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Abstract—This correspondence studies a spatially localized spectral
transform for signals on the unit sphere, which we call spatially localized
spherical harmonics transform (SLSHT). For a systematic treatment,
we explicitly express the transform in terms of rotated versions of an
azimuthally symmetric window function and introduce the spatio-spectral
SLSHT distribution with a succinct matrix representation. We present
guidelines for the choice of the window function in the SLSHT, based on
the inherent tradeoff between the spatial and spectral resolution of dif-
ferent window functions from the perspective of the uncertainty principle.
We demonstrate the use of an eigenfunction window, obtained from the
Slepian concentration problem on the sphere, as a good choice for window
function. As an illustration, we apply the transform to the topographic
map of Mars, which can reveal spatially localized spectral contributions
that were not obtainable from traditional spherical harmonics analysis.

Index Terms—Signal analysis, spectral analysis, spheres, spherical har-
monics.

1. INTRODUCTION

Development of spatio-spectral analysis techniques for signals de-
fined on the unit sphere is of interest in various fields of science and
engineering, such as analysis of planetary gravity and topography data
in geophysics [1]-[3]. While any signal on the sphere can be expressed
in terms of spherical harmonics, these functions are not spatially con-
centrated and therefore not well suited for joint spatio-spectral analysis.
For such analysis, most of the existing methods available in the litera-
ture are based on spherical wavelets [3]-[9], which enable space-scale
decomposition of a signal on the sphere. With a suitable choice of a
mother wavelet, some of these wavelet based techniques can also dis-
criminate directional phenomena [3]-[6].

An alternative to the wavelet (i.e., space-scale) approach is
a “space-spectral” approach, where the goal is to obtain a joint
spatio-spectral distribution of signals defined on the sphere as an
analog of the widely used short-time Fourier transform (STFT) in
time-frequency analysis [10], [11]. Such a space-spectral decomposi-
tion reveals the localized contribution of spherical harmonics in the
global signal. It should be noted that space-spectral and space-scale
approaches are complementary, with the most appropriate choice de-
pending on the properties of the signal under analysis. In general, the
finite support on the sphere makes it non-trivial to emulate and extend
familiar operations in Euclidean domain to the spherical domain. A lo-
calized spectral analysis using windowing operation has been studied
in [1], which investigates the spatio-spectral relationships between two
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signals on the sphere. Spectral estimation techniques using multiple
window functions obtained from Slepian’s concentration problem on
the sphere have been proposed in [12] and [13]. A spatio-spectral
localization method based on spatial windowing followed by spectral
decomposition is proposed in [2]. The method has an advantage of
being in the spirit of conventional time-frequency analysis techniques
which use windowing. It is shown that the localized transform is
invertible by spatial averaging of the transform. The effectiveness of
the transform, however, depends on the chosen window function. The
authors in [2] use a window function which is spectrally concentrated,
but exhibits sidelobes in the spatial domain. Also no guidelines are
presented for the choice of window function.

In this correspondence, we present a matrix formulation of the trans-
formin [2], which we call spatially localized spherical harmonics trans-
form (SLSHT) as an analog of the STFT in time-frequency analysis.
For this purpose, we focus on the use of azimuthally symmetric window
functions (centered at the north pole) to achieve localization in the spa-
tial domain and express the transform in terms of the rotation applied to
the original window. We also give a succinct matrix representation of
all possible SLSHT components, which we refer to as SLSHT distribu-
tion. We discuss the inherent tradeoff between the spatial and spectral
resolution of different window functions from the perspective of the
uncertainty principle. We propose and demonstrate the use of an eigen-
function window, obtained from the Slepian concentration problem on
sphere [12], as a good choice for window function in the SLSHT. As
an illustration, we apply the SLSHT distribution with eigenfunction
window to the example of the Mars topographic map and show that
the localized contributions of spherical harmonics are apparent in the
spatio-spectral domain. The rest of the correspondence is organized as
follows. In Section II, we present the system model. The matrix for-
mulation of the SLSHT and signal inversion is presented in Section III.
The window localization tradeoff is discussed in Section IV. Results
are presented in Section V. Finally, concluding remarks are given in
Section VL.

