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Abstract—We design a sampling scheme on the sphere and a cor-
responding spherical harmonic transform (SHT) for the measure-
ment and reconstruction of the diffusion signal in diffusion mag-
netic resonance imaging (dMRI). By exploiting the antipodal sym-
metry property of the diffusion signal in the spectral (spherical
harmonic) domain, we design a sampling scheme that attains the
optimal number of samples, equal to the degrees of freedom re-
quired to represent the antipodally symmetric band-limited diffu-
sion signal in the spectral domain. Compared with other sampling
schemes that can be used with the optimal number of samples, we
demonstrate, through numerical experiments, that the proposed
scheme enables more accurate computation of the SHT, and this
accuracy is practically rotationally invariant. In addition, it results
in more efficient computation of the SHT and storage of the diffu-
sion signal.

Index Terms—Antipodal signal, diffusion magnetic resonance
imaging, sampling, sphere, spherical harmonic transform.

I. INTRODUCTION

I N DIFFUSION magnetic resonance imaging (dMRI), the
diffusion signal measurements in each voxel are collected

on a spherical sampling grid or multiple concentric spherical
sampling grids in -space [1]–[7], where is the diffusion wave
vector. The reconstruction of the diffusion signal from these
measurements is achieved by expanding the signal in the spher-
ical harmonic basis–a complete orthonormal basis on the sphere
[8]. The expansion in spherical harmonic basis is enabled by the
spherical harmonic transform (SHT).
For the accurate reconstruction and spectral analysis in the

spherical harmonic domain of the diffusion signal, it is neces-
sary to design the sampling scheme such that the SHT can be
computed accurately from the measurements. Since the number
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of measurements of the diffusion signal that can be acquired
is heavily restricted by the scan time, it is also important that
fewer samples are required by a sampling scheme [9], [10]. In
order for a sampling scheme to allow for the accurate compu-
tation of the SHT, the minimum number of samples required is
equal to the degrees of freedom of the diffusion signal in the
spectral domain; this number is referred as the optimal spatial
dimensionality or optimal dimensionality for short [11]. For the
diffusion signal band-limited at (defined in Section II), the
optimal dimensionality is , [12]. As fibres
may assume any orientation, a sampling scheme should allow
for a reconstruction accuracy that is independent of the orien-
tation of the diffusion signal or the sampling grid (rotationally
invariant) [1], [13]. The rotation (or change in orientation) of a
signal can be carried out exactly in spherical harmonic domain
and therefore the sampling schemes (e.g., [11], [12], [14]) which
support exact (or near machine precision) computation of SHT
enable rotationally invariant reconstruction of the band-limited
diffusion signal. Furthermore, computational complexity and
storage requirements of the measurement and reconstruction
process are important considerations in the design of a sampling
scheme [15].
Electrostatic energy minimisation [1], [5], tessellation of the

sphere [16], [17] and spherical code [2] are some of the methods
used to achieve a sampling grid with uniform sampling and
antipodal symmetry. These methods, can be used to construct
sampling grids of arbitrary size (with the exception of spherical
tessellation), however they only allow for approximate com-
putation of the SHT using least-squares, where the approxi-
mation improves with a larger number of samples [18]. The
least-squares method is also computational intensive compared
with fast SHT algorithms [11], [14]. The spherical design with
uniform density sampling method [9] has a uniform and antipo-
dally symmetric arrangement of samples, and allows for the ac-
curate computation of the SHT, however it requires more than

samples [18].
An iso-latitude scheme with samples, the optimal dimen-

sionality of an arbitrary (without antipodal symmetry) band-
limited signal on the sphere, has been developed [11], which al-
lows the accurate and fast computation of the SHT. An equian-
gular scheme [14] that allows exact and efficient computation
of the SHT has been used in dMRI which also uses samples
[3]. In this work, we focus on the recently proposed sampling
scheme [12], [19] which exploits the antipodal symmetry prop-
erty of the diffusion signal in the spatial domain to place samples
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such that the SHT in [11] can be used with the optimal number
of samples. We refer to this scheme as the spatial antipodal sam-
pling scheme.
In this work, we address the following research questions:
• Can we exploit the antipodal symmetry property of the dif-
fusion signal in the spectral domain to design a sampling
scheme and a corresponding SHT with optimal spatial di-
mensionality and an accurate SHT?

