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Abstract—This paper presents a general framework for spa-
tially-varying spectral filtering of signals defined on the unit
sphere, as an analogy to joint time-frequency filtering. For this
purpose, we first map spherical signals from spatial domain
into joint spatio-spectral domain, where a spatio-spectral signal
transformation or modification is introduced. For mapping spatial
signals into joint spatio-spectral domain, we use the spatially local-
ized spherical harmonic transform (SLSHT) from the literature.
We then propose a suitable scheme to transform the modified
signal from the spatio-spectral domain back to an admissible
signal in the spatial domain using the least squares approach. We
also show that the overall action of the SLSHT and spatio-spectral
signal modification can be described through a single transforma-
tion matrix, which is useful in practice. Finally, we discuss two
specific and useful instances of spatially-varying spectral filtering,
defined through multiplicative and convolutive modification of
the SLSHT distribution, and show through numerical examples
their effectiveness in selective spectral filtering of different spatial
regions of the signal.

Index Terms—Convolution, filtering, spherical harmonics,
2-sphere (unit sphere).

I. INTRODUCTION

I N various fields of physical sciences and engineering the
domain of signals under consideration is non-Euclidean. An

important class of such signals is those whose domain is spher-
ical and the signal processing applications appear in geodesy
[1], cosmology [2], spherical harmonic computerized lighting
[3], electromagnetic inverse problems [4], medical image anal-
ysis [5], 3D beamforming [6] and wireless channel modeling
[7], to name a few. To process such signals, a sensible approach
is to devise methods that are similar in spirit to well-known
techniques for Euclidean signals, while taking into account the
non-trivial differences that exist between the two domains.
Many signal processing techniques have already been ex-

tended from Euclidean to spherical domain. Examples include
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convolution [8]–[10], filtering [5], [11], [12], feature extraction
[13], [14] and spectrum estimation [15], [16] for signals defined
on the unit sphere. At their core, these techniques process the
signal directly either in the spatial spherical domain or in the
spectral domain, which is enabled through spherical harmonic
transform [4], [8], [15], [17], [18] – the well-known counterpart
of the Fourier transform.
However, there are situations where analysis and modifica-

tion of spherical signals jointly or simultaneously in spatial and
spectral domains is required. This is particularly important when
we wish to reveal and modify spatially-varying spectral con-
tents of signals. For this purpose, spherical harmonic transform
is simply not adequate because it cannot reveal “localized” spa-
tial contributions of a signal in the spectral domain. For ex-
ample, consider the convolutive smoothing in the spatial domain
[8], [19], which is equivalent to the multiplication of the signal
and filter spherical harmonics in spectral domain. Therefore, the
same filter is used for smoothing the signal at all spatial posi-
tions and it is not possible to apply a spatially-varying operation
in the spectral domain and vice versa. This has motivated us to
look for suitable joint spatio-spectral signal transformations on
the unit sphere.
The closest class of related work is the extension of Eu-

clidean wavelets to spherical wavelets, which enables filtering
at different scales [13], [14], [20]–[24]. The theoretical con-
ditions on the invertibility of spherical wavelet transform are
presented in [5] and the proposed framework is illustrated using
wavelets that provide space-scale decomposition. However,
to the best of our knowledge, there exists no framework that
directly deals with signal transformations and modifications in
joint spatial and spherical harmonic domains (spatio-spectral
domain for short) rather than in joint spatial and scale (wavelet)
domains.
Interestingly the Euclidean counterpart, namely joint

time-frequency signal analysis and filtering, is well estab-
lished for several decades [25]–[29]. In particular, short-time
Fourier transform (STFT) and its variations [26]–[32] have
triggered research to generalize the concepts of filtering theory
to joint time-frequency domain. Saleh and Subotic presented
an interesting and novel approach of time-frequency filtering
in [26], where they devised the modification of the STFT
representation of signal as masking with the filter function in
the time-frequency domain. A similar concept is also adopted
in [33] for discrete-time signals and is generalized in [27] for
different operations in time-frequency domain.
In this paper, we are interested in extending signal filtering

