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Abstract—In this work, we present a generalized formulation
of the Slepian concentration problem on the sphere for finding
band-limited functions with an optimal concentration in the
spatial domain. By introducing weighting functions in the formu-
lation of classical Slepian concentration problem and assigning
different values to these weighting functions, we present two
variants of the concentration problem namely the differential and
the weighted Slepian concentration problem. In the differential
Slepian concentration problem, we consider two regions on the
sphere and find band-limited functions such that the energy
is maximized in one region at the expense of the energy in
the other region. We propose non-negative weighting using a
spatial window function to formulate and solve the weighted
Slepian concentration problem. Each problem can be solved
by formulating it in the harmonic domain as an eigenvalue
problem, the solution of which yields eigenfunctions that serve as
alternative basis functions for the representation of band-limited
signals and are referred to as Slepian functions. We also present
and analyse the properties of the Slepian functions. To support
the applications in acoustics and cosmology, we also provide a
demonstration for the use of the proposed Slepian functions for
the robust signal modeling and the estimation of the energy
spectrum of red and white stochastic processes on the sphere.

Index Terms—Slepian concentration problem, spatial-spectral
concentration problem, spherical signals, spherical harmonic
transform (SHT), unit sphere, band-limited signals, spectral

analysis.

EDICS: MDS-ALGO, DSP-TRSF.

I. INTRODUCTION

According to the uncertainty principle, it is not possible
for a signal to have finite support in the time domain and fre-
quency domain simultaneously. In other words, a function that
is limited in the spatial (or temporal) domain has an infinite
support in the spectral (or frequency) domain and vice versa.
However, it is possible to find the maximal concentration of a
function in a particular region of one domain while it is strictly
limited in the other domain. The problem of finding functions
that are optimally concentrated in spatial and spectral domains
simultaneously is known as the Slepian concentration problem,
which was first proposed in a series of classical papers [1]–[4]
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for the one-dimensional time-frequency domain. The orthog-
onal family of functions, or data tapers, that arise thereby are
known as the Prolate Spheroidal Wave Functions (PSWFs) or
more commonly as the (classical) Slepian functions on the
real line. Owing to their many interesting properties [5], the
Slepian functions have found a wide variety of applications in
several diverse fields of science and engineering such as in-
formation and communication theory [6], [7], signal detection
and estimation [8], signal interpolation and extrapolation [9],
[10], compressed sensing [11], signal recovery and reconstruc-
tion [12]–[14], sampling theory [15]–[17], neuroscience [18],
[19], optics [20], and many more.

The wide applicability of the one-dimensional time-domain
Slepian functions motivated researchers to extend this concept
to higher dimensions. The authors in [1] laid the foundation
for the extension of the concentration problem to the two-
dimensional case in the Cartesian plane [3] where the spatial
region in the form of circular disks has been considered.
Later, the planar Slepian functions for other geometries and
arbitrary regions in general were also explored in [21]. How-
ever, even these developments seemed insufficient for some
applications. For instance, in planetary sciences, the use of
the two-dimensional planar Slepian functions based on the
local flat approximation was prohibited due to the inherent
curved surface of a planet. To support such applications
and beyond, the spherical analogue for the one-dimensional
Slepian concentration problem was proposed in [22], [23],
herein referred to as the (classical) Slepian concentration
problem on the sphere. Since then, the Slepian functions on the
sphere have been utilized for applications in geophysics [24],
[25], cosmology [26], geodesy [27], acoustics [28], [29],
planetary sciences [23], signal estimation [30], [31], spectral
analysis [32], hydrology [33], graph theory [34]–[37], etc.

For many years a great effort has been devoted to the study
of the Slepian concentration problem on the sphere and its
applications. In this context, the development of algorithms
for the efficient computation of the Slepian functions has been
widely investigated [23], [24], [27], [38]. For estimating the
potential fields of a planet, the spherical Slepian functions pro-
vide a more practical solution as compared to the commonly
used damped least-squares spherical harmonic approach [27].
The spherical Slepian functions also find applications in geo-
physics, e.g., in the decomposition of lithospheric magnetic
field models [25].

Apart from potential field estimation in geodesy, an im-
portant problem arises in cosmology: the estimation of the
spectrum of the cosmic microwave background (CMB) radi-
ation. To address this problem several works have appeared
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in the recent years documenting the spectral analysis on the
sphere that utilizes the Slepian functions [39], [40]. These
studies indicate that the spectral analysis and estimation have
gained fundamental importance for explaining the behaviour
of random processes on spherical bodies. However, in some
settings one does not have access to, or may simply not be
interested in, the values of the function outside some particular
region of the sphere (e.g., due to noise contamination). In such
cases it is convenient to use the spatially limited data for signal
analysis on the sphere [41]. In [26], the authors use Slepian
functions to estimate the spectrum of a noisy, isotropic process
in a bounded region on the sphere. The Slepian functions have
also been used as localization windows for energy spectrum
estimation [24], [30], [32].