The following notation and terms are used in this paper: lowercase
bold symbols correspond to vectors whereas uppercase bold symbols
denote matrices. U denotes the complex conjugate operation and |(-)|
denotes the magnitude. 6 denotes the Kronecker delta function defined
as 6qp = lifa = band 6., = 0ifa # b.

II. MATHEMATICAL BACKGROUND

Let f(8, @) be a complex valued function, defined on the unit sphere
22 fr € R®: ||r|| = 1}, thatis, if r € S? then r is a unit vector,
# € [0, 7] denotes colatitude measured with respect to the positive
z-axis and ¢ € [0, 27) denotes longitude measured with respect to the
positive x-axis in the  — y plane. Let f and g be two functions on the
unit sphere and define the inner product

(f.9) & /§ F()g(Q)dQ (1)

where 2 = {f, ¢} parameterizes a point on the unit sphere and d$2 =
sin #df#d¢. Finite energy functions whose domain is the unit sphere are
referred to as “signals on the unit sphere” or simply “signal”. Mathe-
matically, f is a 51gnal on the unit sphere if and only if it has finite
induced norm ||f|| £ (f.f)> ¥ < oo. All such finite energy signals
under inner product (1) form a complex Hilbert space L?(S?).

The spherical harmonics Y, (8, ¢) [14] form an orthonormal set of
basis functions on the sphere with respect to the inner product in (1).
By completeness, any signal f € L (S?) can be expanded as

Z Z FY(6.9) @

=0 m=—
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where f;" are the spherical harmonic Fourier coefficients of degree ¢
and order m, given by

i = (037 = [ 0.0 @ a0, )

In this work, we express spherical harmonics Y;" as Y. (and f;"
as f.), that is, as a function of a single integer index ¢ instead of two
integer indices ¢ and m, using the one-to-one mapping (¢, m) < ¢,
where ¢ = (% 4+ ¢ + m. With this notation, the two summations in
(2) can be written as one summation and a product of functions in the
spherical harmonic domain can be expressed more succinctly.

A proper rotation of a signal on the sphere can be parameterized in
terms of the Euler angles, « € [0,27), 3 € [0, 7], v € [0, 27). Define
the rotation operator D(«, 3, v) which rotates a signal first as a v rota-
tion about z-axis, followed by a 3 rotation about y-axis, and then an «
rotation about z-axis. If a signal f(#, ¢) is rotated on the sphere under
rotation operator D(«a, 3, ), each spherical harmonic coefficient f;"
of degree ¢ and order m is transformed into a linear combination of
different order spherical harmonics of the same degree ¢ as

¢
{Dla.s s} =(Dla. .Y = 37 D™ (o By £
m/=—t
, @)
where D;"'™ (a, (3, v) is the Wigner-D function [14].

For azimuthally symmetric signals which are invariant of ~, the op-
erator D(a, 3,) simplifies to the special type of rotation operator
Dq £ D(¢.6,0) which has the effect of rotating a signal first through
an angle of ¢ about the y-axis followed by an angle of ¢ about the
z-axis. Similarly, given (4), the only relevant Wigner-D function when
operating on azimuthally symmetric signals, occurs when m’ = 0 and
in this case it can be expressed in terms of spherical harmonics as [15]

e, A 471— mi
D! 0(%9,0):,/2&,“1@ (6,9). ®)

III. FORMULATION OF SLSHT

In this section, we present a matrix formulation of SLSHT to trans-
form a signal to joint spatio-spectral domain. We first define the SLSHT
and use it to define the SLSHT distribution.

Definition 1 (Spatially Localized Spherical Harmonics Transform):
The SLSHT of signal f € L*(S?) is given by

g(Qe) 2 /S HE) (Dgll)(SZ/)K(Q’ ydeY ©)

where h € L?(S?) is an azimuthally symmetric window such that
(h, Y™y = 0 for all m # 0 and Dg 2 D(4,6,0) is the simplified
rotation operator.

