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Efficient Computation of Slepian Functions for
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Abstract—In this paper, we develop a new method for the fast and
memory-efficient computation of Slepian functions on the sphere.
Slepian functions, which arise as the solution of the Slepian con-
centration problem on the sphere, have desirable properties for
applications where measurements are only available within a spa-
tially limited region on the sphere and/or a function is required to
be analyzed over the spatially limited region. Slepian functions are
currently not easily computed for large band-limits for an arbitrary
spatial region due to high computational and large memory storage
requirements. For the special case of a polar cap, the symmetry of
the region enables the decomposition of the Slepian concentration
problem into smaller subproblems and consequently the efficient
computation of Slepian functions for large band-limits. By exploit-
ing the efficient computation of Slepian functions for the polar
cap region on the sphere, we develop a formulation, supported
by a fast algorithm, for the approximate computation of Slepian
functions for an arbitrary spatial region to enable the analysis of
modern datasets that support large band-limits. For the proposed
algorithm, we carry out accuracy analysis of the approximation,
computational complexity analysis, and review of memory storage
requirements. We illustrate, through numerical experiments, that
the proposed method enables faster computation, and has smaller
storage requirements, while allowing for sufficiently accurate com-
putation of the Slepian functions.

Index Terms—Spatial-spectral concentration problem, Slepian
functions, 2-sphere (unit sphere), spherical harmonics.

I. INTRODUCTION

S IGNALS are naturally defined on a sphere in a large num-
ber of real-world applications found in various and di-

verse branches of science and engineering; including medical
imaging [1]–[3], cosmology [4]–[6], acoustics [7], [8], geo-
physics [9], [10], planetary sciences [11], [12], wireless commu-
nication [13], [14] and computer graphics [15], [16], to name a
few. In these applications, signals and/or data-sets on the sphere
are often analyzed in the harmonic domain which is enabled by
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the spherical harmonic transform which serves as a well-known
counterpart of the Fourier transform [17]. Spherical harmonic
functions, or spherical harmonics for short, form an orthonormal
basis [17] for signals on the sphere. Signals on the sphere can be
reconstructed from a finite number of measurements by expan-
sion in the spherical harmonic basis, provided that the spherical
harmonic transform can be accurately computed which requires
the samples to be taken on a grid (on the whole sphere) defined
by sampling schemes [18], [19].

However, it is common for signals to be measured, recon-
structed and/or analyzed within a region of the sphere in many
fields including medical imaging [20], signal processing [21],
[22], geological studies [9], [10], acoustics [7] and cosmo-
logical studies [23], [24], to name a few. For example, the
samples are unavailable (or unreliable) at the North and South
pole for satellite measurements of the Earth’s magnetic or gravi-
tational field [25]. Since the data-sets/measurements are defined
over the spatially limited region, the use of the globally de-
fined spherical harmonic basis may not be suitable for signal
analysis in these applications. Alternatively, Slepian functions,
which arise as the solution of the Slepian concentration prob-
lem on the sphere [26]–[28] to find the band-limited functions
with optimal energy concentration within a spatial region on the
sphere, serve as an orthonormal basis of the space formed by
band-limited functions, and therefore are well suited for signal
analysis [21], [24], [29], [30] and accurate signal reconstruc-
tion (over the spatially limited region) [7], [13], [22] in these
applications.

Despite being widely applicable, Slepian functions are cur-
rently not computed for large band-limits due to the high com-
putational complexity and large memory storage requirements
associated with their computation [31]. The conventional
method for computing Slepian functions for an arbitrary spa-
tial region on the sphere [28], [32] requires the computation of
a L2 × L2 matrix, where L denotes the band-limit (formally
defined in Section II-A) in the spherical harmonic basis, and
the subsequent eigenvalue decomposition of this matrix, both of
which are computationally intensive. Furthermore, the storage
of such a large matrix on a commonly available desktop com-
puter (with limited memory) also becomes infeasible for large
L. For the special case of a polar cap spatial region, the computa-
tional complexity and storage requirements are manageable for
large band-limits as the symmetry of the polar cap region enables
the decomposition of Slepian concentration problem into sub-
problems of smaller size, where the largest matrix is L × L [25],
[31]. To the best of our knowledge, Slepian functions have only
been computed up to L = 72 [33] despite higher band-limit data
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being available, with the exception of the special case of the re-
gion being a polar cap for which Slepian functions have been
constructed up to L = 500 [31]. While Slepian functions have
been used to spatially and spectrally localize a global spher-
ical harmonic power spectrum with large band-limit, Slepian
functions, which in this context are used as data tapers, have
a small band-limit [12], [29]. In [34] an iterative algorithm is
proposed for the computation of the most concentrated eigen-
function which obtains smaller computational complexity than
the conventional method but can only compute the first Slepian
function.

With the large band-limits supported by modern data-sets on
the sphere, such as the Enhanced Magnetic Model (EMM2015)
of magnetic field of Earth with band-limit L = 720 [35], it
is desirable to be able to compute Slepian functions for large
band-limits. In this work, with an aim to make computation of
Slepian functions manageable for large band-limits, we address
the following questions:

� Can we develop a method for calculating Slepian functions
that is more computationally efficient than the conventional
method?

� How can we reduce the memory storage requirements to
make the computation of Slepian functions manageable on
a commonly available desktop computer for large L?

� How does the reduction in computational burden and
storage requirements impact on the accuracy of Slepian
functions?

In addressing these questions, we organize the rest of the
paper as follows. We review the necessary mathematical back-
ground for signals on the sphere and spherical harmonics in
Section II, before presenting the conventional approach to com-
puting Slepian functions on the sphere. The proposed method
for computing Slepian functions is then derived in Section III,
where we also analyze the properties of the proposed method and
develop an algorithm for implementing the proposed method
that is computationally and memory efficient. In Section IV,
we illustrate the accuracy, computational complexity and stor-
age requirements of the proposed method compared with the
conventional method of computing Slepian functions for the ex-
ample of mainland Australia. Slepian functions for the example
of South America are computed using the proposed method in
Section V. Concluding remarks are then made in Section VI.

II. PROBLEM FORMULATION

To clarify the adopted notation, we briefly review the mathe-
matical background for signals defined on the sphere and their
spectral domain representation before presenting Slepian func-
tions on the sphere and stating the problem under consideration.
The important notation and mathematical symbols adopted in
this paper are summarized in Table I.