In a recent work, the Slepian functions have been utilized for
the reconstruction of the head-related transfer function (HRTF)
on the sphere, where it has been demonstrated that the pro-
posed reconstruction technique allows more accurate results
as compared to the methods based on using the conventional
spherical harmonic basis functions [29]. Since the Slepian
functions optimally reduce the estimation bias and leakage
effects as compared to other methods, thery have been used
for deriving estimates of water storage variations in different
regions of the Earth using data collected by satellites [33].

In this work, we introduce weighting functions in the for-
mulation of the classical Slepian concentration problem on the
sphere. We assign different values to the weighting functions in
the proposed generalized formulation to present two variants,
differential and weighted, of the concentration problem on
the sphere for finding band-limited functions with optimal
energy concentration in the spatial domain. In the first variant,
we consider two spatial regions on the sphere and determine
band-limited functions on the sphere such that the difference
in the energy concentration of the function over the regions
is maximized. Such maximization enables enhancement of
the energy over one region at the cost of it in the other
region. We note that the differential Slepian problem was first
introduced in [14] for one-dimensional (time-domain) signals.
In the second variant, we use non-negative weighting as a
window function in the formulation of the Slepian problem to
optimally concentrate the signal energy in the spatial domain.
We formulate each of the problems in the harmonic domain
as an eigenvalue problem and review the properties of the
eigenfunctions, referred to as Slepian functions, which serve
as an alternative basis for the representation of band-limited
signals on the sphere. We also demonstrate the use of Slepian
functions for localized energy spectrum estimation and robust
modeling of the signal on the sphere.

We present our contributions by organizing the remainder of
the paper as follows. We review the mathematical background
in Section II and present the differential and the weighted
Slepian problems on the sphere in Section III, where we
also derive the properties of the proposed Slepian functions
and provide an illustration. The use of Slepian functions for
spectrum estimation and robust modeling is demonstrated in
Section IV before making the concluding remarks in Section V.

II. MATHEMATICAL PRELIMINARIES

A. Signals on the Sphere
A unit sphere or 2-sphere, denoted by S2, is defined as

S2 ,
{
û ∈ R3 : ‖û‖2 = 1

}
, where ‖·‖2 is the Euclidean norm

and û denotes a vector in 3D Euclidean domain. In the spheri-
cal coordinates system, a point on the unit sphere is described
using two parameters, namely the co-latitude θ ∈ [0, π] and
longitude φ ∈ [0, 2π), and mathematically written as û ≡
û(θ, φ) , (sin θ cosφ, sin θ sinφ, cos θ) ∈ S2. We consider
complex-valued, square-integrable functions f(û) ≡ f(θ, φ)
on the unit sphere, which form a complete Hilbert space,
denoted by L2(S2). For any two functions f1, f2 defined on
the unit sphere S2 the inner product associated with L2(S2) is

〈f1, f2〉 ,
∫
S2
f1(û)f2(û) ds(û), (1)

where ds(û) , sin θ dθdφ, (·) denotes the complex conjugate

operation and the integration
∫
S2

=

∫ π

θ=0

∫ 2π

φ=0

is over

the whole sphere. The inner product in (1) induces a norm
‖f‖ , 〈f, f〉1/2. We refer to the functions with finite energy
(or induced norm) as “signals on the sphere”.

B. Spherical Harmonics
The spherical harmonic functions (or spherical harmonics)

form a set of complete basis functions for the Hilbert space
L2(S2) and are defined as

Y m` (û) ,

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm` (cos θ) eimφ (2)

where 0 ≤ ` ≤ ∞ is the angular degree, −` ≤ m ≤ ` is
the angular order and Pm` (µ) denotes the associate Legendre
polynomial of degree ` and order m. With the adopted
definition, the spherical harmonics are orthonormal, i.e.,∫

S2
Y m` (û)Y m

′
`′ (û)ds(û) = δ``′δmm′ , (3)

where δ``′ represents the Kronecker delta. Due to the com-
pleteness of the spherical harmonic basis functions, any signal
f ∈ L2(S2) can be expanded as

f(û) =

∞∑
`=0

∑̀
m=−`

(f)m` Y
m
` (û), (4)

where

(f)m` , 〈f, Y m` 〉 =

∫
S2
f(û)Y m` (û) ds(û), (5)

represents the spherical harmonic coefficient of degree ` and

order m. We adopt
∞∑̀
m

≡
∞∑̀
=0

∑̀
m=−`

for succinct representation

in the sequel. The spherical harmonic coefficients represent
the signal f in the harmonic (spectral) domain. The equations
(5) and (4) are referred to as the spherical harmonic transform
(SHT) and the inverse SHT respectively.

C. Space-limited and Band-limited Functions
A signal f ∈ L2(S2) is said to be space-limited within the

spatial region R ⊂ S2 if it has the form

f(û) =

{
f(û), û ∈ R,
0, otherwise.

