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Abstract—In this paper we give a general expression for the 3D
spatial correlation experienced between two sensors in 3D-space
for the class of normalized power distributions (representing
farfield multipath sources) having a rotational symmetry about
their mean direction axis. A general expansion for the 3D
spatial correlation is presented and interpreted in terms of an
associated eigenfunction equation. This enables us to develop
closed-form coefficient expressions for the spatial correlation
for a number of distributions such as the Gauss-Weierstrass
kernel based distribution and the previous known results for the
von Mises-Fisher power distribution. Analytical results generated
fully account for the effect of varying in the relative orientation
between the sensors in 3D and the power distribution mean
direction which can be arbitrarily oriented. The results provide
information on placement of sensors to reduce correlation effects.

Index Terms—wireless channel, spatial correlation, multipath,
von Mises distribution, von Mises-Fisher distribution, Gauss-
Weierstrass distribution, spherical harmonics.

I. INTRODUCTION

General expressions for the spatial correlation between two
sensors for arbitrary multipath power distributions were given
in [1] for both the 2D case which restricts sensors and multi-
path to the horizontal plane and the unrestricted 3D case. The
3D case permits multipath to arrive with different elevations
and azimuths, and the sensors to be at different heights and
orientations. In the 2D case, closed-form expressions were
given for the coefficients of number of multipath distributions:
uniform, uniform azimuth limited [2], power of cosine [3],
von Mises [4], truncated gaussian [5], truncated Laplacian
[6], etc., in a spatial correlation expansion which converges
rapidly. These 2D multipath distributions have the property
that they are symmetric about their mean direction of arrival.
For other distributions one can resort to numerical integration
methods to compute the spatial correlation but there is a
clear preference for analytical results where the effects of
parameters is revealed.

For the 3D case, which is our focus in this paper also,
a general expression was given in [1] which identified the
spherical harmonic coefficients of the multipath power distri-
bution with the coefficients used in an expansion for the spatial
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correlation. Then to obtain a closed-form coefficient spatial
correlation expansion one only needs to find expressions for
the power distribution which admit suitable expansions in
spherical harmonics or Legendre polynomials. In [1] two
examples were given of such a procedure, the first was the
well-known omnidirectional case which leads to the famous
sinc spatial correlation

ρ(z1 − z2) =
sin
(
k|z1 − z2|

)

k|z1 − z2|
where k = 2π/λ, λ is the wavelength and |z1 − z2| is the
euclidean distance between spatial points z1 and z2. Because
of the zero crossings, this formula can be seen as a theoretical
basis for the half wavelength, λ/2, sensor spacing rule-of-
thumb. The other example given in [1] was for multipath
that was uniformly distributed over a limited range of ele-
vations, which is somewhat contrived and unlikely to have
practical significance. More recently, it was shown that the 3D
von Mises-Fisher distribution admits a suitable closed-form
expansion in spherical harmonics in the form of a recursion [7]
and in closed-form using half-integer-order modified Bessel
functions of the first kind in [8]. This latter case is a direct
3D analog of the 2D von Mises distribution case developed in
[1], which uses integer-order modified Bessel functions of the
first kind.

The von Mises-Fisher distribution has rotational symme-
try about its mean direction which can have both azimuth
and elevation components. This rotational symmetry is the
key attribute that permits simplification and we exploit this
to develop results for distributions more general than the
von Mises-Fisher distribution.

Similarly we make no restriction on the placement of the
sensors in 3D space. It is this type of distribution which we
target so as to develop analytical results where the effect of
various parameters can be revealed.

In this paper, we develop a general expression for the spatial
correlation for 3D distributions having rotational symmetry
about some axis including as a special case the von Mises-
Fisher distribution. Firstly, the general expression reveals
features and therefore insights in common to all cases. Then
for a number of special cases, reflecting distributions more
realistic in nature, we provide closed-form expressions for the
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spatial correlation from which it is possible to characterize
convergence.

II. ROTATIONALLY SYMMETRIC DISTRIBUTIONS

A distribution f(x̂; µ̂) on the 2-sphere, denoted S2, with
random unit vector x̂ ∈ S2 with rotational symmetry about
some axis µ̂ ∈ S2, see Fig. 1, can be written in terms of a
real-valued univariate function

f(z), defined on z ∈ [−1,+1]

as follows
f(x̂; µ̂) = f(x̂ · µ̂). (1)

If η̂ ∈ S2 denotes the north pole, then a symmetric function
f(x̂; η̂) = f(x̂ · η̂) is called azimuthally symmetric.