Remark 1: The SLSHT represents the contribution of the spherical
harmonic Y. of index ¢ (degree ¢ and order m) within a symmetric
spatial domain centered on 2 for the signal f. Note that the relocation,
through rotation, of the window function in (6) is not explicitly defined
in [2].

Definition 2 (Spatially Localized Spherical Harmonics Transform
Distribution): The SLSHT distribution g of a signal f € L?(S?) is
an indexed vector of all SLSHT components of the form g(£2,c) as
defined in (6) forc = 0,1,....C, ie.,

g() = [9(2.0),9(2 1.9(2.2),....g2.C)] @
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where C = L* + 2L, L = Ly + L;,, and L; and L, denote the
maximum spectral degree of the signal f and azimuthally symmetric
window function h, respectively.

Remark 2: The SLSHT distribution is a generalization of the trans-
form in [2] and provides the complete spatio-spectral representation of
a signal.

Remark 3: It is implicit in the formulation of SLSHT that the signal
of interest is bandlimited to Ly < oc. As a signal is finite energy,
then its spherical harmonic Fourier coefficients are square summable.
Consequently, any signal can be arbitrarily closely approximated by a
bandlimited signal by making L sufficiently large. The study of the
involved approximation errors on the SLSHT is outside the scope of
this correspondence.

A. Matrix Representation
First we determine the spherical harmonic coefficients corre-

sponding to the rotated window as

wy(Q) £ (Dah,Ys)

=Dy"(0,6,0)hy,  (psq) = b, Q= {6,0}

_ 4w X 73 1 0 )
=3 T Oh (0 = b @®)

Using the mapping ({,m) « ¢, ({'’;m') < a and (p,q) < b, we
write g(£2, ¢) in (6) as

A B

g Qe) =" fa > wn(Qy(a.b.e) )

a=0 b=0

where f, = (f,Y.), A= (Ly)* +2L;, B = (L,)* + 2L, and

y(a.b,c) 2 / Y, ()Y (Q)Yo(Q)dQ (10)
§2

denotes the spherical harmonics triple product and can be calculated
using Wigner-3; functions [1]. From (9), we can express the SLSHT
distribution as

g(Q) = f¥(Q) (11)
where f = [ fo, f1, f2,. 00, fA] is the spectral response of bandlimited

signal f with bandwidth L (and A = (Ly)*+2Ly), and ¥(Q) is the
transformation matrix of size (4 4+ 1) x (C' + 1) given by

Yoo o1 Yoo
Y10 Ym (Ye
Q) = (12)
Yao  Yar Yac
with entries
B
Yae = L/)ac(Q) - Zwb(Q)y(awbﬁ C)' (13)

b=0

Remark 4: The matrix form in (11) projects the spectral response of
the signal f to the joint spatio-spectral domain. The size of the trans-
formation matrix is dependent on the spectral bandwidth of the input
signal f and the window function . The value of matrix elements is
dependent on the applied rotation €2 and the window function %, whose
choice will be discussed in Section IV.
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Fig. 1.
window functions.

B. Inversion as Spherical Harmonics Marginal

Recovery of the spectral components of the signal from its local-
ized transform was first shown in [2]. For the sake of completeness,
based on our matrix formulation, and explicit expression of the trans-
form in terms of rotated window function, we provide an alternative
formulation.