(6)
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A signal f ∈ L2(S2) is said to be band-limited at L if (f)m` =
0, ∀` ≥ L, and can be expanded using the spherical harmonic
functions as

f(û) =
L−1∑
`m=0

(f)m` Y
m
` (û), (7)

These band-limited signals form a subspace, denoted by HL,
of dimension L2. We use the vector notation f to represent a
column vector of length L2 containing the spherical harmonic
coefficients such that
f , [. . . fn . . .] = [(f)0

0, (f)−1
1 , (f)0

1, (f)1
1, . . . , (f)L−1

L−1]T ∈ CL
2

(8)
where the index n = `2 + ` + m + 1 takes the values n =
1, 2, . . . , L2. The spatial and spectral representations of the
signal are related through isomorphism [42]

〈f1, f2〉 = 〈f1,f2〉C , fH2 f1, (9)
where (·)H denotes the Hermitian operation.

D. Energy Spectrum

Using Parseval’s theorem, we can find the total energy1 of
a function f ∈ L2(S2) on the sphere in terms of its spherical
harmonic coefficients as [32]

‖f‖2 =

∫
S2
|f(û)|2ds(û) =

∞∑
`=0

Sff (`), (10)

where Sff is the energy per degree defined as

Sff (`) =
∑̀
m=−`

(f)m` (f)m` . (11)

The cross-energy spectrum of two functions f1, f2 ∈ L2(S2)
is ∫

S2
f1(û)f2(û)ds(û) =

∞∑
`=0

Sf1f2(`) , (12)

where Sf1f2 is the cross-energy per degree defined as

Sf1f2(`) =
∑̀
m=−`

(f1)m` (f2)m` . (13)

III. DIFFERENTIAL AND WEIGHTED SLEPIAN
CONCENTRATION PROBLEMS ON THE SPHERE

The Slepian concentration problem has been formulated
and analysed for signals defined on the one-dimensional time
domain, the two-dimensional Cartesian plane and the higher
dimensions (in the Euclidean setting). In [23] and [43], the
Slepian concentration problem has been formulated for signals
defined on the unit sphere and the unit ball respectively. In
this section, we revisit the Slepian concentration problem for
signals on the unit sphere and present a generalized framework
and the variations of the concentration problem. We define the
generalization of the Slepian concentration problem of finding
band-limited function f ∈ HL as

λ = max
f∈HL


∫
S2
h(û)|f(û)|2ds(û)∫

S2
g(û)|f(û)|2ds(û)

 , (14)

1The total energy is 4π times the total power for signals on the sphere.

where h(û) and g(û) represent the weighting functions and λ
is the ratio of the weighted energies of the function. We note
that the different choices of the weighting functions h(û) and
g(û) in (14) lead to different variations of the Slepian problem
on the sphere. Using (7), the spectral domain formulation for
(14) is given by

λ =

L−1∑̀
m

(f)m`
L−1∑
`′m′

Hmm′

``′ (f)m
′

`′

L−1∑̀
m

(f)m`

L−1∑
`′m′

Gmm
′

``′ (f)m
′

`′

, (15)

where

Hmm′

``′ ,
∫
S2
h(û)Y m` (û)Y m

′
`′ (û)ds(û) (16)

Gmm
′

``′ ,
∫
S2
g(û)Y m` (û)Y m

′
`′ (û)ds(û). (17)

By defining the coupling matrices H and G with elements
Hmm′

``′ and Gmm
′

``′ respectively and adopting the same index-
ing of these matrices as adopted for indexing the spherical
harmonic coefficients in a vector f in (8), we can rewrite (15)
in the matrix form as

λ = max
f

(
fHHf

fHGf

)
. (18)

A. Classical Slepian Concentration Problem on the Sphere

For the classical Slepian problem on the sphere [22], [23],
we have the following weighting functions in the spatial
domain:

h(û) = IR(û), (19)
g(û) = 1,

where IR(û) represents the indicator function of the region R
defined as

IR(û) ,

{
1 û ∈ R,
0 û ∈ S2\R.

(20)

Here R ⊂ S2 represents a region that may be a single
connected region or a union of disjoint sub-regions such that
R = Ra ∪ Rb ∪ . . .. The area of the region R is given

by |R| =

∫
R

ds(û). The solution of the classical Slepian

problem yields a family of L2 eigenfunctions referred to as the
classical Slepian functions. These eigenfunctions are mutually
orthogonal over the regions R and S2\R and orthonormal
over the unit sphere. Due to the optimal localization and
the orthogonality of the classical Slepian functions over the
region R, these have been used in applications which include,
but are not limited to, spectral analysis, signal estimation,
signal interpolation and extrapolation and polar gap problem
in geodesy and cosmology [23], [26], [27].

B. Differential Slepian Concentration Problem on the Sphere

Here we present a variation of the Slepian problem by
considering two disjoint regions on the sphere. We counter-
balance the energy concentration between the two regions such
that the energy concentration in one region is enhanced at
the expense of diminishing energy concentration in the other.
Let R1 and R2 be the two regions, such that R1 ∩ R2 = ∅,
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where the energy concentration is required to be maximized
and minimized respectively at the same time. For this variant
of the Slepian concentration problem, the weighting functions
are defined to be

h(û) = IR1(û)− IR2(û), (21)
g(û) = 1,

where IR1
(û) and IR2

(û) represent the indicator functions for
the regions R1 and R2 respectively.