• Does the proposed scheme allow for superior reconstruc-
tion of the diffusion signal compared with the spatial an-
tipodal sampling scheme, the only scheme that has
samples and allows for the accurate computation of the
SHT, in terms of accuracy of reconstruction, computation
complexity of the SHT and storage requirements? Does the
scheme achieve rotationally invariant reconstruction?

In addressing these questions, the proposed sampling scheme
and SHT is presented in Section III. In Section IV, we carry out
the analysis of reconstruction accuracy, rotational invariance,
computational complexity and storage requirements of the SHT
associated with the proposed sampling scheme.

II. PRELIMINARIES

A. Diffusion Signal on the Sphere
The diffusion signal at a fixed -space radius repre-

sents a signal on the sphere. Let the diffusion signal be
denoted by , where is the co-latitude and

denotes the longitude, which parameterise a point
on the unit sphere .

Remark 1: (On the antipodal symmetry property of the diffu-
sion signal in the spatial domain): The diffusion signal has the
property that it is antipodally symmetric; in the spatial domain
the diffusion signal has the same value at locations diametrically
opposite each other with .

B. Spherical Harmonic Expansion
The spherical harmonic functions (or spherical harmonics)

form a complete basis for and are defined as [8],

(1)

for integer degree and integer order . In (1),
denotes the associated Legendre function of degree and

order , [8]. Due to completeness of spherical harmonics, we
can expand the diffusion signal as [8],

(2)

where denotes the spherical harmonic coefficient of de-
gree and order and is given by the spherical harmonic trans-
form (SHT) defined as

(3)

The spherical harmonic coefficients constitute the spectral
domain representation of the diffusion signal.

Remark 2: (On the antipodal symmetry property of the diffu-
sion signal in the spectral domain): Since

for even and
for odd , (Remark 1) implies that for odd degree ,
[9], [12], [20].
In this work, we assume that the diffusion signal is band-

limited1 at degree such that for . With this
consideration and following Remark 2, we rewrite (2) as

(4)

This reconstruction of the diffusion signal from its spherical har-
monic coefficients is referred to as the inverse SHT.
Remark 3: (Optimal dimensionality of the sampling scheme

for diffusion signal): The number of spherical harmonic coeffi-
cients required to represent the diffusion signal, given in (4), is

, [20], [21], which also represents the optimal
dimensionality, defined as the number of samples attainable by
any sampling scheme that allows the accurate computation of
the SHT of any band-limited antipodal signal.

C. Spatial Antipodal Sampling Scheme

We briefly review the spatial antipodal sampling scheme [12],
[19] which customises the sampling scheme [11] for acquisition
of measurements of the diffusion signal. We first revisit the op-
timal dimensionality sampling scheme [11], followed by the re-
view of the spatial antipodal sampling scheme.
The optimal dimensionality sampling scheme has an iso-lat-

itude sampling grid [11]; the locations along where
the iso-latitude rings are placed are stored in the vector

. The scheme has equally spaced
samples along longitude in the ring placed at with

. The sampling
grid, formed by and , is composed of samples, which is
equal to the number of degrees of freedom required to represent
any signal band-limited at degree .
The spatial antipodal sampling scheme [12] uses an antipodal

placement of samples on the sphere; the iso-latitude rings in
are placed in pairs antipodal to one another, with the samples
in the ring antipodal to the samples in the ring for

, that is

This arrangement means that measurements only need to be
taken over the rings . Samples are equally
spaced along longitude, with -th sample location, denoted by
, in the ring placed at given by

Since the measurements are only required to be taken over
rings due to antipodal symmetry (Remark 1), the

antipodal scheme requires , in total, for the

1The band-limit required to accurately represent the diffusion signal de-
pends on the -space radius [3], [4], [20].
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Fig. 1. (a) North pole view and (b) South pole view of the proposed sampling
scheme on the sphere given by (5) and (6) for measuring diffusion signal
band-limited at .

computation of the SHT. Thus the spatial antipodal sampling
scheme achieves the optimal dimensionality.