A. Mathematical Background

1) Signals on the Sphere: A point on the unit sphere
S2 (also known as the 2-sphere or sphere) is given by a
unit vector x̂ ≡ x̂(θ, φ) � (sin θ cos φ, sin θ sin φ, cos θ)′ ∈
R3 , where θ ∈ [0, π] is the colatitude that is measured with
respect to the positive z−axis and φ ∈ [0, 2π) is the longitude

TABLE I
IMPORTANT NOTATION AND MATHEMATICAL SYMBOLS

ADOPTED IN THIS PAPER

which is measured with respect to the positive x−axis in the
x − y plane, and (·)′ denotes the vector transpose operation.

The set of complex-valued square-integrable functions de-
fined on the sphere forms a Hilbert space denoted by L2(S2)
equipped with the inner product given by [17]

〈f, h〉 �
∫

S2
f(x̂)h(x̂) ds(x̂), (1)

for two functions f and h defined on S2 . Here ds(x̂) =
sin θ dθ dφ is the differential area element on S2 and (·) de-
notes the complex conjugate. The inner product induces a norm
‖f‖ � 〈f, f〉1/2 . We refer the functions with finite energy (finite
induced norm) as signals on the sphere.

2) Spherical Harmonic Domain Representation: The spher-
ical harmonic functions are the archetype set of basis functions
for L2(S2). The spherical harmonic functions (or spherical har-
monics for short) Y m

� (x̂) for integer degree � ≥ 0 and integer
order |m| ≤ �, where | · | denotes the absolute value, are defined
as [17], [36]

Y m
� (x̂) = Y m

� (θ, φ) = Nm
� Pm

� (cos θ)eimφ , (2)

with

Nm
� =

√
2� + 1

4π

(� − m)!
(� + m)!

, (3)

and Pm
� denotes the associated Legendre function of integer

degree � and integer order m [17]. The spherical harmonics are
orthonormal over the sphere with 〈Y m

� , Y q
p 〉 = δ�,pδm,q , where

δm,q is the Kronecker delta function: δm,q = 1 for m = q and
is zero otherwise.
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By the completeness of spherical harmonics, we can expand
any signal f ∈ L2(S2) as

f(x̂) =
∞∑

�=0

�∑
m=−�

(f)m
� Y m

� (x̂), (4)

where the equality is understood in terms of convergence in the
mean [17] and

(f)m
� � 〈f, Y m

� 〉 =
∫

S2
f(x̂)Y m

� (x̂) ds(x̂), (5)

denotes the spherical harmonic coefficient of degree � and
order m. The signal f ∈ L2(S2) is defined to be band-
limited at degree L if (f)m

� = 0 for � ≥ L. The set of band-
limited signals forms an L2 dimensional subspace of L2(S2),
which is denoted by HL . We define the column vector f =(
(f)0

0 , (f)−1
1 , (f)0

1 , (f)1
1 , (f)−2

2 , · · · , (f)L−1
L−1

)′
of size L2 as the

spectral domain representation of a band-limited signal f ∈ HL .
3) Rotation on the Sphere: Rotation of a function on the

sphere can be described in terms of the rotation operator
D(ϕ, ϑ, ω) which rotates a function by an angle ω ∈ [0, 2π)
around the z-axis, followed by an angle ϑ ∈ [0, π] around
the y-axis and finally an angle ϕ ∈ [0, 2π) around the z-axis,
where the axis and rotations follow a right-handed conven-
tion [17]. The inverse of the rotation operator is given by
D(ϕ, ϑ, ω)−1 = D(π − ω, ϑ, π − ϕ). Rotation of a function on
the sphere is realised by inverse rotation of the coordinate system
with

(D(ϕ, ϑ, ω)f)(x̂) = f(R−1 x̂), (6)

where R is the 3 × 3 rotation matrix corresponding to the rota-
tion operator D(ϕ, ϑ, ω) [17].

4) Regions on the Sphere: We use R to denote an arbitrary
closed region of the sphere with area A =

∫
R ds(x̂). R can

be irregular in shape and does not need to be convex, it can
also be a union of unconnected subregions, with R = R1 ∪
R2 ∪ . . . [17], [28]. A useful region of the sphere is the polar
cap region RΘ � {x̂(θ, φ) ∈ S2 | 0 ≤ θ ≤ Θ}, parameterized
by central angle Θ formed by the boundary of the polar cap
with the positive z-axis [25].

B. Slepian Functions on the Sphere

For signals on the sphere, the Slepian concentration prob-
lem [37]–[40], to find the band-limited (or space-limited) func-
tions with optimal energy concentration in the spatial (or
spectral) domain, has been extensively investigated [17], [25],
[27], [28], [30], [41]. In order to maximize the spatial concen-
tration of a band-limited signal h ∈ HL within the spatial region
R ⊂ S2 , we seek to maximize the spatial concentration (energy)
ratio λ given by [28]

λ =

∫
R |h(x̂)|2ds(x̂)∫ 2
S |h(x̂)|2ds(x̂)

, 0 ≤ λ < 1. (7)

The conventional approach to solving this problem is to express
it in the spectral domain as

λ =

∑L−1
�=0

∑�
m=−�

∑L−1
p=0

∑p
q=−p (h)m

� (h)q
pK�m,pq∑L−1

�=0
∑�

m=−� (h)m
� (h)m

�

, (8)

where

K�m,pq �
∫

R

Y m
� (x̂)Y q

p (x̂)ds(x̂). (9)

Using the spectral domain version of the concentration ratio (8),
the Slepian concentration problem to maximize the concentra-
tion ratio λ can be solved as an algebraic eigenvalue problem
given by

L−1∑
p=0

p∑
q=−p

K�m,pq (h)q
p = λ(h)m

� , (10)

with matrix formulation

Kh = λh, (11)

where the matrix K contains elements K�m,pq with similar
indexing adopted for h and has dimension L2 × L2 . The so-
lution of the eigenvalue problem (11) gives L2 eigenvectors
hα , α = 1, 2, . . . , L2 , where the eigenvalue associated with
each eigenvector is denoted λα and eigenvectors are indexed
such that 0 ≤ λL2 ≤ . . . ≤ λ2 ≤ λ1 < 1. Since the eigenvalue
problem in (11) is formulated in the spectral domain, each eigen-
vector represents the spectral domain (spherical harmonic coef-
ficients) of the associated eigenfunction in the spatial domain.
The eigenfunctions hα (x̂) are obtained by expanding the eigen-
vectors hα in the spherical harmonic basis using (4). The eigen-
value associated with each eigenvector (or eigenfunction) is a
measure of concentration of eigenfunction within the spatial
region R. Consequently, the eigenfunction h1(x̂) is the most
concentrated in R, while hL2 (x̂) is most concentrated in the
complement region S2\R.

