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ABSTRACT

In this paper, we consider the problem of signal extrapolation for
discrete (i.e., sampled) signals on the sphere. We propose conjugate
gradient based algorithm for estimating a signal on the sphere from
limited or incomplete measurements in a spatial domain. We prove
that the proposed algorithm is guaranteed to converge and show that
it has faster convergence compared to the Papoulis algorithm. The
results also show that the incomplete measurements distributed in
different non-connected spatial regions yield better extrapolation
results, compared to the connected region case.

Keywords: unit sphere, signal extrapolation, bandlimited signals,
spherical harmonics.

1. INTRODUCTION

Signal extrapolation, i.e., finding an estimate of a signal outside its
given observation interval, is an important problem in signal pro-
cessing [1]. In this regard, because of the difficulty associated with
practical implementation of analytic methods such as Slepian’s pro-
late spheroidal wave functions [1], iterative algorithms are generally
preferred. For time-frequency analysis, an iterative algorithm was
first proposed by Papoulis [2] for continuous signals and later ex-
tended to discrete signals [1]. The Papoulis algorithm is based on
the principle of reducing the mean-square error between the esti-
mated and the original (limited or incomplete) signal at successive
iterations.

Recently, the Papoulis algorithm was revisited for continuous
signals on the sphere [3–5]. An analogue of the Papoulis algorithm
for continuous signals on the sphere, using the bandlimiting charac-
teristic of a given signal, is proposed in [3,4] and its integral equation
formulation is provided in [5]. For discrete (i.e. sampled) signals on
the sphere, an iterative gradient algorithm which converges to the
minimum norm least square solution is proposed in [4, 6]. However,
this algorithm has linear convergence rate and it updates the samples
of the extrapolated signal over the complete spatial domain at every
iteration which makes it very computationally intensive.

In this work, we consider the problem of signal extrapolation for
discrete (i.e., sampled) signals on the sphere. We use the equiangu-
lar sampling on the sphere [7], which has the property that an exact
quadrature rule can be applied, and formulate the matrix representa-
tion of the extrapolation problem. We first present a modified iter-
ative gradient algorithm which only updates the samples of a signal
which are known at each iteration, thus reducing the computational
complexity compared to the algorithm in [4, 6]. This modified it-
erative gradient algorithm is used as a benchmark in this paper. We
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then propose conjugate gradient based algorithm and show that it has
faster convergence compared to the modified iterative gradient algo-
rithm. We also show that the extrapolation yields better results when
incomplete measurements are distributed in different non-connected
spatial regions as opposed to a connected region.

The rest of the paper is organized as follows. The signal model is
explained in Section 2. The matrix problem formulation is discussed
in Section 3. The modified iterative gradient algorithm and the pro-
posed conjugate gradient algorithm are presented in Section 4. The
algorithm performance is illustrated in Section 5. Finally Section 6

concludes the paper. Notation: (·), (·)T and (·)H denotes the com-
plex conjugate, transpose and Hermitian operations, respectively.
Lowercase bold symbols correspond to vectors whereas uppercase
bold symbols denote matrices.

2. MATHEMATICAL BACKGROUND
2.1. Signals on the Unit Sphere

Let f(θ, φ) be a signal on the sphere, where θ ∈ [0, π] and φ ∈
[0, 2π) denote the co-latitude and longitude, respectively. The spher-
ical harmonics form basis functions on the sphere. Therefore, any
signal f(θ, φ) can be expanded as [8]

f(θ, φ) =
∞∑
�=0

�∑
m=−�

fm
� Y m

� (θ, φ) (1)

where fm
� are the spherical harmonic coefficients given by

fm
� � 〈f, Y m

� 〉 =
∫
S2

f(θ, φ)Y m
� (θ, φ) sinθdθdφ (2)

and the spherical harmonics, Y m
� (θ, φ), for degree � ≥ 0 and order

|m| ≤ � are defined as [8]

Y m
� (θ, φ) =

√
2�+ 1

4π

(�−m)!

(�+m)!
Pm
� (cos θ)eimφ

(3)

where Pm
� are the associated Legendre polynomials [8].