Theorem 1 (Inversion of Signal From SLSHT Distribution): If g(£2)
represents the SLSHT distribution of the signal f using azimuthally
symmetric window function h, where the distribution is of the form
(7), then the spectral domain response f of f can be recovered from
2(€2) up to a multiplicative factor as the spherical harmonics marginal
f, which is obtained by integrating the SLSHT distribution over the
spatial domain as

f:/ g(Q)dQ = Var hY x [fo,fl,...,fA,o .,0] (14)
§2

where f denotes the spherical harmonics marginal and is a row vector
of length C' 4 1 where only the first A + 1 elements are nonzero.
Proof: Integrating (7) over the spatial domain gives

/ g(Q)dQ = f/ W(Q)dSL (15)
Js§2 Js§2

The integral of kernel matrix ¥ is obtained by integrating each matrix
element ¢,.(€2) in (13), i.e.,

B

Pac(Q)d2 = b, )dQ.
/§21/ Zua c / wp ()

b=0

(16)

Now, using the definition of w in (8) with mapping (p,¢) < b and
the result from (5), we obtain

/ wp (2)d$2 / \—— Y18, 9) o) h d£2_4"rh06p06qg_4"rh06(,0
s2 $2

a7

Using (17), all the summation terms in (16) become zero except for b =

(). From the orthonormal property of spherical harmonics, y(a, 0, ¢) =
Sac
4

/ Ve (A2 = VTR S e (18)
§2

Substituting (18) in integrating the elements of ¥(£2) in (15), we obtain
(14). [ |

Remark 5: From the result in Theorem 1, we can see that we only
need to know the DC component of the window function in order to
recover the signal exactly from its SLSHT distribution.

(a) Variance o3 in spatial domain (b) variance o} in spectral domain and (c) uncertainty product in (19) for different types of azimuthally symmetric

IV. OPTIMAL SPATIO-SPECTRAL CONCENTRATION OF
‘WINDOW FUNCTION

The SLSHT distribution does not depend solely on the signal
because the distribution entangles the signal and the window. The
effectiveness of SLSHT distribution depends on the chosen window
function. If we require a higher resolution in one domain, the window
should be narrower in that domain. From the uncertainty principle on
the unit sphere, a signal cannot be locally concentrated in both the
spatial and spectral domains [9]. If a window is chosen to obtain the
desired resolution in one domain, it is said to be an optimal window if
it is also optimally localized in the other domain [10].

We study the window functions jointly in both spatial and spectral
domains using the definition of uncertainty principle on the unit sphere.
The following inequality, referred as uncertainty principle, holds for
unit energy azimuthally symmetric functions defined on the unit sphere
[91, [16]

s oL > 1

\/1—05 -

where o3 and of denote the variance of the window function in the spa-
tial domain and spectral domain respectively and are defined as [1], [9]

19

2

[N

a

—1- W/« sin(29){h(9)(2d9

of (20)

St +1)ng
£=0

Note that a unit energy window function is assumed in (20), which
ensures that 0 < o5 < 1.

In this work, we consider and compare the following unit energy
normalized azimuthally symmetric window functions: rectangular
window, triangular window, cosine window, Hamming window,
Hanning window, the window of Simons et al. [2], Gaussian window
and the eigenfunction window, all of which are parameterized by
6. denoting the window truncation width. The first five windows
are defined in [17]. The window in [2] is obtained by truncating the
rectangular window in the spectral domain within the main spectral
lobe. The Gaussian window is a unit energy normalized function that
decays exponentially with the square of the colatitude and its variance
is chosen such that 99% of the energy lies within the truncation
width [18]. The eigenfunction window % (£2) arises as a solution of
Slepian concentration problem on the sphere [19]. To maximize the
spatial concentration of a bandlimited signal h(£2) with maximum
spherical harmonic degree L}, equivalently represented by the column
vector h containing the entries ¢ for 0 < ¢ < L,,, within a polar cap
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Fig.3. (a) Mars topographic map f(£2), obtained using bandlimited spectral model of Mars with maximum spectral degree 150. (b) Energy per spherical harmonic
degree E; (22). (c) Energy ratio per degree £ in (23) for components of SLSHT distribution g in (7) of Mars topographic map for degree 0 < ¢ < 40.

region R characterized by truncation width §., one needs to maximize
the spatial concentration ratio [1], [19]

[ @20

7 T P e

The solution that maximizes (21) gives rise to the standard
eigenvalue problem Dh = \h, which can be solved numeri-
cally. As we are considering azimuthally symmetric region R,
h = [h§, kY, ..., k7, ] denotes the spectral response of h(£2) and D is
the (L, + 1) X (Ly, + 1) real and symmetric matrix where the entries

are given by Dy = [, Y2 ()Y, (Q)dS). We use the band-limited
eigenfunction as window function, the one with the largest eigenvalue
and minimum possible bandwidth L;, related to truncation width 6. as
Ly = (%) -109.

