in the Southern hemisphere are shown
in blue.

4.3. Numerical Accuracy Analysis

We analyse the accuracy of the SHT developed for the proposed sam-
pling scheme in this section. To evaluate the numerical accuracy, we
obtain a band-limited test signal ft for band-limit 15 ≤ L ≤ 127
in the harmonic domain by generating its spherical harmonic coeffi-
cients (ft)

m
` for 0 < ` < L with real and imaginary parts uniformly

distributed in the interval [−1, 1]. We then use (2) to obtain the sig-
nal at the samples of proposed sampling schemes EL or OL. We
then apply the proposed SHT to compute the spherical harmonic co-
efficients, denoted by (fr)

m
` , of the reconstructed signal. We repeat

this test 10 times for each band-limit and compute the average values
for the maximum error Emax and the mean error Emean, given by

Emax , max |(ft)m` − (fr)
m
` |, (23)

Emean ,
1

L2

L−1∑
`=0

∑̀
m=−`

|(ft)m` − (fr)
m
` |, (24)

which are plotted in Fig. 3 over the range of band-limits, where it is
evident that the proposed transform enables accurate computation of
SHT with errors on the order of machine (double) precision.

5. CONCLUSIONS

In this work we have proposed an antipodally symmetric sampling
scheme on the unit-sphere for the sampling of band-limited signals.
Using the proposed scheme, the accurate computation of the spher-
ical harmonic transform (SHT) can be done by taking ∼L2 number
of samples of the signal with band-limit L. The proposed scheme
attains optimal spatial dimensionality because the number of sam-
ples are asymptotically equal to the degrees of freedom of the sig-
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Fig. 3: Plots of the maximum error Emax and the mean error Emean,
given in (23) and (24) respectively, for band-limits 15 ≤ L ≤ 127.

nal in harmonic space. While formulating the SHT associated with
the proposed sampling scheme, we used the antipodal symmetry of
the sampling points. This separates the signal into antipodally sym-
metric and asymmetric signals due to which the signal also splits in
harmonic space into the signals of even and odd spherical harmonic
degrees. This type of splitting allows our method to be computation-
ally efficient by a factor of four as compared to the existing sampling
schemes that attain optimal spatial dimensionality. To analyse the
numerical accuracy of the proposed SHT, we conducted numerical
experiments and showed that the proposed sampling and its asso-
ciated SHT enable accurate signal reconstruction for signals in the
band-limit range 15 ≤ L ≤ 127.
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