2.2. Discrete Signals on the Sphere

We consider discrete (i.e., sampled) signals on the sphere using
equiangular sampling across both latitude and longitude [7]. For
a discrete bandlimited signal with maximum spherical harmon-
ics degree L, we consider N samples on the sphere consisting of√
N × √

N equiangular samples along θ and φ. We assume
√
N

is an integer and greater than 2(L + 1) which is the equivalent of
Nyquist-Shannon sampling limit for a bandlimited signal [7].

Let x̂ = [x̂1, x̂2, · · · , x̂N ] denote the samples on the sphere,
which can be in any order. Each sample x̂n = (θj , φk) with θj =
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πj/
√
N , φk = 2πk/

√
N for 1 ≤ n ≤ N , 1 ≤ j ≤ √

N and

1 ≤ k ≤ √
N corresponds to a sample on the equiangular grid. We

define the discrete signal f on the sphere as

f � [f(x̂1), f(x̂2), · · · , f(x̂N )]T (4)

and spherical harmonic vector Ym
� sampled at (x̂) as

Ym
� = [Y m

� (x̂1), Y
m
� (x̂2), · · · , Y m

� (x̂N )]T (5)

Since, we have considered the number of samples above the Nyquist-
Shannon limit, we can exactly obtain the spherical harmonic coeffi-
cient fm

� in (2) as

fm
� = (Ym

� )H Wf (6)

where W is a diagonal matrix of size N × N which denotes the
weight that must be multiplied with each sample to compensate for
the dense sampling due to the use of equiangular sampling on the
sphere. Note that the diagonal entries Wnn are independent of the
longitude component φk of a sample x̂n and depend only on the
latitude component θj and the number of samples N . For

√
N a

power of 2, the entries Wnn are given by [7]

Wnn =
2
√
4π

N
sin θj

√
N/2−1∑
q=0

1

2q + 1
sin ([2q + 1]θj) (7)

where j = 1, . . . ,
√
N and x̂n = (θj , φk).

3. PROBLEM FORMULATION

In this section we present the matrix formulation of the signal ex-
trapolation problem on the sphere. We also summarise the iterative
gradient algorithm in [6].

Let f denote the bandlimited discrete signal on the sphere with
the maximum spherical harmonic degree L, defined in (4) with N the
number of samples. Let g = [g(x̂1), g(x̂2), · · · , g(x̂R)]

T denote
the given spatial-limited signal of R samples on the sphere such that

g(x̂u) = f(x̂u) 1 ≤ u ≤ R. (8)

The extrapolation objective is to find the N −R remaining samples
on the sphere using the bandlimited characteristic of the signal.

3.1. Matrix Operators for Spatial and Spectral Selection

Define the matrix operator D = {Du,v} of size R×N given by

Du,v =

{
1 , 0 ≤ u = v ≤ R

0 , otherwise
(9)

which selects the first R samples of a signal consisting of N sam-
ples. Note that the matrix operator DT appends N −R zeros to the
R sample measured signal. Also define the matrix operator BL of
size N ×N which bandlimits the signal within maximum spherical
harmonics degree L as

BL = BW (10)

where W is the diagonal matrix with entries defined in (7) which
compensates for the dense sampling near the poles and B = {Bu,v}
is a real symmetric matrix of size N ×N [6] as

B =
L∑

�=0

�∑
m=−�

Ym
� (Ym

l )H (11)

Note that, compared to the case of continuous signals on the sphere,
the spectral selection operator BL is idempotent and positive defi-
nite but non-symmetric for discrete signals because of the weights
associated with the choice of equiangular tessellation.

Using the above operators, we can relate the bandlimited signal
f and the known spatial-limited signal g as

g = DBLf (12)

3.2. Papoulis Algorithm in [4]

Using the matrix operators defined in the previous subsection, the
iterative gradient algorithm for discrete signals on the sphere in [6]
can be expressed as

f+d+1 = f+d +BLD
Tg −BLD

TDf+d , f+0 = 0 (13)

where f+d denotes the extrapolated signal obtained after the dth iter-
ation.