III. PROPOSED SAMPLING SCHEME AND SPHERICAL
HARMONIC TRANSFORM

To answer Q1, posed in Section I, we use the antipodal sym-
metry property of the diffusion signal in the spectral domain to
customise the optimal dimensionality sampling scheme [11] to
design a sampling scheme that achieves optimal dimensionality
and allows accurate computation of the SHT. As with [12], we
propose that measurements are taken over iso-lati-
tude rings. However, rather than using the antipodal symmetry
property of the diffusion signal in the spatial domain (Remark 1)
to determine the value of the diffusion signal on the remaining

rings, we redesign the SHT algorithm proposed in
[11]. By exploiting the antipodal symmetry property in the spec-
tral domain (Remark 2), the proposed SHT only requires diffu-
sion signal values on , rather than , rings.We refer to
the proposed scheme as the spectral antipodal sampling scheme.
The proposed scheme can be used for the measurement and re-
construction of any antipodally symmetric signal on the sphere.

A. Proposed Sampling Grid
We propose an iso-latitude sampling scheme, denoted by

, with iso-latitude rings, located at

(5)

and sample equally spaced along longitude, with -th sample
location, denoted by , in the ring placed at given by

(6)

We present the locations of the iso-latitude rings in
Section III-C. The proposed scheme for is shown in
Fig. 1.
Remark 4: (On the dimensionality of proposed scheme): The

total number of samples in the proposed scheme are

(7)

hence it attains the optimal spatial dimensionality.

B. Proposed Spherical Harmonic Transform (SHT)
We propose a SHT over the proposed sampling grid, defined

by the vectors and , given in (5) and (6). We define a vector

even and odd. The vector ,
with

(8)

is defined for and , where
. The integral in (8) can be accurately evaluated as a

summation provided there are at least samples along
, [11]. As samples are equally spaced around (6),

for can be computed using the FFT, then the spherical
harmonic coefficients of order can be recovered from (8) by
setting up a system of linear equations, given by

(9)

where

(10)

and is defined as

...
...

. . .
...

for even and

...
...

. . .
...

for odd . Here , where denotes the integer
ceiling function. We note that the size of system of linear equa-
tions given in (9) is , rather than for the
case of spatial antipodal sampling scheme [12].

C. Placement of Iso-latitude Rings
In order to accurately compute the SHT, we require the sam-

pling points along co-latitude to be chosen such that the ma-
trix is well-conditioned for each , [11], [12]. We
propose the following method to achieve this: define a set of
equiangular samples along co-latitude given by

, then the optimal ordering is
selected by first choosing the location of the ring of
(the largest number of) samples along from the set as far-
thest from the poles, then for each ,
choose from the set that minimises the sum of the con-
dition numbers of the matrices and and finally set

. Such placement of samples along co-latitude results in
being well-conditioned, which ensures the accurate com-

putation of the SHT. We analyse the accuracy of the SHT in the
next section.
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Fig. 2. Mean reconstruction error (11) plotted in solid (black) and
dashed (red) lines for the proposed sampling scheme and scheme in [12],
respectively, for the original (without marker) test signal and 4 rotated ver-
sions (indicated by markers) of the test signal and for band-limits .
The rotation angles in radians are in the form of Euler angles , as
displayed in the legend, where the rotation is applied using the rotation
convention [8].

IV. EVALUATION OF SPECTRAL ANTIPODAL OPTIMAL
DIMENSIONALITY SAMPLING SCHEME

In order to address Q2 posed in Section I, we now investigate
whether the proposed scheme performs better in terms of re-
construction accuracy, and computational and storage efficiency
than the spatial antipodal sampling scheme.