By defining the inner product over the region Rk as

〈f1, f2〉Rk ,
∫
Rk

f1(û)f2(û) ds(û), (22)

that quantifies the cross-energy spectrum of two functions
f1, f2 over the region Rk, the numerator in (14), for the choice
of weighting functions given in (21), takes the following form∫

S2
h(û)|f(û)|2ds(û) = 〈f, f〉R1 − 〈f, f〉R2 . (23)

Due to the fact that (23) represents the difference of energy of
the function over the two regions, we refer to this variant of
the concentration problem as the differential Slepian problem.
It is trivial to show that the problem in (23) reduces to the
classical Slepian problem if R2 = ∅. Analogous to (18), the
differential Slepian concentration problem can be written in
spectral domain form as the Rayleigh quotient

λ = max
f

(
fHHf

fHf

)
, (24)

where

H = 1D − 2D, G = I, (25)

kD =

 kD
00
00 . . . kD

L−1L−1
00

. . .
. . . . . .

kD
00
L−1L−1 . . . kD

L−1L−1
L−1L−1

 , k = 1, 2, (26)

with kD
mm′

``′ =

∫
Rk

Y m` (û)Y m
′

`′ (û)ds(û) for k = 1, 2. The

solution f that maximizes λ in (24) is also a solution of the
eigenvalue problem

Hf = λf . (27)

Since H is Hermitian matrix, the solution of the eigenvalue
problem, (27), yields a set of L2 real eigenvalues {λα} and
L2 orthogonal eigenvectors {fα} for α = 1, 2, . . . , L2 which
we choose to be orthonormal such that

〈fα,fβ〉C = δαβ , α, β = 1, 2, . . . , L2, (28)

〈fα,Hfβ〉C = λαδαβ , α, β = 1, 2, . . . , L2.

The choice of the weighting function h(û) in (21) implies
that |λα| ≤ 1. We index the eigenvalues and the associated
eigenvectors in the non-increasing order such that 1 ≥ λ1 ≥
λ2 . . . λL2 ≥ −1. Using (16), we express (27) as

L−1∑
`′m′

∫
S2
h(û)Y m` (û)Y m

′
`′ (û)ds(û)(f)m

′

`′ = λ(f)m` , (29)

By multiplying (29) with Y m` (v̂) followed by the summation
over 0 ≤ `′ < L and |m′| ≤ `′, we obtain the formulation
of an equivalent eigenvalue problem in the spatial domain
represented by the Fredholm equation given by∫

S2
D(û, v̂)f(v̂)ds(v̂) = λf(û), (30)

where

D(û, v̂) =

(
L−1∑
`m

Y m` (û)Y m` (v̂)

)
(IR1

(û)− IR2
(û)) . (31)

Each eigenvector fα presents the spectral domain represen-
tation of the eigenfunction fα ∈ HL. The spatial domain
eigenfunction fα(û), related to the eigenvector fα through
〈fα, Y m` 〉 = (fα)m` , for α = 1, 2, . . . , L2 is referred to as the
differential Slepian function. The eigenvalue λα quantifies the
difference in the energy concentration of the eigenfunction
fα over the regions R1 and R2. The differential Slepian
function f1(û), associated with the largest eigenvalue, is the
function with maximum energy concentration in the region R1.
Similarly, the differential Slepian function fL2(û), associated
with the lowest eigenvalue, is the function with maximum
energy concentration in the region R2.

C. Properties of Differential Slepian Functions

Property 1: Orthogonality of the Differential Slepian Func-
tions: The differential Slepian functions are orthonormal over
S2, i.e.,

〈fα, fβ〉S2 = δαβ , (32)

which simply follows from the orthonormality of the spherical
harmonics and (28). The differential Slepian functions are
orthogonal over the regions R1 and R2 such that,

〈fα, fβ〉R1
− 〈fα, fβ〉R2

= λα δαβ , (33)

which can be shown using (28). Furthermore, the differential
Slepian functions are nearly orthogonal over R1, that is,

α = β : 〈fα, fα〉R1
≥ λα

α 6= β : | 〈fα, fβ〉R1
| ≤

√
(1− λα)(1− λβ)

2
. (34)

Similar results hold true for the region R2:

α = β : 〈fα, fα〉R2
≥ −λα

α 6= β : | 〈fα, fβ〉R2
| ≤

√
(1 + λα)(1 + λβ)

2
. (35)

For α 6= β the cosine of the angle between any two differential
Slepian functions is defined as

| cos γfα,fβ | ,
〈fα, fβ〉
|fα| |fβ |

, (36)

and can be computed as

| cos γfα,fβ | ≤
1

2

√
(1− λα)(1− λβ)

λα λβ
, λα, λβ > 0, (37)

| cos γfα,fβ | ≤
1

2

√
(1 + λα)(1 + λβ)

λα λβ
λα, λβ < 0. (38)

We provide the derivation of these relationships in Appendix
A.

Property 2: Completeness of the Differential Slepian Func-
tions: The differential Slepian functions form a complete basis
for the space HL. This follows from the orthonormality of the
differential Slepian functions and the dimensionality of HL.