The requirements to be a valid distribution (with equivalent
conditions on the univariate function) are: and non-negativity:

f(x̂; µ̂) ≥ 0, ∀x̂ ∈ S2 ⇐⇒ f(z) ≥ 0, ∀z ∈ [−1,+1]. (2)

and normalization
∫

S2
f(x̂; µ̂) ds(x̂) = 1 ⇐⇒ 2π

∫ +1

−1
f(z) dz = 1 (3)

where ds(x̂) = sin θ dθ dϕ is the uniform surface measure on
the 2-sphere (see Appendix A). The equivalence in (3) can be
proven with change of variables and the substitution z = x̂·µ̂.

Example: The von Mises-Fisher distribution on 2-sphere
can be defined in terms of the univariate function

fκ(z) ,
κ exp(κ z)

4π sinhκ
, z ∈ [−1,+1], (4)

leading to

f(x̂; µ̂, κ) = fκ(x̂ · µ̂)

,
κ exp(κ x̂ · µ̂)

4π sinhκ
(5)

where µ̂ ∈ S2 is the mean direction, κ ≥ 0 is the concentration
parameter, x̂ ∈ S2 is a random unit vector on the 2-sphere,
and the remaining terms serve to normalize the distribution.

III. SPHERICAL HARMONIC EXPANSION

Appendix A gives the definition of spherical harmonics,
inner product, and related concepts used below. The objective
will be to provide the spherical harmonic coefficients and
spherical harmonic expansion of a rotationally symmetric
function on the 2-sphere with axis of symmetry µ̂ ∈ S2, and
this task is simplified by the addition theorem of the spherical
harmonics [9], [10]

∑̀

m=−`
Y m` (x̂)Y m` (µ̂) =

(2`+ 1)

4π
P`(x̂ · µ̂). (6)

So we expand the univariate function f(·) in terms of Legen-
dre polynomials with adjustments to directly exploit (6) and
simplify later development:

f(z) =
1

4π

∞∑

`=0

(2`+ 1)λ`P`(z), (7)

η̂ ∈ S2 x ≡ x(r, θ, ϕ) ∈ R3

θ

ϕ

•

•

r ≡ |x|

•

x̂ ≡ x̂(θ, ϕ) ∈ S2

µ̂ ∈ S2

S2

•

••

x y

z

Fig. 1: Coordinate system showing a point in 3D space x, a
unit vector x̂, which lies on the 2-sphere, S2, and the spherical
polar coordinate system with θ ∈ [0, π] the co-latitude, ϕ ∈
[0, 2π) the longitude and r ≡ |x| the radius.

where the eigenvalues are (the terminology will be justified
later)

λ` = 2π

∫ +1

−1
f(z)P`(z) dz. (8)

Since f(z) is real-valued then λ` is also real-valued but can
positive, negative or zero. With ` = 0 in (8) then we recover
(3). This means the normalization is equivalent to λ0 = 1.

So combining (6), (8) into (7) we can infer the spherical
harmonic expansion of any symmetric distribution

f(x̂; µ̂) = f(x̂ · µ̂) =
∞∑

`=0

∑̀

m=−`
λ` Y m` (µ̂)Y m` (x̂),

which is of the general form of a spherical harmonic expansion

f(x̂; µ̂) =

∞∑

`=0

∑̀

m=−`
(fµ̂)

m
` Y

m
` (x̂), (9)

where the spherical harmonic coefficients are

(fµ̂)
m
` ,

〈
f(· ; µ̂), Y m`

〉
= λ` Y m` (µ̂). (10)

So in summary, given a distribution f(x̂; µ̂) with axis of
symmetry in some direction µ̂ ∈ S2 then the formula to
determine the spherical harmonic coefficients is (10) which
requires us to compute the eigenvalues (8) from the associated
univariate function f(z).

A. Properties and Examples

Example 1: von Mises-Fisher Distribution: The eigenvalues
for the von Mises-Fisher distribution are

λ`(κ) = 2π

∫ +1

−1
fκ(z)P`(z) dz. (11)

where the univariate function is given in (4). This expression
can be computed recursively as shown in [7]

λ`+1(κ) = λ`−1(κ)−
(2`+ 1)

κ
λ`(κ), ` = 1, 2, . . . .



with initial values λ0(κ) = 1 and λ1 = (κ) = cothκ − 1/κ,
leading to

{
λ`(κ)

}∞
`=0

=
{
1, cothκ− 1

κ
,
κ2 − 3κ cothκ+ 3

κ2
, . . .