Since, by definition, K is Hermitian symmetric and positive
semi-definite the eigenvalues are real and non-negative and the
eigenvectors can be taken as orthogonal (orthonormal due to
normalization in (7) [17], [28]). Such orthogonality, in conjunc-
tion with (11), implies∫

S2
hα (x̂)hβ (x̂)ds(x̂) = h′

αhβ = δα,β , (12)

∫
R

hα (x̂)hβ (x̂)ds(x̂) = h′
αKhβ = λβh′

αhβ = λβ δα,β ,

(13)

that is, the eigenfunctions are orthonormal on the sphere and
orthogonal over the region R.

Remark 1 (On the representation of band-limited signals in
Slepian basis): The solution of Slepian concentration problem
for a given region R and band-limit L provides L2 orthonormal
band-limited eigenfunctions, which span the L2 dimensional
subspace HL and therefore form a basis, referred to as Slepian
basis or Slepian functions, for the representation of any signal
in HL .

The number of eigenfunctions that are well-concentrated
(with eigenvalue close to 1) in R is approximated1 by the sum

1Since the sum of eigenvalues N given in (14) may not be an integer, any
reference to N as number is treated as N � in the rest of the paper to keep the
notation succinct. Here ·� denotes the integer ceiling function.
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of the eigenvalues N , that is,

N =
L2∑

α=1

λα = tr(K) =
A

4π
L2 , (14)

where tr(·) denotes the trace of the matrix and A is the area of
the region R.

1) Slepian Functions for a Polar Cap: Here we review the
computation of Slepian functions for a polar cap region RΘ . We
use s ∈ HL to denote the functions which we require to be con-
centrated within the polar cap region. With this consideration,
we rewrite the Slepian concentration problem in (11) as

Cs = λs, (15)

where C is the matrix K for a polar cap region and s is the
spectral domain representation of s. In order to solve the Slepian
concentration problem (10), we are first required to evaluate
K�m,pq , given by the integral over R in (9). For the special
case of a polar cap region RΘ , analytic expressions have been
devised in the literature to compute C�m,pq [28], [42] in terms
of Wigner-3j symbols [17], that is,

C�m,pq = 2πδm,qN
m
� Nm

p

∫ Θ

0
Pm

� (cos θ)Pm
p (cos θ) sin θ dθ

= (−1)m

√
(2� + 1)(2p + 1)

2

�+p∑
n= |�−p |

×
(

� n p

0 0 0

) (
� n p

m 0 −m

)

× [Pn−1(cos Θ) − Pn+1(cos Θ)], (16)

which implies that C�m,pq = 0 for m �= q and C�m,pq =
C�(−m ),p(−q) .

Remark 2 (On the computation of Slepian functions for po-
lar cap region): The formulation in (16) implies C�m,pq = 0
for m �= q and C�m,pq = C�(−m ),p(−q) , which, by appropriate
switching of rows and columns of the matrix C, enable us to
formulate C as a block diagonal matrix, where non-zero ele-
ments with a fixed order m appear next to each other forming
sub-matrices C(m ) of size (L − m) × (L − m) [25] with

C(m ) =
⎛
⎜⎜⎜⎜⎝

Cmm,mm Cmm,(m+1)m · · · Cmm,(L−1)m

C(m+1)m,mm C(m+1)m,(m+1)m · · · C(m+1)m,(L−1)m

...
...

. . .
...

C(L−1)m,mm C(L−1)m,(m+1)m · · · C(L−1)m,(L−1)m

⎞
⎟⎟⎟⎟⎠

(17)

for 0 ≤ m < L and C(m ) = C(−m ) . Due to the block diagonal
structure of C for the polar cap region, rather than solving
the L2 × L2 eigenvalue equation (11), we can solve L smaller
problems of size (L − m) × (L − m), the largest being of size
L × L for m = 0, of the form

C(m )s(m ) = λs(m ) , (18)

where s(m ) =
(
(s)m

|m |, (s)
m
|m |+1 , · · · , (s)m

L−1

)′
contains spheri-

cal harmonic coefficients of order m. For each eigenvector, the
associated Slepian functions can be obtained using (4).

Alternatively, Slepian functions can be obtained directly and
efficiently using the method presented in [25], [28]. This method
is analytic and so allows for the accurate and fast computation
of Slepian functions in a polar cap. The only matrix is a tridi-
agonal matrix of size (L − m) × (L − m), the largest being of
size L × L for m = 0, that has elements with simple analytical
expressions.

The number of Slepian functions that are well-concentrated
in the polar cap can be approximated by substituting its area
AΘ � 2π(1 − cos Θ) into (14), giving the sum of eigenvalues
of C for a polar cap region,

NΘ =
(1 − cos Θ)

2
L2 . (19)

C. Problem Statement

Following the formulation of Slepian concentration problem
presented above, we summarize below the method, referred to
throughout this method as the conventional method, for the
computation of Slepian functions for a given band-limit L and
an arbitrary shaped region R:2

1) Calculate the L2 × L2 matrix K composed of inner prod-
ucts between spherical harmonic functions (9) via numer-
ical integration of spherical harmonics over R.3

2) Carry out the eigenvalue decomposition of K to compute
eigenvalues λα and eigenvectors hα for α = 1, 2, . . . , L2 .
Eigenvectors represent Slepian functions in the spec-
tral (spherical harmonic) domain.

Computing Slepian functions with large band-limits using this
method is infeasible due to the large computational complexity
of calculating the L4 elements of K, and subsequently com-
puting the eigenvalues and eigenvectors. At large L, the mem-
ory required to store K also becomes too large for a standard
desktop computer. For the special case of a polar cap region,
following Remark 2, the computational complexity and storage
requirements to compute Slepian functions at large band-limits
are manageable due to the matrices C(m ) (and the tridiagonal
matrix if the eigenfunctions are to be computed directly) being
at most of size L × L. In this work, we aim to develop a method
of computing Slepian functions for large band-limits and an ar-
bitrary region on the sphere that has manageable computational
complexity and storage requirements.

III. EFFICIENT COMPUTATION OF SLEPIAN FUNCTIONS FOR AN

ARBITRARY REGION ON THE SPHERE

As explained in the previous section, the conventional ap-
proach, that is computationally expensive and memory ineffi-
cient, to compute Slepian functions is to solve the eigenvalue
problem in (11), which is obtained by expanding the function

2This conventional method of computing Slepian functions is implemented
in the SLEPIAN_Alpha software DOI: 10.5281/zenodo.56825 [43].