based on the concept of STFT in the time-frequency domain
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Fig. 1. General schematic for signal transformation via the spatio-spectral domain. The spatial signal, , on the unit sphere, is first mapped to the spatio-spectral
domain using the spatially localized spherical harmonic transform (SLSHT), then its SLSHT distribution (denoted by SLSHD in the figure) is transformed in
spatio-spectral domain, and the result is mapped back to the spatial domain using an inverse spatio-spectral transform.

to the joint spatio-spectral domain on the sphere. Fortunately,
the basic building block for such signal processing has been
developed in the literature. The idea is to apply a set of “win-
dowed” or localized spherical harmonic transforms [34] to the
signal of interest. This has been recently coined as spatially lo-
calized spherical harmonic transform (SLSHT) and SLSHT dis-
tribution in [35], where the effect of different windows on the
transformation is studied. In short, SLSHT can be thought of as
the spherical counterpart of STFT. The concept of SLSHT has
been used for localized spectral analysis [15] and spectral esti-
mation [16] on the sphere. However, the application of SLSHT
for signal filtering has not been considered before. In this con-
text, we identify the following open questions:
• Given the SLSHT distribution as a spatio-spectral repre-
sentation of a signal on the sphere, how can we perform
filtering operations on the signal in spatio-spectral domain?

• Once the SLSHT distribution of a signal is modified as a
result of processing or filtering in the spatio-spectral do-
main, how can we obtain a physically valid signal on the
sphere that “best” corresponds to the modified spatio-spec-
tral distribution?

• What are the potential candidates for spatio-spectral fil-
tering operations and how can these joint-domain opera-
tions be formulated as linear transformations of the signal
in spatial or spectral domain?

To address these questions, we consider filtering and modi-
fication of signals in the joint spatio-spectral domain. As illus-
trated in Fig. 1, the SLSHT distribution of the input signal is first
obtained, then the SLSHT distribution is processed in the joint
spatio-spectral domain to yield the modified distribution and
transformed back to the spatial domain using a suitably devised
inverse operation. Due to the modification of the SLSHT distri-
bution, there is a possibility that there exists no physical signal
which corresponds to the modified distribution—an analogous
problem is well known in time-frequency analysis [25]–[29].
Therefore, there is a need to find the signal that best approxi-
mates the modified distribution. To summarize, our main con-
tributions in this work are:
1) In Section III, we present a general integral operator that
transforms the SLSHT distribution of a signal to a mod-
ified spatio-spectral distribution. We also formulate this
spatio-spectral modification as a linear transformation of
the signal in the spectral domain.

2) For the case when the modified spatio-spectral distribution
is not a valid SLSHT distribution, we devise a suitable
inverse spatio-spectral transform in Section III-C, which
finds a signal whose distribution best approximates the
modified distribution in the least squares sense.

3) Using the proposed paradigm of signal transformation, we
investigate two types of filtering operations in spatio-spec-
tral domain. First in Section IV-B, we consider filtering as
multiplication of the filter function defined in spatio-spec-
tral domain and the given SLSHT distribution. Later in
Section IV-C, we perform filtering as convolution of the
filter function and the SLSHT distribution of a signal. In
contrast to the conventional spatially-invariant spectral fil-
tering, these types of filtering operations can be thought as
spatially-varying spectral filtering of signals in the spatio-
spectral domain. Finally, some specific numerical exam-
ples are given in Section V.

II. MATHEMATICAL BACKGROUND

In this section, we briefly review some mathematical back-
ground for signals defined on the unit sphere and present the
basics of SLSHT, which will be extensively used in the rest of
the paper.