}
.

Further, it can be established that λ`(κ) > 0, for all ` =
0, 1, 2, . . . , and for all κ ≥ 0 [10, p.394]. In [8], [11], [12] it
was shown that these coefficients can also be expressed as

λ`(κ) =
I`+1/2(κ)

I1/2(κ)
=

√
πκ

2

I`+1/2(κ)

sinhκ

where I`+1/2(·) is a half-integer-order modified Bessel func-
tion of the first kind.

With the above, the spherical harmonic coefficients are

(fµ̂,κ)
m
` ,

〈
f(· ; µ̂, κ), Y m`

〉
=
I`+1/2(κ)

I1/2(κ)
Y m` (µ̂), (12)

and the spherical harmonic expansion is

κ exp(κ x̂ · µ̂)
4π sinhκ

=
∞∑

`=0

∑̀

m=−`

I`+1/2(κ)

I1/2(κ)
Y m` (µ̂)Y m` (x̂).

Example 2: Azimuthally Symmetric Distribution: Aligning
the axis of symmetry with the z-axis or north pole means
setting µ̂ = η̂ , [0, 0, 1]′. Spherical harmonics for m = 0
also have rotational symmetry about the z-axis and these are
the only terms that are required in the spherical harmonic
expansion as we now show.

We use the simple identity (using the definitions given in
Appendix A):

Y m` (η̂) =

√
2`+ 1

4π
δm,0.

Then

(fη̂)
m
` ,

〈
f(· ; η̂), Y m`

〉
= λ` Y m` (η̂) = λ`

√
2`+ 1

4π
δm,0

and so the spherical harmonic expansion is

f(x̂; η̂) = f(x̂ · η̂) =
∞∑

`=0

∑̀

m=−`
(fη̂)

m
` Y

m
` (x̂)

=

∞∑

`=0

∑̀

m=−`
λ`

√
2`+ 1

4π
δm,0 Y

m
` (x̂)

=

∞∑

`=0

√
2`+ 1

4π
λ` Y

0
` (x̂)

which can also be expressed in terms of Legendre polynomials
equivalent to (7) with z = x̂ · η̂.

Example 3: Gauss-Weierstrass Distribution: A special case
of this azimuthally symmetric distribution is the Gauss-
Weierstrass kernel [13] with concentration parameter κ ≥ 0

f(x̂; η̂, κ) =

∞∑

`=0

√
2`+ 1

4π
e−`(`+1)/2κ Y 0

` (x̂)

where we see λ`(κ) ≡ e−`(`+1)/2κ and this is approximates
the von Mises-Fisher distribution with mean direction η̂ in the

limit κ � 1, see [7]. If we use a general mean direction µ̂,
instead of η̂, the rotated Gauss-Weierstrass kernel becomes

f(x̂; µ̂, κ) =

∞∑

`=0

∑̀

m=−`
e−`(`+1)/2κ Y m` (µ̂)Y m` (x̂).

The Gauss-Weierstrass kernel spatial expression does not sim-
plify to a known closed-form (spatial) expression. However,
it does have a simple spectral or eigenvalue characteriza-
tion. Spatially they are unimodal with adjustable width, and
when they are narrower they get asymptotically closer to the
von Mises-Fisher distribution [7].

B. Integral Equation, Eigenvalues and Eigenfunctions
The underlying eigen-structure of the problem under study

explains why rotationally symmetric functions lead to an
elegant solution and also explain why it is unlikely the methods
can be easily extended to more general asymmetric functions.

Theorem 1: Define the integral operator F as follows
(
Fh
)
(x̂) =

∫

S2
F (x̂, ŷ)h(ŷ) ds(ŷ)

with kernel

F (x̂, ŷ) , f(x̂; ŷ) =

∞∑

`=0

∑̀

m=−`
λ` Y

m
` (x̂)Y m` (ŷ). (13)

Then (
FY m`

)
(x̂) = λ`Y

m
` (x̂) (14)

which reveals the λ`, (8), are the eigenvalues corresponding
to eigenfunctions Y m` (x̂) of integral operator F .