3Since there does not exist any (exact) quadrature rule to evaluate the integral
of the function on the sphere over an arbitrary region, K�m ,pq , given in (9), is
computed numerically by employing the approximate quadrature rule [32] for
the discretization of integral over arbitrary region R.
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h ∈ HL in harmonic space in the equivalent concentration prob-
lem formulated in (7). By finding the alternative basis, in which
the function h ∈ HL in (7) has sparse representation, we pro-
pose a fast method, with less storage (memory) requirements,
for the computation of Slepian functions on the sphere for a
given band-limit L and region R ⊂ S2 .

A. Slepian Functions for Rotationally Symmetric Region

Definition 1 (Rotationally Symmetric Region): We define a
rotationally symmetric region centered at x̂c = x̂c(θc , φc) en-
closing the region R4 as RΘ(x̂c) = {x̂(θc , φc) ∈ S2 |Δ(x̂ ·
x̂c) ≤ Θ}, where Δ(x̂ · x̂c) denotes the great circle distance
between x̂ and x̂c . The region is rotationally symmetric around
its center x̂c . We note that RΘ = RΘ(x̂c(0, 0)), that is, a polar
cap region is a special case of rotationally symmetric region
with x̂c = x̂c(0, 0) (North pole).

For a given band-limit and rotationally symmetric re-
gion RΘ(x̂c), we denote Slepian functions by gα (x̂), α =
1, 2, . . . , L2 . Noting that the polar cap region RΘ , when ro-
tated around y-axis by θc and then by φc around z-axis, be-
comes rotationally symmetric region RΘ(x̂c), we compute
Slepian functions for rotationally symmetric region RΘ(x̂c)
by first computing Slepian functions sα (x̂), α = 1, 2, . . . , L2

in the polar cap region RΘ followed by the rotation of polar cap
Slepian functions as

gα (x̂) = (D(φc, θc , 0)sα )(x̂), α = 1, 2, . . . , L2 . (20)

The rotation of sα (x̂) in the spatial domain using the rotation
operator D(φc, θc , 0) in (20) is carried out in spectral (spherical
harmonic) domain as a linear transformation given by [17]

(gα )m
� = e−imφc

�∑
m ′=−�

dm,m ′
� (θc)(sα )m ′

� , (21)

where dm,m ′
� (·) is the Wigner-d function of degree � and orders

m,m′ [17]. We also note that the number of Slepian functions
that are well-concentrated in the region RΘ(x̂c) is approximated
by NΘ given in (19).

B. Signal Expansion in Slepian Basis

Since Slepian functions within the polar cap region or rota-
tionally symmetric region can be efficiently computed (Remark
2), we can represent/expand any band-limited function h ∈ HL ,
using the Slepian basis designed for a rotationally symmetric
region, that is (see Remark 1)

h(x̂) =
L2∑

α=1

(h)αgα (x̂), (22)

where

(h)α � 〈h, gα 〉 =
∫

S2
h(x̂)gα (x̂)ds(x̂), (23)

denotes the α-th Slepian coefficient.

4If R is a union of unconnected subregions, then the polar cap should enclose
all subregions.

Fig. 1. Eigenvalue spectra for rotationally symmetric regions RΘ (x̂c ) cen-
tered at the North pole. (a) For a band-limit L = 50 and polar cap radii of
Θ = π/6, π/5, π/4, and π/3. (b) For a polar cap radius of Θ = π/3 and for
band-limits L = 30, 40, 50, and 60. NΘ is shown by a marker on each spectrum
which well-approximates the number of well-concentrated Slepian functions in
RΘ (x̂c ).

We study the eigenvalue spectrum for rotationally symmetric
regions centered at the North pole (polar cap regions) in Fig. 1.
Fig. 1(a) shows the eigenvalue spectra for Slepian functions of
rotationally symmetric regions centered at the North pole for a
band-limit L = 50 and polar cap radii of Θ = π/6, π/5, π/4,
and π/3. Fig. 1(b) shows the eigenvalue spectra for Slepian
functions of a rotationally symmetric region with a polar cap
radius of Θ = π/3 and band-limits L = 30, 40, 50, and 60. All
spectra have a sharp transition from well-concentrated eigen-
values (λα ≈ 1) to poorly concentrated eigenvalues (λα ≈ 0).
This transition takes place at NΘ , given by (19), as indicated by
the markers in Fig. 1.

As only the first NΘ� Slepian functions for the rotation-
ally symmetric region are well-concentrated within the region
RΘ(x̂c), the expansion of h(x̂) given in (22) can be truncated
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at5 NΘ� for x̂ ∈ RΘ(x̂c) as

h(x̂) ≈
NΘ∑
α=1

(h)αgα (x̂), x̂ ∈ RΘ(x̂c). (24)

The error between the Slepian function, given by equation (22),
and its approximation, given by (24), within RΘ(x̂c) is

L2∑
α=NΘ +1

(h)αgα (x̂), x̂ ∈ RΘ(x̂c). (25)

Due to the small energy concentration λα within the region
RΘ(x̂c) of Slepian functions with α > NΘ , the error given by
(25) is approximately zero.

The quality of the approximation to the Slepian function given
in (24) within the spatial region of interest R can be measured
by defining the quality measure as a ratio of the energy concen-
tration of the approximate representation to the energy of the
exact representation within the spatial region, that is [25], [44],

Q(NΘ) =
∑NΘ

α=1 λα |(h)α |2∑L2

α=1 λα |(h)α |2
. (26)

Later in the paper in Section IV and Section V, we show, through
illustration, that the approximate representation given in (24) is
of high quality.