The above algorithm iteratively makes the signal more and more
bandlimited such that it keeps the known signal as a part of the ex-
trapolated signal. It updates the signal vector during each iteration
thus it updates N samples at each iteration. Also it converges to the
signal f in the minimum norm least-squares (MNLS) sense.

4. PROPOSED ALGORITHMS

4.1. Modified Iterative Gradient Algorithm

We first present a modified iterative gradient algorithm as a two step
process: the first step is iterative which updates only R samples
at each iteration and obtains the extrapolated non-bandlimited sig-
nal. The second step is spectral truncation of the extrapolated non-
bandlimited signal to obtain the extrapolated signal of N samples.
The algorithm is summarized in the Lemma below.

Lemma 1 (Modified Iterative Gradient Algorithm). If g+
d denote the

spatial-limited signal of R samples which is updated at each iteration
as

g+
d+1 = g+

d g −DBLD
Tg+

d , g0 = 0 (14)

then the extrapolated signal f+d after the dth iteration in (13) can be
obtained by bandlimiting the signal g+

d in the spectral domain as

f+d = BLD
Tg+

d (15)

Proof. Multiplying both sides of (14) by BLD
T yields

BLD
Tg+

d+1 = BLD
Tg+

d +BLD
Tg −BLD

TDBLD
Tg+

d

(16)

which can be shown to be equivalent to the iterative algorithm in (13)
using (15).

Remark 1. Using the modified iterative gradient algorithm, we can
obtain the extrapolated signal f+d by updating only R samples of a
signal at each iteration instead of N samples as proposed in (13).
Thus the computational complexity at each iteration is reduced.
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4.2. Conjugate Gradient Algorithm

The iterative gradient algorithms in (13) and Lemma 1 have linear
convergence rate and a large number of iterations are required in
order to obtain an extrapolated signal close to the original signal in
the MNLS sense [9]. In order to improve the convergence rate, we
present conjugate gradient algorithm, which is summarized below.

Theorem 1 (Conjugate Gradient Algorithm). The spatial-limited
signal g+

d composed of R samples is updated at each iteration using
the conjugate gradient algorithm as

g+
d+1 = g+

d + αdsd, g0 = 0 (17)

hd = DBLD
Tg+

d − g (18)

βd = hT
d+1sd/(s

T
d DBLD

T sd) (19)

sd+1 = −hd+1 + βdsd (20)

αd = −hT
d sd/(s

T
d DBLD

T sd) (21)

where hd and sd are spatial-limited signals consisting of R samples
for d = 0, 1, · · · , R− 1, with initial values h0 = −g and s0 = g.
The extrapolated signal f+d is obtained as

f+d = BLD
Tg+

d (22)

which converges to the signal f in MNLS sense in at most R itera-
tions.

Proof. The iterative algorithm in (17)-(21) corresponds to the conju-
gate gradient algorithm [10] associated with the minimization prob-
lem

min
g+

‖(g+)TDBLD
Tg+ − (g+)Tg‖ (23)

which has a unique solution g+ = (DBLD
T )−1g. This means

that g+
d converges to g+ in R iterations and the extrapolated signal

in (22) converges to BLD
T (DBLD

T )−1g which is closest to the
signal f in MNLS sense.

Remark 2. While it is possible to find the unique MNLS solution
g+ = (DBLD

T )−1g directly, it is not feasible practically because
DBLD

T becomes increasingly ill-conditioned as R increases, de-
spite the fact that BL is positive definite. Hence an iterative ap-
proach is preferred.

Remark 3. Note that the above formulation assumes that the signal
is bandlimited between spherical harmonic degree 0 and the maxi-
mum spherical harmonic degree L. If the signal is bandlimited be-
tween spherical harmonic degree L1 and L2, the spectral selection
operator BL in (9) can be properly modified to account for this case.

5. SIMULATION EXAMPLES

In this section, we present simulation examples to illustrate the per-
formance of the proposed conjugate gradient algorithm. The mod-
ified iterative gradient algorithm is adopted as the benchmark for
comparison. To illustrate the convergence performance of the pro-
posed algorithm, we study the percentage absolute error Ed between
the extrapolation and the actual signal after successive iterations, de-
fined as

Ed =
|f+d − f |

|f | (24)

Fig. 1. The global signal f defined in Section 5.

where |( · )| denotes the l1 norm of a vector.