Fig. 1 plots the (a) variance o2 in spatial domain, (b) variance ofin
spectral domain and (c) uncertainty product in (19) for different types
of azimuthally symmetric window functions and different values of
truncation width 55 < 6. < 7. Fig. 1(a) and (b) shows that generally
the variance in spatial domain increases with the truncation width and
the variance in spectral domain decreases with the truncation width.
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Fig. 4. Magnitude of components of SLSHT distribution g in (7) of Mars topographic map f(£2). The distribution components g(£2, ¢, m) are shown for m = 0
and 11 < ¢ < 40 in a sorted manner; that the degree ¢ increments from left to right, with the lowest degree ¢ = 11 is plotted on the top left and the highest degree
£ = 40 on the lower right. Blue indicates low magnitude while red indicates high magnitude.

The rectangular window has the poorest localization because the dis-
continuity at truncation points increases its variance in the spectral do-
main. As expected, the window in [2] performs very well in the spectral
domain, but poorly in the spatial domain. The figure also shows that the
Gaussian window and the eigenfunction window exhibit better local-
ization behavior. Comparatively, these two windows have the lowest
variances in both domains. Note that the smaller value for variance in-
dicates better localization. Fig. 1(c) confirms that both the eigenfunc-
tion window and the Gaussian window nearly attain the lower bound
of 1 for the uncertainty product of (19). The rectangular window has
the largest uncertainty product as expected. The product for other win-
dows, including the window in [2], lie between these two extremes.
The optimal truncation width depends on the required resolution in
both the spatial and spectral domains. As indicated in the variance plot
in Fig. 1, the spatial variance o3 of eigenfunction window is very close
to that of Gaussian window. But the spectral variance o} of eigenfunc-
tion window is lower than that of Gaussian window, especially at lower
truncation widths. The Gaussian window and eigenfunction window
™

are plotted for truncation width #. = % in both spatial and spectral

domains in Fig. 2. Both windows are normalized to unit energy and

chosen such that 99% of energy lies within the truncation width. It
is observed that the eigenfunction window has smaller bandwidth and
its energy is more uniformly distributed relative to Gaussian window.
Thus, the eigenfunction window can be a good choice for window func-
tion in the SLSHT distribution.

It must be noted that compared to space-scale techniques, the
space-spectral resolution of the SLSHT is fixed for all spectral compo-
nents and spatial positions. Incorporating multi-resolution capability
in SLSHT is possible, but would require using different bandwidth
window functions for different SLSHT distribution components,
consideration of which is beyond the scope of this correspondence.
Finally, we remark that with appropriate modifications it is possible to
incorporate non-azimuthally symmetric windows into our formulation.

V. SIMULATION RESULTS

In this section, we demonstrate the spatially localized spherical har-
monics transform and our proposed window to study the signals in joint
spatio-spectral domain. We consider a Mars signal on the sphere that
has higher degree harmonic components in a localized mountainous
spatial region. We study the high resolution Mars topographic map
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(size =800 x 800) using SLSHT and illustrate that the SLSHT distribu-
tion reveals localized spectral contributions of spherical harmonics in
the spatial domain. In the simulation results, we have implemented the
method outlined in [15] to calculate the spherical harmonic components
and triple product in Matlab. We use equiangular sampling with V x IV
samples on the sphere as ¢, = 77, ¢, = 2;{—" forn =0,1,..., N—1.
Note that exact quadrature can be performed using this tessellation with
errors on the order of numerical precision. We use the azimuthally
symmetric bandlimited Slepian eigenfunction window to obtain the
localization in spatial domain. For SLSHT distribution computation
using a window with bandwidth L,,, we use a very high resolution
N = 800 > 2Ly, to obtain smooth plots. Finally, for inverse spherical
harmonic transform of a function with maximum spherical harmonics
degree Ly, we use minimum resolution N = 2Ly + 1 [15] for exact
quadrature.