Property 3: Spectrum of Eigenvalues: Despite the matrix H
being indefinite, the eigenvalues are real and lie in [−1,+1]
due to the normalization adopted in (24). The eigenvalues
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(a) f1, λ = 1.0000 (b) f2, λ = 0.9997 (c) f3, λ = 0.9997 (d) f4, λ = 0.9963 (e) f5, λ = 0.9963 (f) f6, λ = 0.9934

(g) f251, λ = −0.8762 (h) f252, λ = −0.9233 (i) f253, λ = −0.9233 (j) f254, λ = −0.9906 (k) f255, λ = −0.9906 (l) f256, λ = −0.9995

Fig. 1: Slepian functions in the spatial domain obtained as a solution of differential concentration problem for regions R1 =
{û(θ, φ) ∈ S2| θ ≤ π/6}, R2 = {û(θ, φ) ∈ S2| θ ≥ 7π/8} and band-limit L = 16. For each subplot, the top and bottom
plots represent the real and imaginary part of the Slepian function respectively. The first six Slepian functions are optimally
concentrated in the region R1 and are plotted in (a)-(f) with eigenvalues indicated and view set at azimuth of 0 and elevation
of π/4. The last six Slepian functions are optimally concentrated in the region R2 and are plotted in (g)-(l) with eigenvalues
indicated and view set at azimuth of 0 and elevation of 3π/4.

closer to +1 (or −1) represent optimal (maximal) energy
concentration in the region R1 (or R2). The sum of eigenvalues
of the differential Slepian problem is given by

NH =
L2∑
α=1

λα = trace(1D)− trace(2D) (39)

=
L∑
`m

(1D
mm
`` − 2D

mm
`` ) =

∫
S2
D(û, û)ds(û)

=

∫
S2

L−1∑
`=0

2`+ 1

4π
P 0
` (û · û) (IR1

(û)− IR2
(û)) ds(û)

=
L−1∑
`=0

2`+ 1

4π

(∫
R1

ds(û)−
∫
R2

ds(û)

)
=
L2

4π
(|R1| − |R2|),

where |Rk|, k = 1, 2 represents the area of the k-th re-
gion and we have employed the spherical harmonic addition
theorem [42]. To find the number of optimally concentrated
eigenfunctions in the region Rk, the Shannon number (the sum
of the eigenvalues of the classical Slepian problem solved for

the k-th region, denoted by Nk) seems to be a good estimate.
It is easy to show that NH = N1 − N2. For the differential
Slepian problem, it can be shown that the difference between
the Shannon number, say N1, obtained when the classical
Slepian problem is applied to region R1 and the sum of
positive eigenvalues of the differential problem is equal to
the sum of the Shannon number, say N2, obtained when the
classical Slepian problem is applied to region R2 and the sum
of negative eigenvalues of the differential problem. This can
be expressed mathematically as

N1 −
∑
α

λ+
α = N2 +

∑
α

λ−α , (40)

where λ+
α and λ−α represent the positive and negative eigen-

values of the differential Slepian problem respectively.

Property 4: Symmetrical Solutions: Since 1D − 2D =
−(2D − 1D), the solution to the original problem in (23)
holds, with just an inversion in the signs of the eigenvalues λα,
that is, if we switch the role of R1 and R2 as the regions where
we require enhanced and diminished energy concentration
respectively.
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Fig. 2: Spectrum of eigenvalues obtained when the differential Slepian concentration problem is solved using (24) for L = 16.
(a) The consolidated spectrum of eigenvalues, showing the two transitions associated with the two regions. (b) The positive
and negative eigenvalue spectra. The dashed lines show the Shannon numbers N1 = 16 and N2 = 9 respectively for the two
regions.

D. Illustration

For the differential Slepian concentration problem, we pro-
vide an illustration and analyse the eigenfunctions, spectrum of
eigenvalues, orthogonality properties and energy enhancement
enabled by the eigenfunctions over the regions of interest. We
solve the differential concentration problem for R1 taken as
North polar cap of co-latitudinal radius θ1 = π/6, that is,
R1 = {û(θ, φ) ∈ S2| θ ≤ π/6}, R2 as South polar cap of
co-latitudinal radius θ2 = π/8, that is, R2 = {û(θ, φ) ∈
S2| θ ≥ 7π/8} and band-limit L = 16. Fig. 1 shows the real
and imaginary parts of the first 6 eigenfunctions, f1, f2, . . . , f6

and the last 6 eigenfunctions, f251, f252, . . . , f256, where it is
evident that the last 6 eigenfunctions are mostly concentrated
in the region R2 (Property 3).

We also analyse the spectrum of eigenvalues in Fig. 2,
where the two phase transitions visible in Fig. 2 (a) are
associated with the two regions. We also plot the positive
and negative eigenvalues spectra in Fig. 2 (b). The dashed
lines show the Shannon number N1 and N2 associated with
the eigenfunctions obtained from the solution of the classical
Slepian problem on regions R1 and R2 respectively.

To analyse the mutual orthogonality of the eigenfunctions
over the spatial regions of interest, we compute the inner
product of the eigenfunctions as well as the bounds on the
inner product given in (34) and (35). The actual inner products
are plotted in Fig. 3 (a) and (b) that are consistent with the
bounds plotted in Fig. 3 (c) and (d).