A. Signals on the 2-Sphere

Let denote the 2-sphere or unit sphere, which is defined
as . Two unit-norm vectors on the
2-sphere, such as and , can be represented in the spherical co-
ordinates as
and
, respectively, where denotes matrix or vector transpose.

represent the co-latitude or elevation measured
with respect to the positive –axis and repre-
sent the longitude or azimuth and are measured with respect to
the positive –axis in the plane.
We consider complex-valued functions, such as and
, defined on the unit sphere. The space of square integrable

complex functions forms a Hilbert space, denoted by ,
with the inner product defined as

(1)

where is the area element, denotes
complex conjugate and the integration is carried out over the
whole unit sphere. The inner product in (1) induces a norm

. Throughout this paper, functions with finite in-
duced norm belonging to are referred as signals on the
sphere or signals for short.
The Hilbert space is separable and spherical

harmonic functions (or spherical harmonics for short)
[4], [17] of all degrees and
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orders form the archetype complete orthonormal
set of basis functions. By completeness, any signal
can be expanded as

(2)

where

(3)

is the spherical harmonic Fourier coefficient (or spherical har-
monic coefficient for short) of degree and order . Some back-
ground properties of spherical harmonics used in this work are
given in Appendix A. For notational simplifications, wemay ex-
press the spherical harmonic as and spherical harmonic
coefficient as . That is, as a function of a single in-
teger index instead of two integer indices and , using the
one-to-one mapping

(4)

where denotes the integer floor function.

B. Important Subspaces of

The set of bandlimited signals, such as , with
themaximum spectral degree such that for
forms a subspace of and is denoted by .
The set of azimuthally symmetric functions which are inde-

pendent of the azimuth angle (such that
) forms a subspace of and is denoted by . In this

case, only zero-order spherical harmonic coefficients of are
non-zero. That is for all .

C. Important Operators on

1) Spherical Harmonic (Fourier) Transform: Define the op-
erator , which transforms the signal in the spatial domain
to the signal in spectral domain, where the spectral response is
denoted by and the operation is
represented by

Also the inverse spherical harmonic transform is well-de-
fined such that . If is bandlimited belonging
to , then , where

.
2) Rotation: Define the rotation operator , which

rotates the function on the sphere in a sequence of
rotation around –axis, then rotation about –axis
followed by a rotation around –axis. The rotation
angles are referred to as the Euler angles. Under the rotation
operation , the spherical harmonic coefficients of the
rotated signal are related to those of the original signal through
[17]

(5)

where is Wigner- function [17] and is given
by

(6)

and denotes the Wigner- function [17] and its ex-
plicit expression is provided in Appendix A. We note that by
factoring of a single rotation into two rotations, as proposed in
[36] and applied in [13], [18], [37], [38], theWigner- function
can be computed efficiently by using FFTs over all three Euler
angles.
For the azimuthally symmetric functions , the

rotation around –axis becomes ineffective and can be set to
. Hence, the expression in (5) simplifies to

(7)

where the second equality follows from the following relation

(8)

3) Convolution: There are different definitions of spherical
convolution available in the literature [5], [9], [10]. For the pur-
pose of this paper, it suffices to consider the following definition
of convolution

(9)

where the two rotation angles parameterize the point
on the 2-sphere. This definition is adapted from the

definition of convolution in [5], but unlike the general case in
[5], the output domain of the convolution remains in .
If the kernel is azimuthally symmetric, then (9)
becomes an isotropic convolution which is predominantly used
in this paper. In this case, the spherical harmonic of the output

is given by [8]–[10]

(10)

D. Spatially Localized Spherical Harmonics Transform
(SLSHT)

Analogous to short-time Fourier transform (STFT), SLSHT
has been defined as a set ofwindowed spherical harmonic trans-
forms in [34], [35] to represent the signal jointly in the spatio-
spectral domain. The core idea is simple. An azimuthally sym-
metric window function (nominally concentrated
around the north pole) is first rotated by , where
parametrize the point on the 2-sphere. Then the
rotated kernel multiplies the desired signal

and finally, the spherical harmonic Fourier transform is
applied to the multiplied signal . That is,
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the SLSHT attempts to reveal the contribution of spherical har-
monics localized around . Mathematically, the SLSHT evalu-
ated at point , degree and order is defined as