C. Concentration Problem – Formulation in Slepian Basis

We define the truncated expansion given in (24) as

f(x̂) �
NΘ∑
α=1

(f)αgα (x̂), (f)α � 〈f, gα 〉. (27)

For an arbitrary shaped region R ⊂ RΘ(x̂c), we seek to max-
imize the concentration ratio of f(x̂) inside the region R and
over the whole sphere, that is,

λ =

∫
R |f(x̂)|2ds(x̂)∫ 2
S |f(x̂)|2ds(x̂)

= maximum, 0 ≤ λ < 1. (28)

Using (27), λ can be equivalently expressed as

λ =

∑NΘ
α=1

∑NΘ
β=1 (f)α (f)β Pα,β∑NΘ

α=1 (f)α (f)α

, (29)

where

Pα,β �
∫

R

gα (x̂)gβ (x̂)ds(x̂). (30)

The problem of maximizing λ in (29) can be solved as an alge-
braic eigenvalue problem of size NΘ given by

NΘ∑
β=1

Pα,β (f)β = λ(f)α , (31)

with matrix formulation

Pf̃ = λf̃ , (32)

where f̃ =
(
(f)1 , (f)2 , . . . , (f)NΘ

)′
and P is a matrix of size

NΘ × NΘ with elements given by (30). The solution of the

5Again, we take any reference to NΘ as number as NΘ �.

eigenvalue problem in (32) gives NΘ orthonormal eigenvectors
f̃a , a = 1, 2, . . . , NΘ where we have indexed eigenvectors such
that eigenvalue λa associated with the eigenvector f̃a follows
0 ≤ λNΘ ≤ . . . ≤ λ2 ≤ λ1 < 1. For each eigenvector f̃a , the
associated eigenfunction fa(x̂) is obtained using (27).

In principle, the Slepian concentration problem in (7) max-
imizes the concentration of a band-limited function h ∈ HL

within the arbitrary spatial region R, the solution of which
gives L2 band-limited orthonormal eigenfunctions, which serve
as an alternative basis, referred to as Slepian basis or func-
tions, for the representation of any band-limited signal. Out of
these L2 Slepian functions, N number of Slepian functions are
well-concentrated within the spatial region. Consequently, any
band-limited function, when expanded in Slepian basis, can be
well-approximated within the region using the (first) N concen-
trated Slepian functions. This is the essence of the concentration
problem; it enables sparse representation of a signal concen-
trated within a region of interest by expansion in the Slepian
basis. Conventionally, the concentration problem is formulated
as an eigenvalue problem, (11), the solution of which requires
eigenvalue decomposition of L2 × L2 matrix.

Here we have posed a concentration problem to maximize the
concentration of f(x̂) within the spatial region R ⊂ RΘ(θc).
Since f(x̂) ≈ h(x̂) for x̂ ∈ RΘ(θc), we have hα (x̂) ≈ fα (x̂)
for α = 1, 2, . . . , N , that is we have the (approximately) same
well-concentrated eigenfunctions of the two concentration prob-
lems formulated in (7)–(11) and (28)–(32). However, the lat-
ter requires the eigenvalue decomposition of matrix P of size
NΘ × NΘ and, therefore, can be solved efficiently and has
manageable storage requirements. Consequently, the proposed
formulation enables the approximate computation of Slepian
functions for a given band-limit L and an arbitrary region R.
We analyze the accuracy, computational complexity and storage
requirements in the next section.

Remark 3 (On the accurate computation of Slepian Func-
tions for arbitrary regions): Our proposed method can compute
Slepian functions for any arbitrary region of the sphere, which
does not have to be well-approximated by a rotationally sym-
metric region. Slepian functions serve as an orthonormal basis
for the whole sphere and an orthogonal basis for the region on
which they are defined. Since this is true for any region includ-
ing the polar cap, the polar cap Slepian functions can be used to
represent any band-limited function on the sphere (See Remark
1 and (22))). The function can be defined on any region, not just
within the polar cap. If the function is concentrated within the
polar cap though, it can be represented more efficiently (Slepian
functions with a small amount of energy in the region can be
discarded, see (24)). Similarly, if the function exists within a re-
gion enclosed by the polar cap it can be efficiently represented
by the well-concentrated polar cap Slepian functions. Hence,
the region does not have to be a polar cap or approximately a
polar cap in shape. In this work, the functions in question are
Slepian functions in a region of interest that is enclosed by the
polar cap.

D. Properties of Slepian Functions

1) Orthogonality: We show that Slepian functions hα and
fα , computed using the conventional method and the proposed
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formulation respectively, exhibit the same orthogonality prop-
erties for α = 1, 2, . . . , NΘ . By definition, the matrix P is pos-
itive semi-definite and Hermitian symmetric, which implies that
its eigenvalues are real and non-negative and the eigenvectors
are orthogonal. We choose them to be orthonormal, that is,

f̃ ′a f̃b =
NΘ∑
α=1

(fa)α (fb)α = δa,b , (33)

which is equivalent to the orthonormality of associated eigen-
functions fa(x̂) in the spatial domain, that is,∫

S2
fa(x̂)fb(x̂)ds(x̂) = δa,b , (34)

which is obtained using the expansion of f(x̂) given in (27).
In addition to being orthonormal over the whole sphere, the

eigenfunctions fa(x̂) are orthogonal over the region R, that is,

∫
R

fa(x̂)fb(x̂)ds(x̂) =
NΘ∑
α=1

(fa)α

NΘ∑
β=1

Pα,β (fb)β

= f̃ ′aPf̃b = λb f̃ ′a f̃b = λb δa,b , (35)

which follows from the formulation of eigenvalue problem in
(32) and the orthonormality relation in (33).

2) Spectral Domain Representation: Using the definition of
f(x̂) in (27) and the definition of the spherical harmonic coef-
ficients (5), the spherical harmonic coefficients (f)m

� are given
by

(f)m
� �

∫
S2

f(x̂)Y m
� (x̂) ds(x̂)

=
∫

S2

NΘ∑
α=1

(f)αgα (x̂)Y m
� (x̂) ds(x̂)

=
NΘ∑
α=1

(f)α

∫
S2

gα (x̂)Y m
� (x̂) ds(x̂) =

NΘ∑
α=1

(f)α (gα )m
� .

(36)

3) Number of Well-concentrated Eigenfunctions: With an
assumption that the spectrum of eigenvalues has a sharp tran-
sition from unity to zero, the number of well-concentrated
eigenfunctions in R is approximated by the trace of the matrix
P with

NP = tr(P) =
NΘ∑
α=1

∫
R

gα (x̂)gα (x̂)ds(x̂)

=
∫

R

NΘ∑
α=1

|gα (x̂)|2ds(x̂). (37)

The sum of Slepian functions over the sphere is independent of
the position on the sphere [28], that is,

L2∑
α=1

|gα (x̂)|2ds(x̂) =
NΘ

AΘ
, x̂ ∈ S2 . (38)

Noting that Slepian functions gα (x̂) for rotationally sym-
metric region have low energy concentration (λ ≈ 0)

when α = NΘ + 1, NΘ + 2, . . . , L2 , we have

NΘ∑
α=1

|gα (x̂)|2ds(x̂) ≈ NΘ

AΘ
, ∀x̂ ∈ RΘ(x̂c), (39)

which allows us to approximate NP in (37) as

NP ≈ A

AΘ
NΘ =

A

AΘ

AΘL2

4π
=

AL2

4π
= N, (40)

which indicates both the conventional method and the proposed
formulation to solve the concentration problem yield approxi-
mately the same number of well-concentrated eigenfunctions.