Consider the bandlimited signal f =
∑10

�=0

∑�
m=−� Y

m
� , com-

prising of N = 65536 samples on the sphere as shown in Fig. 1. We
study the extrapolation problem for this signal from the incomplete
spatial-limited signal g known only at all the samples in a region R
for the following three cases:

• Example 1: R = {0 ≤ θ ≤ π/4, 0 ≤ φ ≤ 2π} with
R/N = 0.25.

• Example 2: R = {0 ≤ θ ≤ π/8, 0 ≤ φ ≤ 2π ∧ π/4 ≤
θ ≤ π/2, π ≤ φ ≤ 5.07} with R/N = 0.20.

• Example 3: R = {0 ≤ θ ≤ π/8, 0 ≤ φ ≤ 2π ∧ π/4 ≤
θ ≤ π/2, 2.35 ≤ φ ≤ 3.32 ∧π/4 ≤ θ ≤ π/2, 3.93 ≤ φ ≤
4.89} with R/N = 0.20.

Note that the area of the region R in all three examples is the same,
which means that the ratio of the known signal information to the
information in the global signal is same. However, the region R
in Examples 2 and 3 is the union of two and three non-connected
regions, respectively.

For the examples 1, 2 and 3, the extrapolated signal f+d is ob-
tained using the modified iterative gradient algorithm and the pro-
posed conjugate gradient algorithm and the error is calculated us-
ing (24). The results are plotted in Figs, 1, 2 and 3 respectively. It
can be seen from the figures that the conjugate gradient algorithm
has faster convergence rate and smaller error than the modified itera-
tive gradient algorithm. Comparing the results in Figs. 2(d), 3(d) and
4(d), it is evident that the error Ed for either of the modified iterative
gradient algorithm or conjugate gradient algorithm is smaller if the
signal is known over different spatial regions. In addition, the error
decreases as the number of non-connected spatial regions increases
from 2 to 3.

Further exploring this fact, we extrapolate the signal f in Fig. 1
from a spatial-limited signal g obtained by selecting R = 128 ran-
dom samples of the signal f of N = 1024 samples over the complete
sphere i.e., overall we use lesser number of samples compared to ex-
amples 1 − 3. It is found that the error reduces to below 10−11 in
only d = 20 iterations for the conjugate gradient algorithm. This
is an interesting observation which is of practical importance that
the incomplete measurements distributed in different non-connected
spatial regions yield better and faster extrapolation results.

6. CONCLUSIONS AND FUTURE WORK

In this work, we have studied the extrapolation problem for discrete
signals on the sphere. Using the formulation of spatial and spectral
selection operators on the sphere for the discrete signals, we have
presented a modified iterative gradient algorithm which only updates
the known number of samples of a signal and thus has reduced com-
putational complexity compared to the algorithm in [6]. We have
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Fig. 2. (a) Known spatial-limited signal DTg in region R defined in example 1, Extrapolated signal f+d for d = 60 using (b) gradient
algorithm and (c) conjugate gradient algorithm and (d) percentage absolute error Ed.
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Fig. 3. (a) Known spatial-limited signal DTg in region R defined in example 2, Extrapolated signal f+d for d = 60 using (b) gradient
algorithm and (c) conjugate gradient algorithm and (d) percentage absolute error Ed.
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Fig. 4. (a) Known spatial-limited signal DTg in region R defined in example 3, Extrapolated signal f+d for d = 60 using (b) gradient
algorithm and (c) conjugate gradient algorithm and (d) percentage absolute error Ed.

also proposed conjugate gradient algorithm to improve the conver-
gence rate. Both algorithms converge to the MNLS solution of the
extrapolation problem. Finally, we have provided examples to illus-
trate the improved performance of proposed algorithm. We remark
here that we have considered the problem where the spatial-limited
components of a signal are not corrupted with noise. We indicate the
more practical consideration of the problem in the presence of noise
as future work.
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