The differential Slepian problem gives eigenfunctions which
have increased energy in the region R1 while the energy in the
region R2 decreases. We compare the energies of the classical
Slepian functions constructed for region R1 and differential
Slepian functions and illustrate the reduction of energy in the
region R2 in Fig. 4, where Eclass is the energy of the classical
Slepian functions in the region R2 and the energy Ediff refers
to the energy of the differential Slepian functions in the region
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Fig. 3: Actual inner product of eigenfunctions on region R1

and R2 in the top row and their bounds in the bottom row
respectively.

R2. It can be seen in the figure that Ediff is less than Eclass

thus validating the claim made in the prequel.

E. Rotationally Symmetric Antipodal Regions

The regions R1 and R2 associated with the differen-
tial Slepian problem can have any arbitrary orientation on
the sphere. If the two regions are oriented as shown in
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Fig. 4: Eclass and Ediff represent the energy of the region R2

calculated using the classical and differential Slepian approach
respectively.

Fig. 5(a), they are categorized as rotationally symmetric around
v̂1(ϑ, ϕ) ∈ S2 (or v̂2(π − ϑ, π + ϕ) ∈ S2) and antipodal
regions (since v̂1 is antipodal to v̂2, i.e., v̂1 = −v̂2).

For the sake of simplification in the computation of the
differential Slepian functions, the rotationally symmetric an-
tipodal regions are rotated by π − ϕ around z-axis and then
by ϑ around y-axis such that the rotated regions R̃1 and R̃2

are centered at (rotationally symmetric around) the North (η̂)
and South poles of the unit sphere respectively as shown in
Fig. 5(b). The regions are now azimuthally symmetric antipo-
dal regions and form a special case of rotationally symmetric
antipodal regions. Owing to the orientation of the azimuthally
symmetric regions, the formulation of the differential Slepian
concentration problem is significantly simplified. For the az-
imuthally symmetric region Rk, the formulation of kDmm′

``′ is
simplified by exploiting the orthogonality of complex expo-
nentials along longitude such that

kD
mm′

``′ = 2πδmm′

∫ θ2k

θ1k

Y m` (θ, 0)Y m`′ (θ, 0) sin θdθ︸ ︷︷ ︸
,kDm``′

, k = [1, 2].

Here θ11 = 0 and θ22 = π, whereas θ21 and θ12 represent
the co-latitudinal radii for the rotated regions R̃1 and R̃2 re-
spectively. The integral represented by kD

m
``′ can be evaluated

analytically for all `, `′ ≥ m as [23], [43]

kD
m
``′ = (−1)m

√
(2`+ 1)(2`′ + 1)

2

|`+`′|∑
q=|`−`′|

(
` q `′

0 0 0

)
(41)

×
(

` q `′

m 0 −m

)(
P 0
q−1(cos θ2k) + P 0

q+1(cos θ1k)

− P 0
q+1(cos θ2k)− P 0

q−1(cos θ1k)

)
.

Here the arrays of indices are the Wigner-3j sym-
bols [42]. Consequently, the coupling matrix H in (27)
reduces to a block diagonal matrix of the form: H =
diag(H0,H1,H1, . . . ,HL,HL). Here we can see that every

y

x

z

(a)

y

x

z

(b)

Fig. 5: The blue part of the sphere shows the regions of
interest. (a) Rotationally symmetric antipodal regions R1 and
R2, (b) Azimuthally symmetric antipodal regions R̃1 and R̃2

obtained by rotating the sphere in (a) by π−ϕ around z-axis
and then by ϑ around y-axis.

submatrix Hm,m 6= 0 appears twice because of the doubly
degenerate angular order ±m. Therefore, instead of solving
the eigenvalue equation (27) of size L2, we only solve a series
of (L−m)× (L−m) harmonic domain eigenvalue problems
of the form

Hmfm = λfm (42)
for each m = 0, 1, . . . , L − 1. The submatrix Hm is of the
form

Hm =

 Hmm . . . Hm,L−1

. . .
. . . . . .

HL−1,m . . . HL−1,L−1

 , (43)

where every H``′ = 1D
m
``′ − 2D

m
``′ and the vector of spherical

harmonic coefficients is given as
fm = [fm, . . . , fL−1]T . (44)

Once we obtain the differential Slepian functions for the
azimuthally symmetric antipodal regions, they are rotated back
to the original location by applying rotation operator X (ϑ, ϕ)
on each Slepian function that rotates the signal in a sequence
of ϑ around y-axis and ϕ around z-axis. The spherical har-
monic coefficients of the Slepian function f for azimuthally
symmetric antipodal regions and the rotated Slepian functions
X (ϑ, ϕ)f for rotationally symmetric antipodal regions are
related by [42]

(X (ϑ, ϕ)f)m` =
∑̀

m′=−`

X`
m,m′(ϑ, ϕ) (f)m

′

` , (45)

where
X`
m,m′(ϑ, ϕ) = e−imϑd`m,m′(ϑ). (46)

Here d`m,m′ denotes the Wigner-d function of degree ` and
orders m,m′ [42].