E. Efficient Computation of Slepian Functions for Arbitrary
Region – Algorithm

Based on the formulation presented in Section III, we here
present an algorithm to compute Slepian functions for a given
band-limit L and arbitrary region R. To enable the computa-
tion of Slepian functions for large band-limits, the algorithm,
consisting of following steps, is designed to minimize the com-
putation time and storage requirements:

1) Find Θ and x̂c for a rotationally symmetric region RΘ(x̂c)
of smallest area enclosing the region R.

2) Rotate R and RΘ(x̂c) to the North pole, first by π − φc

around z-axis, and then by θc around y-axis. The rotation-
ally symmetric region rotated to the North pole becomes
a polar cap region RΘ . We use R̃ to denote the region R
rotated to the North pole.

3) Compute Slepian functions concentrated in RΘ as
sα (x̂), α = 1, 2, . . . , NΘ for each order −L < m < L:

a) Find the spherical harmonic coefficients of the polar
cap Slepian functions of order m s(m ) , by solving
(18).

b) Discard any polar cap Slepian functions that are not
well-concentrated in the region.

c) Evaluate the remaining well-concentrated polar cap
Slepian functions in the spatial domain s(x̂) by ex-
pansion in the spherical harmonic basis (4).

4) Calculate the matrix P, whose elements are given by

Pα,β �
∫

R

gα (x̂)gβ (x̂)ds(x̂)

=
∫

R̃

sα (x̂)sβ (x̂)ds(x̂), (41)

by numerically integrating the polar cap Slepian functions
sα (x̂), α = 1, 2, . . . , NΘ over the region R̃ using the
samples stored in Step 3c).

5) Find the eigenvalues and eigenvectors of P.
6) To obtain Slepian functions for R, fa(x̂), a = 1, 2,

. . . , NΘ , (note that for RΘ , gα (x̂) = sα (x̂), hence equa-
tions (36) and (27) apply for sα (x̂)) either:

a) Calculate the spherical harmonic coefficients of the
eigenvectors of P (s)m

� using (36), then rotate the
eigenvectors to the region’s original location using
(21) and finally expand in the spherical harmonic
basis using (4).



4386 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 16, AUGUST 15, 2017

Fig. 2. Mainland Australia on the sphere surrounded by the rotationally sym-
metric region RΘ (x̂c ) shown in green.

b) Expand the eigenvectors for the region at the North
pole in the truncated polar cap basis (27) to get
Slepian functions for the region at the North pole
before rotating the functions to the region using (6).

We here expand on some of these steps. In Step 1), we
determine Θ and x̂c for a rotationally symmetric region
RΘ(x̂c) enclosing the region R as follows. If C denotes the
boundary of the region, we first numerically find the two
points ŷ1 , ŷ2 ∈ C ⊂ R ⊂ S2 for which the spherical distance
Δ(ŷ1 , ŷ2) = cos−1(ŷ1 · ŷ2) [17] between them is maximum.
This is performed using a search over all pairs of boundary
points which has computational complexity O(N 2). We con-
sider the number of points N to be relatively low so that this
does not effect the overall computational complexity of the al-
gorithm. For regions with a large number of boundary points,
alternative methods for finding the enclosing polar cap, such
as first finding the convex hull of the region with complexity
O(N log N), can be investigated. Then, we determine Θ as

Θ =
Δ(ŷ1 , ŷ2)

2
, (42)

and x̂c as the center point of the smaller arc of the great circle
passing through ŷ1 and ŷ2). For regions where Δ(ŷ1 , ŷ2) > π,
that is the region R extends onto both hemispheres, a modifica-
tion is needed. In this case points ŷ1 , ŷ2 ∈ C ⊂ R ⊂ S2 need
to be found so that the spherical distance is minimized and
Θ = π − Δ(ŷ1 , ŷ2 )

2 . As an illustration, the rotationally symmet-
ric region RΘ(x̂c) enclosing mainland Australia region R is
shown in Fig. 2.

In Step 3), the polar cap Slepian functions are computed one
order m at a time and only the well-concentrated ones are stored
to reduce storage requirements from L2 × L2 to NΘ × M ,
where M is the number of points that the polar cap Slepian
functions are evaluated at for subsequent numerical integration.
In Step 4), the inner products between the polar cap Slepian
functions are calculated using numerical integration. We use the
trapezium rule on an equiangular grid with a resolution parame-
ter that is used to set the number of points used in the integration.
The resolution can be increased to allow for greater accuracy or
decreased to reduce computation time and storage requirements.
Since the equiangular sampling has dense sampling around the
poles (θ = 0 or θ = π/2), we note that the evaluation of the

integral is more accurate, for the same resolution parameter, if
the region is closer to poles than the equator (θ = π/2).

F. Efficiency Analysis - Computation Time and Memory

We here analyze the efficiency in terms of computation time
and memory requirements of our proposed algorithm for com-
puting Slepian functions within an arbitrary region on the sphere
presented in Section III-E.

The proposed algorithm computes the NΘ × NΘ matrix P
by carrying out the inner products of polar cap Slepian func-
tions using numerical integration using M = L2 points, re-
sulting in computational complexity O(L2NΘ

2) = 0.25(1 −
cos Θ)2O(L6), using (19). Note that the number of points
M can be decreased to reduce computation time but this
will decrease the accuracy of computation. The computational
complexity for eigenvalue decomposition of n × n matrix is
O(n3) [31], hence the eigenvalue decomposition of P has com-
plexity O(NΘ

3) = 0.125(1 − cos Θ)3O(L6). For the conven-
tional method of computing Slepian functions (reviewed in
Section II-B), the matrix K is size L2 × L2 , integrating a
function with band-limit L requires at least L2 samples [18],
[45], hence computation of the L4 elements of K has compu-
tational complexity O(L6). The eigenvalue decomposition of
K is also O(L6). Hence, the computational complexity of the
proposed method is O(L6), like the conventional, method but
with prefactor 0.25(1 − cos Θ)2 for the matrix computation and
0.125(1 − cos Θ)3 for the eigenvalue decomposition. It is noted
that the parallel computing capability can be used to reduce the
computation time of both the proposed and conventional meth-
ods of computing the matrix [10].