Further, with the finite energy condition
∫ +1

−1
f2(z) dz <∞, (15)

the operator F is compact and self adjoint.
Proof: From (10),

〈
f(· ; µ̂), Y m`

〉
= λ` Y m` (µ̂), is the

same as ∫

S2
f(ŷ; µ̂)Y m` (ŷ) ds(ŷ) = λ`Y m` (µ̂).

Then from the definitions given in Appendix A

Y m` (x̂) = (−1)mY −m` (x̂),

and from symmetry f(ŷ; µ̂) = f(µ̂; ŷ) we get (14).
Self-adjointness of operator F follows from Hermitian

symmetry, due to f(·) being real-valued,

f(ŷ; µ̂) = f(ŷ; µ̂) = f(µ̂; ŷ) =⇒ F = F∗.
Then from [10, p.357], the finite energy condition (15) can
be shown to be equivalent to finite energy (sum square) of
the eigenvalues (summed with multiplicity) by the Parseval
relation for Legendre polynomials. This implies the kernel (13)
is Hilbert-Schmidt and, therefore, operator F is compact.

This justifies seeking a spherical harmonic representation
for rotationally symmetric distributions f(x̂; µ̂) in the first
place, Section III, because they are eigenfunctions. Similarly,
making the coefficients identical to the eigenvalues makes the
development cogent.



IV. SPATIAL CORRELATION

A. Rotationally Symmetric Distribution Case

We review the development in [1]. The spatial correlation
between two narrowband (fixed wavenumber k) complex-
valued signals s1(t), s2(t) at points z1, z2 ∈ R3 is given by

ρ(z1, z2) =
E{s1(t) s2(t)}
E{s1(t) s1(t)}

(16)

where E{·} denotes expectation over the random complex
gains from the multipath scattering [1]. Then with a power
distribution f(x̂; µ̂), normalized according to (3), representing
the average power density as a function of direction x̂ ∈ S2
in the farfield of the two points z1, z2 ∈ R3 then the spatial
correlation, (16), becomes spatially wide-sense stationary in
the form

ρ(z1 − z2; µ̂) =
∫

S2
f(x̂; µ̂)eik(z1−z2)·x̂ ds(x̂). (17)

The wide-sense stationarity does not depend on the rotational
symmetry of f(ŷ; µ̂), and the above result is quite general.

Then by employing a spherical harmonic expansion of plane
waves of the continuous superposition in (17) one arrives at

ρ(z1 − z2; µ̂) = 4π

∞∑

`=0

i` j`
(
k|z1 − z2|

)
×

∑̀

m=−`
(fµ̂)

m
` Y

m
`

( z1 − z2
|z1 − z2|

)
, (18)

where (fµ̂)
m
` are the spherical harmonic coefficients of the

distribution f(· ; µ̂), given in (10).

B. Spatial Correlation Expansion

We specify the results in [1] for 3D scattering exhibiting
rotational symmetry about some axis of symmetry µ̂ ∈ S2
expressed in the context of the eigen-problem. We gather our
main theoretical findings into a self-contained statement.

Theorem 2: Let the multipath be defined by the normalized
power distribution with rotational symmetry

f(x̂; µ̂) = f(x̂ · µ̂)

where x̂ ∈ S2 is the direction, µ̂ ∈ S2 is the mean direction,
and f(·) is a non-negative, real univariate function with
domain [−1,+1]. Then the spatial correlation between points
z1, z2 ∈ R3 depends only on z , z1 − z2, is spatially wide-
sense stationary, and is given by

ρ(z; µ̂) = j0
(
k|z|

)
+

∞∑

`=1

(2`+ 1) i` ×

λ` P`(ẑ · µ̂) j`
(
k|z|

)
, (19)

where z ∈ R3, ẑ = z/|z| ∈ S2, |z| is the Euclidean distance,

λ` = 2π

∫ +1

−1
f(z)P`(z) dz, ` = 0, 1, . . . , (8)

and

f(z) =
1

4π

∞∑

`=0

(2`+ 1)λ`P`(z), (7)

noting that λ0 = 1.
Proof: Using (10) and the addition theorem (6), (18)

becomes

ρ(z; µ̂) = 4π

∞∑

`=0

i` j`
(
k|z|

)∑̀

m=−`
λ` Y m` (µ̂)Y m` (ẑ),

=

∞∑

`=0

(2`+ 1) i`λ` P`(ẑ · µ̂) j`
(
k|z|

)
.

which can be written as in (19) which separates out the ` = 0
term.