F. Weighted Slepian Concentration Problem on the Sphere

We present the weighted Slepian concentration problem by
choosing the weighting function h(û) to be real, non-negative
and bounded by unity, that is,

0 ≤ h(û) ≤ 1, ∀ û ∈ S2, (47)
and

g(û) = 1, ∀ û ∈ S2. (48)
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We note that the classical Slepian concentration problem is
also a special case of the weighted concentration problem.
However the latter is more flexible as the localization of the
spatial domain distribution of the energy over some portion
of the sphere can be controlled by judiciously choosing the
weighting function h(û). For the choice of the weighting
function, the Rayleigh quotient (18) is solved by finding
eigenvectors of the matrix H with entries given in (16).
Since H is positive-semi definite and Hermitian by definition,
all the eigenvalues of H are real and non-negative and the
corresponding eigenvectors can be chosen as orthonormal. The
eigenvalue decomposition of H yields L2 real eigenvectors
fα with corresponding eigenvalue λα for α = 1, 2, . . . , L2,
where we index the eigenvalues (or eigenvectors) such that
λ1 ≥ λ2 ≥ . . . ≥ λL2 ≥ 0. For each eigenvector fα, we
obtain the spatial domain eigenfunction fα(û) which we refer
to as weighted Slepian function. Eigenvalue λα serves as a
measure of the energy of the weighted signal

√
h(û)fα(û).

G. Properties of Weighted Slepian Functions

The weighted Slepian functions exhibit three-fold orthog-
onality. Firstly, since the eigenvectors are orthonormal, the
eigenfunctions are orthonormal in HL by isomorphism, that
is,

〈fα,fβ〉C = 〈fα, fβ〉 = δαβ . (49)

Secondly, since the eigenvectors satisfy

〈Hfα,fβ〉C = fHβ Hfα = λα〈fα,fβ〉C = λαδαβ , (50)

we have, by isomorphism, the following spatial domain or-
thogonality of the eigenfunctions with respect to a weighted
spatial domain inner product

〈fα, fβ〉h ,
∫
S2
h(û)fα(û)fβ(û)ds(û) = λαδαβ . (51)

Finally, there is a third sense in which the eigenfunctions are
orthogonal

〈fα, fβ〉1−h = (1− λα)δαβ , (52)

that is, with respect to the complementary weighted inner
product. We further note that {fα/

√
λα} and {fα/

√
1− λα},

for λα > 0 are orthonormal with respect to the weighted
inner product and complementary weighted inner product
respectively.

IV. APPLICATIONS: SPECTRAL ESTIMATION AND ROBUST
MODELING

In some applications, for instance, the reconstruction of the
HRTF in acoustics [44] or spectral estimation in geophysics
and cosmology [26] the measurements over a particular region
on the sphere are unavailable, unreliable or subjected to large
errors. To support these signal processing applications, Slepian
functions have been used for signal extrapolation [45], local-
ized spectral analysis and spectral estimation [24], [32]. Here
we provide two applications of the proposed differential and
weighted Slepian functions for localized spectral estimation
and robust modeling of the signal on the sphere.

A. Estimation of Localized Energy Spectrum

The band-limited differential Slepian functions serve as a
good choice for localization functions due to their optimal
spatial concentration and orthogonality properties. For a global
function p ∈ L2(S2), we obtain its localized version using the
differential Slepian function f(û) as

Ψ(û) = f(û)p(û) . (53)

Using the background presented in Section II, we find the
energy spectrum of the localized function Ψ(û). We assume
that the spherical harmonic coefficients of the function p are
zero-mean random variables, and the energy spectrum only
depends on ` (i.e., the function has isotropic energy spectrum).
The global energy spectrum is given by

E
[
(p)m` (p)m

′
`′

]
=
Spp(`)

2`+ 1
δ``′δmm′ , (54)

where E[ · ] is the expectation operator. Let the localized
energy spectrum be represented as SΨΨ. Using the theoretical
framework presented in [26], [32], the relation between Spp
and the expected value of SΨΨ is given by

E [SΨΨ(`)] ,
∑̀
m=−`

E
[
(Ψ)m` (Ψ)m`

]

= (2`+ 1)

L−1∑
q=0

Sff (q)

`+q∑
r=|`−q|

Spp(r)

(
q r `

0 0 0

)2

,

(55)

where the quantity
(
q r `
0 0 0

)
represents the Wigner 3-j symbols

[42].
To illustrate the effectiveness of the differential Slepian

functions as the localization window functions, we estimate
the white and red stochastic processes on the sphere. The
energy spectrum of various stochastic processes follows the
power law given by

Spp(`) ∼ ` ε. (56)