A. Numerical Accuracy

The following experiment is conducted to evaluate the nu-
merical accuracy of the SHT associated with the proposed sam-
pling scheme.
A band-limited antipodally symmetric test signal is synthe-

sised in the spectral domain by generating spherical harmonic
coefficients for even with real
and imaginary parts uniformly distributed in the interval .
The test signal is then obtained in the spatial domain over the
proposed sampling grid using the inverse SHT, followed
by the SHT to get the spherical harmonic coefficients of the re-
constructed signal, . For each band-limit
(band-limits of interest in dMRI), we repeat the experiment 10
times and record the average value of the mean reconstruction
error , given by

(11)

In order to analyse the effect of rotation on the accuracy of the
SHT for proposed sampling schemes, we also conduct the same
experiment on rotated versions of the test signal . The rota-
tion is applied by choosing Euler angles from uniform
distributions, where and , and then ap-
plying to the test using the convention [8].
We conduct the same experiments for the spatial antipodal

sampling scheme. The average value of for the proposed
scheme and spatial antipodal sampling scheme for different ro-
tations of the test signal is shown in Fig. 2. It is evident that
the reconstruction error is smaller for proposed scheme than the

spatial antipodal sampling scheme for all . In addi-
tion, the reconstruction error is practically rotationally invariant
for both schemes, as the order of magnitude of does not
change depending the angle of rotation.

B. Computational and Storage Efficiency
The asymptotic computational complexity to compute the

SHT for both the proposed and spatial antipodal sampling
schemes is same, that is, , which can reduced to
if we pre-compute the matrices [11], [12]. However, the
proposed scheme is, in practice, more efficient as it does
not compute the odd degree spherical harmonic coefficients,
resulting in the FFT being computed rather than
times. Furthermore, the matrix has a smaller dimension-
ality ( is largest for with of size rather
than ), which enables fast computation of matrix inversion
involved in solving the system of linear equations given in (9).
We calculated the computation time in seconds, denoted by ,

to carry out the SHT for the proposed and spatial antipodal sam-
pling schemes. The time taken to compute the SHT of the com-
plex band-limited test signal is recorded and averaged over
1000 test signals. The experiment is performed using
running on a machine equipped with 3.4 GHz Intel Core i7
processor and 8 GB of RAM. We found that the SHT associ-
ated with proposed scheme requires slightly less computation
time, showing that while it has the same asymptotic computa-
tional complexity, it is more efficient in practise. The SHT is
carried out for every voxel in an image; for an average sized
male brain of cm with imaging done at a spatial resolu-
tion of 1.25 mm with ( , a typical number of
samples for dMRI) [22], [23] the cumulative time for calculating
the SHT once for every voxel is 1520 seconds for the proposed
scheme and 1660 seconds for the spatial antipodal scheme. For
large databases of subjects, such as the Human Connectome
Project composed of 1200 subjects [23], the difference in com-
putation time is significant.
Furthermore, the proposed scheme requires only

rather than spherical harmonics to be computed, reducing
the storage space required to store the spherical harmonic rep-
resentation of the diffusion signal by approximately half.

V. CONCLUSIONS
We have developed a sampling scheme on the sphere for

the reconstruction of the diffusion signal in dMRI that exploits
the antipodal symmetry property of the diffusion signal in the
spectral domain to attain an optimal number of samples. A
sampling scheme that exploits the antipodal symmetry property
of the diffusion signal in the spatial domain is the only other
scheme that allows accurate reconstruction of the diffusion
signal with the optimal number of samples. We have shown
that the proposed sampling performs better than the spatial
antipodal sampling scheme for the application of diffusion
signal reconstruction in dMRI; the proposed sampling scheme
will allow for more accurate diffusion signal reconstruction, as
well as decreased processing time and storage requirements.
Obtaining dMRI measurements and extending the proposed
scheme to multiple -shell sampling is the subject of future
work.
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