Comments

1) Note that the ` = 0 term is a spherical Bessel function
equivalent to a sinc function:

j0
(
k|z|

)
=

sin
(
k|z|

)

k|z| = λ
sin
(
2π|z|/λ

)

2π|z| .

This term, common to all spatial correlation expansions (be-
cause the power distribution is nonnegative there is always
a positive DC term which when normalized is unity), is
the 3D omnidirectional contribution to spatial correlation,
corresponding to λ0 = 1, and has zero crossings at λ/2
spacings except at zero where the correlation is unity as
shown in Fig. 2. This is equivalent to the von Mises-Fisher
distribution case with κ = 0.

2) The relative orientation of the vector joining the two
sensors and the mean direction (axis of rotational symmetry)
of the power distribution is clearly delineated in the expression
(19) with the appearance of the term ẑ · µ̂. This is the only
way that µ̂ enters the formula.

3) The shape of the power distribution, (7), is defined by
the λ` which are given by (8).

C. von Mises-Fisher Distribution

For f(x̂; µ̂, κ) in (5) the univariate functions is given by
fµ̂(z) in (4) which has eigenvalues λ`(κ) given by (11). Then
the spatial correlation (19) is given by

ρ(z; µ̂, κ) =

∞∑

`=0

(2`+1) i`
I`+1/2(κ)

I1/2(κ)
P`(ẑ·µ̂) j`

(
k|z|

)
. (20)

This expression can be compared with the structurally similar

f(x̂; µ̂, κ) =
1

4π

∞∑

`=0

(2`+ 1)
I`+1/2(κ)

I1/2(κ)
P`(x̂ · µ̂), (21)

which follows from (1), (7). This is plotted in Fig. 3, in the
form fκ(cos θ), for a range of κ.

Corresponding to the highlighted cases in Fig. 3 we have the
spatial correlation (20) plotted in Fig. 4, for κ = 1, 2, 4, 8 and
Fig. 2 for κ = 0. The total number of terms in the expansion
required to yield the accuracy shown in the plots was L =
1, 6, 7, 10, 13, 18, meaning the sum is over ` = 0, 1, . . . , L−1,
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for the von Mises-Fisher distribution with concentration pa-
rameter κ = 0, which is the 3D omnidirectional case. This
correlation is independent of ẑ · µ̂ and where z is the vector
between the two sensors and µ̂ is the mean direction.
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Fig. 3: Von Mises-Fisher univariate distribution functions,
fκ(cos θ) for κ = 0, 1, 4, 8, 16 (intermediate values increment
by 1) plotted against θ = cos−1 ẑ · µ̂.

for κ = 0, 1, 2, 4, 8, 16, respectively. The plots show the effect
due to the effective width of the distribution around the mean
direction. Naturally as κ gets smaller the width gets larger
and vice versa. Also by varying the ẑ · µ̂ we see the full
effect of varying in the relative orientation between the sensors
z = z1 − z2 and the distribution mean direction µ̂. These
results are fully analytical and not simulated (which would
be very time consuming to generate accurate data). They are
quantitative and fully consistent with qualitative expectations.

Note that the term j`
(
k|z|

)
, which enters the spatial correla-

tion expression (20) but is absent in the distribution expansion
(21), serves to speed convergence in the following sense which
relies on a result developed for the Bessel functions in [14],
[15]. For the spherical Bessel functions the result says that for

` ≥
⌈
πe|z|/λ

⌉

the j`
(
k|z|

)
contribution is very small effectively truncating

the series [16]. However, the remainder of the series coefficient
also becomes smaller as ` → ∞ and an effective truncation
can have few terms than that determined by j`

(
k|z|

)
alone.

D. Lebedev Distribution

Non-negative real-valued functions on [−1,+1] which have
a simple Legendre polynomial expansion lead to closed-form
3D distributions and thereby closed-form spatial correlation
expansions. An example is modifying a function given in [17],
and [18, (8.922.6)], and developed in [19]

f(z; µ̂, η) =
( 1

4π
+

η

12π

)
− η

8π

√
1− x̂ · µ̂

2

=
1

4π
+ η

∞∑

`=1

P`(ẑ · µ̂)
(2`− 1)(2`− 3)

, η ∈ [0, 6],

which, therefore, has a spatial correlation expansion

ρ(z; µ̂, η) = j0
(
k|z|

)
+ η

∞∑

`=1

i` P`(ẑ · µ̂)
(2`− 1)(2`− 3)

j`
(
k|z|

)

where η ∈ [0, 6] ensures the distribution is non-negative.
Further closed-form spatial correlation expansions can be

inferred from the results in [19] as we discuss in the conclu-
sions.