Fig. 3(a) shows the Mars topographic map f(£2) in the spatial do-
main. The Mars topographic map f(£2) is obtained in the spatial do-
main using its spherical harmonics topographic model up to degree
of 150. There are volcanoes leading to high frequency contents in the
signal which are localized in the vicinity of § = 7 and ¢ = =*. We
use the unit energy normalized Mars signal with DC-component elim-
inated. If ;" denotes the spherical harmonic coefficients for the Mars

signal f(Q2), we define the energy per degree E¢ as

4

E,= Z L.

m=—{

(22)

Fig. 3(b) shows the energy per degree E, in the spectrum of Mars,
which indicates that 90% of the energy is contributed by the spher-
ical harmonics with degree less than 10. The higher degree spherical
harmonics contribute towards high frequency regions in a signal and
contain very little amount of energy. The higher degree spherical har-
monic coefficients do not reveal information about the region of their
contributions in the signal f(€2). We determine all SLSHT components
of the form g(€2, ¢) for 1 < ¢ < 1671 or g(€2,¢,m) for1 < { < 40
and all orders |m| < f using an eigenfunction window with truncation
width . = %. We calculate the energy contribution by spherical har-
monics in a region around volcanoes. We expect that higher spherical
harmonics would have significant energy concentrated around the vol-
canoes region. We define the energy ratio per degree F; as a measure
of energy contribution by all order spherical harmonics for a particular
degree in the localized region as

L lg(Q. 6 m) a0
Js2 l9(Q, 6, m)|2dS2

E; = (23)

m=—/

where R denotes the spherical cap region of width § centered att = 7
and ¢ = =*. The region I? only covers 3.81% area of the whole sphere
and captures the magnitude of SLSHT distribution component around
the volcanoes region. Fig. 3(c) shows the energy ratio per degree Ej,
which indicates that the higher degree spherical harmonics, despite of
their low energy content in overall spectrum, have their energy local-
ized in a region R.

Fig. 4 shows the magnitude of zero order distribution components of
the form g(£2, ¢,0) for 11 < ¢ < 40, which indicate the spatial con-
tribution of zero order spherical harmonics. These distribution compo-
nents indicate that the contribution of higher order spherical harmonics
is mainly around the region where volcanoes are located. Note that
it is also possible to resolve topographic features such as volcanoes
using wavelets, as demonstrated in [3]. However, the SLSHT distribu-
tion provides interpretation about the spectral contributions of a par-
ticular spherical harmonic in a localized region in the spatial domain,
which is not explicitly possible using wavelets and for the case of Mars,
also not clearly visible in the global spectrum of the signal.
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VI. CONCLUSION

In this correspondence, we have studied the spatially localized
spherical harmonics transform (SLSHT), for transforming signals on
the sphere into joint spatio-spectral SLSHT distribution that represents
how the signal spectrum is changing in spatial domain. We formulated
the matrix representation of the transform. We used an azimuthally
symmetric window function to achieve spatial localization and ana-
lyzed the localization tradeoft for different window functions in both
spatial and spectral domains from the perspective of the uncertainty
principle. As an illustration, we analyzed the topographic map of
Mars and demonstrated that the SLSHT distribution reveals the spa-
tially localized contributions of spherical harmonics, which cannot
be obtained from the global signal spectrum. The knowledge of the
spatially localized contributions of spherical harmonics obtained via
SLSHT can be used to develop techniques for filtering and processing
of signals on the sphere in the joint spatio-spectral domain.
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