When the energy per angular degree is constant, i.e., for ε = 0,
the process is called a white process. If ε = −2, we may
refer to the process as a red process. The definition of these
processes may vary from one application to another [26]. For
the band-limit L = 16, and the regions R1 and R2 being
taken as North and South polar caps of radii π/6 and π/8
respectively, the estimate of the energy spectrum for white
and red process is plotted in Fig. 6 and Fig. 7. The estimates
are obtained using the first 6 most concentrated window
functions previously plotted in Fig. 1. It can be observed that
the localized estimates approach the global spectra for both
white and red processes. The spectral bias for low degrees
` < L is simply a consequence of the fact that the localized
estimate of the spectrum is a smoothed version of the global
spectrum (55). Each differential Slepian function f(û), used
in (53) for spatial localization, leads to a different estimate.
Such single-taper estimates can be combined as a weighted
sum to obtian a multi-taper spectral estimate analogous to the
one proposed in [24], [26], [32], [46].
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Fig. 6: Expected localized energy spectral density of a global
white process using differential Slepian functions for L = 16.
The dashed line represents the global white process (ε = 0).
The expectations of the localized spectra were obtained using
the 6 Slepian functions previously shown in Fig. 1.
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Fig. 7: Expected localized energy spectral density of a global
red process using differential Slepian functions for L = 16.
The dashed line represents the global red process (ε = −2).
The expectations of the localized spectra were obtained using
the 6 Slepian functions previously shown in Fig. 1.

B. Robust Signal Modeling

Like the classical Slepian functions, the proposed weighted
Slepian functions serve as alternative basis functions for the
representation of the band-limited signal. Using the orthonor-
mal weighted Slepian functions {fα(û)}, any bandlimited
function g ∈ HL can be expanded as

g(û) =
L2∑
α=1

(g)αfα(û) =
L2∑
α=1

√
λα (g)h:αfα(û), (57)

where

(g)α , 〈g, fα〉, (g)h:α , 〈g, fα/
√
λα〉h. (58)

Therefore, if the band-limited function g is determined from
the local information implicit in the weighting function h, we
can determine the coefficients of the band-limited function as

(g)α =
1√
λα
〈g, fα〉h. (59)

For example with h(û) = IR(û) (classical problem), the
information about the function is available over the region R
only. The energy associated with the α-th eigenfunction with
respect to the weighted localized inner product is |(g)h:α|2.
However, this implies the energy on the sphere is |(g)h:α|2/λα.
Therefore, we may see a significant growth in the energy on
the sphere or significant enhancement of noise for small values
of λ in the computation of (g)α using (59).

V. CONCLUSIONS

In this work, we have presented a generalization of the
Slepian concentration problem on the sphere by introducing
weighting functions in the formulation of the problem. As-
signing different values to the weighting functions, we have
formulated the two variants: differential and weighted Slepian
concentration problems of finding band-limited optimally con-
centrated functions on the sphere. The differential Slepian
concentration problem takes into account two regions on the
sphere and maximizes the energy concentration of a band-
limited signal in one region while the energy is minimized in
the other region. The weighted Slepian concentration problem
uses non-negative weighting as a window function in the
formulation for the localization of the signal energy. The
solution of each problem yields eigenfunctions, referred to
as Slepian functions, that serve as alternative basis functions
for the representation of band-limited functions. We have also
presented and analysed the properties of the proposed Slepian
functions. Furthermore, we demonstrated the usefulness of the
proposed Slepian functions for signal representation, localized
spectrum estimation and signal modeling to support the appli-
cations in cosmology, geophysics, acoustics and beyond.

APPENDIX

A. Orthogonality of the Differential Slepian Functions

Proof. Using the definition of the differential Slepian func-
tions:

〈fα, fβ〉R1
− 〈fα, fβ〉R2

= λα 〈fα, fβ〉S2 . (60)

If α = β, then 〈fα, fα〉R2
≥ 0 and 〈fα, fα〉S2 = 1, therefore

(60) reduces to
〈fα, fα〉R1

≥ λα. (61)

Say S2 = R1 +R2 +R∗, then for α 6= β we can rewrite (32)
as

〈fα, fβ〉R1
+ 〈fα, fβ〉R2

+ 〈fα, fβ〉R∗ = 0. (62)

Adding (60) and (62) we get

2 〈fα, fβ〉R1
= −〈fα, fβ〉R∗ . (63)

Using the Cauchy-Schwarz inequality for 〈fα, fβ〉R∗ , we get

| 〈fα, fβ〉R∗ | ≤
√
〈fα, fα〉R∗

√
〈fβ , fβ〉R∗ , (64)
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where√
〈fα, fα〉R∗ =

√
〈fα, fα〉S2 − 〈fα, fα〉R1

− 〈fα, fα〉R2

≤
√

1− 〈fα, fα〉R1

≤
√

1− λα. (65)

So (64) implies that | 〈fα, fβ〉R∗ | ≤
√

1− λα
√

1− λβ and
using this in (63) results in

| 〈fα, fβ〉R1
| ≤ 1

2

√
1− λα

√
1− λβ . (66)

To find the bound on the angle between two Slepian functions,
we use (66) in the definiton of inner product as

|fα|R1
|fβ |R1

| cos γfα,fβ | ≤
1

2

√
1− λα

√
1− λβ . (67)

Since
λα = |fα|2R1

− |fα|2R2
⇒ λα ≤ |fα|2R1

. (68)

Then for positive eigenvalues, we can say
√
λα ≤ |fα|R1

, or
1

|fα|R1

≤ 1

λα
. (69)

Rearranging (67) and employing (69), we can prove that

| cos γfα,fβ | ≤
1

2

√
1− λα

√
1− λβ√

λα
√
λβ

λα,β > 0. (70)
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