For applications, where Slepian functions are required to
be computed for large band-limits and spatial regions with
enclosing rotationally symmetric regions with small area, we
expect that the proposed method offers significant reduction
in the computation time and memory storage requirement
since the reduction in both the memory requirements and the
computation time is proportional to the area of the rotationally
symmetric region enclosing the spatial region of interest

IV. ILLUSTRATION - AUSTRALIA

In this section, we evaluate the proposed algorithm, presented
in Section III-E, for computing Slepian functions within an arbi-
trary region on the sphere in terms of the numerical accuracy of
Slepian functions and eigenvalues, and the computational com-
plexity and storage requirements. In order to carry out the anal-
ysis, we compute Slepian functions for the example of mainland
Australia as the region R.

As discussed in Section III-E, the resolution of the equiangu-
lar grid for numerically integrating the polar cap Slepian func-
tions can be altered to change the accuracy of integration, and
the computational and storage requirements. For analysing the
proposed algorithm, we set the resolution of equiangular grid so
M ≈ L2 samples are used for numerical integration.

A. Numerical Accuracy Analysis - Spatial Domain

We here compare the accuracy of computing Slepian func-
tions using the proposed method fa(x̂) compared with the
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Fig. 3. (a) Eigenvalue spectrum for Slepian functions concentrated in Aus-
tralia band-limited at L = 64 (NΘ = 103) obtained using the proposed
λa , a = 1, 2, . . . , NΘ and conventional λα , α = 1, 2, . . . , NΘ methods.
(b) Absolute difference in eigenvalues |λα − λa |. Dashed back line shows
approximate number of well-concentrated Slepian functions N .

conventional method ha(x̂). For a given band-limit L, expan-
sion of the band-limited functions using all L2 Slepian func-
tions designed for a rotationally symmetric region, is equivalent
to the expansion of a signal in the spherical harmonic basis.
Since Slepian functions gα (x̂), α = NΘ + 1, NΘ + 2, . . . , L2 ,
although negligible, have some energy in the spatial region R,
the truncation of the representation in Slepian basis at NΘ , given
in (24), results in an approximation error as we will show in this
section. It must be noted neither the proposed nor the conven-
tional method for the computation of Slepian functions is exact
due to the need to numerically integrate the spherical harmonics
Y m

� (x̂) for all degrees � ≥ 0 and orders |m| ≤ � over R (9) in
the conventional method and the polar cap Slepian functions
sα (x̂), α = 1, 2, . . . , NΘ over R̃ (41) for the proposed method.

We compare the numerical accuracy of the two methods
for the mainland Australia region R and band-limit L = 64.
Fig. 3(a) shows the eigenvalue spectrum obtained using the con-

ventional λα , α = 1, 2, . . . , NΘ and proposed method λa, a =
1, 2, . . . , NΘ . The absolute difference in the eigenvalues com-
puted using the conventional method and the proposed method
|λα − λa | is plotted in Fig. 3(b), where it can be observed that
the spectra obtained by both methods are similar with the dif-
ference in corresponding eigenvalues of the proposed method
and conventional method being on the order of 10−2 or less.
Furthermore, the difference is smaller for the most concentrated
eigenfunctions in R and grows with the decrease in the spatial
concentration of eigenfunctions. This is of significant impor-
tance in many applications that only use the well-concentrated
Slepian functions for signal analysis [25], [46]. The number
of well-concentrated Slepian functions in Australia is approxi-
mated by the trace of the matrix K for the conventional method
(14) and by the trace of the matrix P for the proposed method
(37), which both round to N = 63, as indicated by the black
dashed line in Fig. 3.

We plot the ten most concentrated Slepian functions over
Australia shown in Fig. 4 using the conventional and the pro-
posed method, where the similarity in the shape of Slepian
functions can be observed. We note that we have plotted the
real Slepian functions in Fig. 4; the real Slepian functions
can be computed from the complex Slepian functions using
the relationship between their real and complex spherical har-
monic coefficients [17]. The difference in decibels between the
Slepian functions obtained using the conventional and the pro-
posed method, 10log10 |hα − fa |, for the ten most concentrated
Slepian functions is shown in Fig. 5. The maximum difference
observed in Fig. 5 is smaller than 0 dB showing that the pro-
posed method allows for accurate computation of the Slepian
functions.

B. Numerical Accuracy Analysis - Spectral Domain

To further quantify the difference in Slepian functions ob-
tained using the two methods, we compute the quality factor
Q(NΘ), given by (26), for each Slepian function band-limited
at L = 64 and concentrated in mainland Australia computed
using the proposed method fa and plot this in Fig. 6. The
quality factor is high for all Slepian functions but particu-
larly for Slepian functions well-concentrated within R, with
a quality factor of 95% or higher. This shows that the
approximation, given in (24), used by the proposed method
is highly accurate. The number of well-concentrated eigenfunc-
tions is indicated by N , shown by the black dashed line in
Fig. 6.

We also calculate the mean difference Ea in the spherical
harmonic coefficients of Slepian functions computed using the
proposed (f)m

� and conventional (h)m
� methods with

Ea � 1
L2

L−1∑
�=0

�∑
m=−�

|(fa)m
� − (ha)m

� |, (43)

this is shown in Fig. 7 for a = 1, 2, 5 and 6, the first, second,
fifth and sixth most concentrated Slepian functions in Australia
for band-limits L = 20, 40, 60, 80 and 100. Ea is on the order
of 10−3 or smaller, indicating that the proposed method allows
the accurate computation of Slepian functions.
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Fig. 4. Slepian functions fa (x̂), a = 1, 2, . . . , 10 and hα (x̂), α = 1, 2, . . . , 10 most concentrated in Australia with band-limit L = 64. The ordering of
concentration is left to right, top to bottom with Slepian functions obtained using the proposed method fa (x̂) in the first and third columns and Slepian functions
obtained using the conventional method hα (x̂) in the second and fourth columns.

C. Efficiency Analysis

We here analyze the efficiency in terms of the computational
complexity and memory required to compute Slepian functions
for the proposed method, as discussed in Section III-F for the
example of mainland Australia.