V. CONCLUSIONS

Prior to this paper the von Mises distribution had been
presented as a versatile correlation function in the 2D context
[4] along with other distributions that also had a mirror
symmetry property [5], [6]. In the 3D case, closed-form
spatial correlation function having a power distribution with
rotational symmetry property were limited to two simple cases
considered in [1] and the von Mises-Fisher distribution in [8].
This paper has given a general expansion for the 3D spatial
correlation for the class of normalized power distributions
representing farfield multipath sources having a rotational
symmetry about their mean direction. The main theoretical
result, Theorem 2, also gives good insight into the interplay
between the positioning of the sensors and the distribution
mean direction. In Theorem 1, we have fully accounted for
the spherical harmonic eigenfunction and eigenvalue structure
of the spatial correlation problem for power distributions with
rotational symmetry property.

Finding other suitable univariate functions with closed-
form coefficient expansions has an interesting relationship
with finding closed-form reproducing kernels on the 2-sphere
[19], [20]. Functions which work as the basis for constructing
closed-form reproducing kernels also mostly work as univari-
ate functions for the purpose of defining closed-form multipath
power distributions. We gave a few examples in this paper
but others given in [19] also work as alternatives. In the
current problem it is the spatial function that needs to be
non-negative as it represents a power/probability distribution
but the spectral description expressed through the eigenvalues
can be positive or negative. In contrast, for the reproducing
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Fig. 4: Magnitude of the spatial correlation
∣∣ρ(z; µ̂, κ)

∣∣ for the von Mises-Fisher distribution with concentration parameter κ
and for a range of values of ẑ · µ̂ ∈ {0, 0.1, 0.2, . . . , 1.0} and where z is the vector between the two sensors and µ̂ is the
mean direction. The labelled curves are broadside: ẑ · µ̂ = 0 and end-fire: ẑ · µ̂ = 1.

kernel case the eigenvalues need to be positive and the spatial
function, being the kernel itself, need not be a positive function
but predominantly so. The effectiveness of synthesizing non-
unimodal power distributions [8] from a reproducing kernel
perspective is yet to be determined.

APPENDIX A
SPHERICAL HARMONICS

Define the 2-sphere by S2 , {x ∈ R3 : |x| = 1} and the
inner product of two functions whose domain is the 2-sphere

〈f, g〉 ,
∫

S2
f(x̂)g(x̂) ds(x̂), (22)

where x̂ , (sin θ cosϕ, sin θ sinϕ, cos θ)′ ∈ S2 ⊂ R3 and
ds(x̂) = sin θ dθ dϕ is the uniform surface measure satisfying∫
S2 ds(x̂) = 4π. Finite energy functions are those that satisfy

the bounded induced norm condition

f ∈ L2(S2) ⇐⇒ ‖f‖ , 〈f, f〉1/2 <∞.

In this work we require the spherical harmonics. They are
defined through

Y m` (θ, ϕ) ,

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm` (cos θ)eimϕ ≡ Y m` (x̂),

where ` ∈ {0, 1, . . .} is the degree, m ∈ {−`,−` + 1, . . . , `}
is the order, the associated Legendre functions are

Pm` (z) ,
(−1)m
2``!

(1− z2)m/2 d
`+m

dz`+m
(z2 − 1)`,

m ∈ {0, 1, . . . , `}
and satisfy

P−m` (z) = (−1)m (`−m)!

(`+m)!
Pm` (z), m ∈ {0, 1, . . . , `},

which enables the determination of the spherical harmonics for
m < 0. For m = 0 the associated Legendre functions reduce to
the standard Legendre polynomials which are denoted P`(z).



For each f ∈ L2(S2) we have expansion in the spherical
harmonics

f(x̂) =

∞∑

`=0

∑̀

m=−`
(f)

m
` Y

m
` (x̂),

where the spherical harmonic coefficients are

(f)
m
` , 〈f, Y m` 〉.

The equality in the expansion is understood in the sense of
convergence in the mean [10].
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