Fig. 8 shows the computation time for calculating the ma-
trices P and K, and subsequently performing their eigenvalue
decomposition using the proposed and conventional methods re-
spectively using MATLAB running on a machine equipped with
3.4 GHz Intel Core i7 processor and 8 GB of RAM for main-
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Fig. 5. The difference in decibels between Slepian functions computed using the conventional and the proposed method, 10log10 |hα − fa |, for the ten most
concentrated in Australia with band-limit L = 64. The ordering of concentration is left to right, top to bottom.

Fig. 6. Quality factor Q(NΘ ), given by (26), for Slepian functions computed
using the proposed method fa . Dashed back line shows approximate number of
well-concentrated Slepian functions N .

land Australia. As can be seen in Fig. 8 the computation time
of the proposed method is much faster than the conventional
method, around two orders of magnitude. The smaller dimen-
sion of the P matrix compared with K results in a faster matrix
computation time and faster eigenvalue decomposition.

The memory required to store matrix P is 0.25(1 − cos Θ)2

times smaller compared with storing the L2 × L2 matrix K. The
commonly available desktop machine used in our analysis has

Fig. 7. Mean difference Ea (43) for a = 1, 2, 5 and 6, the 1st, 2nd, 5th and
6th most concentrated Slepian functions in Australia for L = 20, 40, 60, 80 and
100.

1.302 ×1010 bytes for array storage in MATLAB. As MATLAB’s
type double requires 64 bits, the maximum band-limit that the
matrix K can be stored for is L = 200. In practice, as matrices
other than K need to be stored, it is only possible to compute
Slepian functions using the conventional method for less than
L = 100.

The maximum band-limit which the matrix P can be stored
depends on the region R, or more specifically on the area of the
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Fig. 8. The computation time τ in seconds to compute the matrices P and
K and subsequently perform eigenvalue decomposition using the proposed,
shown by the solid black lines, and conventional, shown by the red dashed lines,
methods respectively to compute Slepian functions concentrated in Australia
for L = 16, 32, 64, 128 and 256.

rotationally symmetric region enclosing R. For example, the ro-
tationally symmetric region surrounding Australia is 2.5% of the
area of the sphere hence, the matrix P is of size 0.000625L4 and
the maximum band-limit thatP can be stored for is L = 1270 for
1.302 ×1010 bytes of array storage. In our proposed algorithm
presented in Section III-E, Step 3) requires a NΘ × M matrix
to store the NΘ well-concentrated polar cap Slepian functions
evaluated at M points. For M = L2 points used Section IV, the
maximum band-limit that this matrix can be stored for on our
desktop computer is L = 505; the maximum band-limit could
be increased by decreasing M . We have managed to compute
Slepian functions in Australia using the proposed method and
M = L2 for band-limits up to L = 320.

V. ILLUSTRATION - SOUTH AMERICA

Our proposed method can compute Slepian functions for
any arbitrary region of the sphere, the region does not have
to be well-approximated by a rotationally symmetric region
(Remark 3). We have included Slepian functions band-limited
at L = 32 for South America, which is less similar to a ro-
tationally symmetric region than Australia, as another ex-
ample. Fig. 9(a) shows the eigenvalue spectrum obtained
using the conventional λα , α = 1, 2, . . . , NΘ and proposed
method λa, a = 1, 2, . . . , NΘ . The absolute difference in the
eigenvalues computed using the conventional method and the
proposed method |λα − λa | is plotted in Fig. 9(b), where it
can be observed that the spectra are similar with the differ-
ence in corresponding eigenvalues of the proposed method and
conventional method being on the order of 10−2 or less, as
was the case for the example of Slepian functions with L = 64
defined on mainland Australia in Fig. 3.

We plot the ten most concentrated Slepian functions over
South America shown in Fig. 10 using the conventional and the
proposed method, where the similarity in the shape of Slepian
functions can be observed. The difference in decibels between

Fig. 9. a) Eigenvalue spectrum for Slepian functions concentrated in South
America band-limited at L = 32 (NΘ = 90) obtained using the proposed
λa , a = 1, 2, . . . , NΘ and conventional λα , α = 1, 2, . . . , NΘ methods.
b) Absolute difference in eigenvalues |λα − λa |. Dashed back line shows ap-
proximate number of well-concentrated Slepian functions N .

Slepian functions obtained using the conventional and the pro-
posed method, 10log10 |hα − fa |, for the ten most concentrated
Slepian functions is shown in Fig. 11. The maximum difference
observed in Fig. 11 is smaller than 0 dB, as was the case for the
example of Slepian functions with L = 64 defined on mainland
Australia in Fig. 5, showing that the proposed method allows
for accurate computation of Slepian functions.

VI. CONCLUSION

We have proposed a new method for the computation of
Slepian functions on the sphere for an arbitrary spatial region.
By exploiting the efficient computation of Slepian functions for
the polar cap region on the sphere, we have developed a for-
mulation, supported by a fast algorithm, for the approximate
computation of Slepian functions for arbitrary spatial region. In
comparison to the conventional method of computing Slepian
functions, the proposed method enables faster computation and
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Fig. 10. Slepian functions fa (x̂), a = 1, 2, . . . , 10 and hα (x̂), α = 1, 2, . . . , 10 most concentrated in South America with band-limit L = 32. The ordering
of concentration is left to right, top to bottom with Slepian functions obtained using the proposed method fa (x̂) in the first and third columns and Slepian functions
obtained using the conventional method hα (x̂) in the second and fourth columns.

has manageable storage requirements. We derive the approxi-
mation error and define the quality of approximation measure as
the ratio of energy of the approximation to the energy of the true
Slepian function in the region of interest. We have conducted
numerical experiments to show that the proposed method main-

tains accurate computation of Slepian functions and has a high
quality of approximation, allows for faster computation and has
significantly smaller storage requirements than the conventional
method. The proposed method enables accurate computation for
Slepian functions for an arbitrary region which does not have to
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Fig. 11. The difference in decibels between Slepian functions computed using the conventional and the proposed method, 10log10 |hα − fa |, for the ten most
concentrated in South America with band-limit L = 32. The ordering of concentration is left to right, top to bottom.

be well-approximated by a rotational symmetric region and is
particularly efficient in terms of computational complexity and
storage requirements when the region has an enclosing rotation-
ally symmetric region with a small area.

The ability to compute Slepian functions with reduced com-
putation time and storage requirements while maintaining ac-
curate computation of Slepian functions will allow for Slepian
functions to be used in applications where the data enables large
band-limits. Future work includes exploiting the inherently par-
allel structure of our proposed method to further reduce the time
required to compute the Slepian functions. We intend to apply
the proposed method to large band-limit applications in a range
of fields.
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