(11)

The SLSHT is dependent on the chosen window , but for
brevity, this dependence is not explicit in the notation. We em-
phasize that unlike spherical harmonic coefficient of the signal

, , which is only a function of degree and order ,
the SLSHT provides a spatially-varying spherical harmonic
representation of the signal (i.e., is a function of the
spatial localization and degree and order).
In this paper, we are interested in the case where both signal
and SLSHT window kernel are bandlimited. Let us

assume that and (since the kernel
is assumed to be azimuthally symmetric,
would be a more precise notation). In this case, the SLSHT
distribution , which represents the signal in joint spatio-
spectral domain using SLSHT is given by

(12)

where and . Specializing (7) for
the SLSHT window kernel at point , we define

(13)

Using (13), (2), (3) and the mapping , we can alter-
natively write in (11) as

(14)

where and

(15)

denotes the spherical harmonic triple product and its explicit
expression is provided in Appendix A. Using the preceding for-
mulation, the SLSHT distribution in (12) can be written in
matrix form as

(16)

where and is the transformation operator ma-
trix of size , which projects the given signal
in spectral domain to the spatio-spectral domain and its entries
are given by

(17)

The -th spherical harmonic coefficient of the signal can
be obtained as the spherical harmonic marginal of . That
is, by integrating over the spatial domain [34], [35]

(18)

where is a factor that depends on the SLSHT
window kernel . More concisely, we can write

(19)

Remark 1: We are using a bandlimited window function
to capture the localized contribution of spherical harmonics.
Therefore, from the uncertainty principle, the window function
cannot be spatially limited. However it must be concentrated
in the desired localization region in order to minimize the
contribution of signal outside the localized spatial region [35].
The bandlimited spatially concentrated eigenfunction obtained
from Slepian concentration problem on the sphere [1], [15],
[39] is proposed as suitable window functions for the SLSHT
in [35], since they attain the lower bound imposed by the
uncertainty principle [20], [40].

III. SIGNAL TRANSFORMATION IN SPATIO-SPECTRAL DOMAIN

In the previous section, we saw that the SLSHT distribu-
tion represents the spatially-varying spectral representation of
a signal as a function of both spatial location and degree and
order . As a result, it offers the opportunity to transform,
modify and filter the signal in the joint spatio-spectral domain,
which can be very useful for the processing of signals that con-
tain spatially-varying spectral contents. In this section, we use
the SLSHT distribution to address questions 1 and 2 posed in the
introduction. Here, we use a general integral operator approach
to transform the SLSHT distribution. Later in Sections IV and
V, we specify two types of transformations and analyze their
properties and usefulness.
For this purpose, we use a set of kernels defined on

domain and denoted by . Each kernel is used
to operate on its corresponding SLSHT component as
follows

(20)

to generate a modified component in the spatio-spectral
domain. For a given and and by arranging all the kernels in
vector form as

we can write the overall operation on the SLSHT distribution in
a concise form given below

(21)

where denotes component-wise operation of the kernel ele-
ments in on corresponding SLSHT components in .
Note that the kernels for can be zero
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and hence, in general the “effective” length of the modified dis-
tribution satisfies . Nevertheless for con-
sistency with the transformation operator matrix , we will deal
with a full-length modified distribution of length ,
even though some of its last components may be zero. We also
note that while is a form of modified spatio-spectral dis-
tribution, it is not necessarily a valid SLSHT distribution. This
will be further elaborated shortly.
Using the formulation of SLSHT distribution in (16), we can

relate the modified distribution (21) to the vector spectral repre-
sentation of the signal, , and the SLSHT distribution transfor-
mation operator matrix as

(22)
where returns the diagonal matrix with diagonal
entries specified by the vector .
Remark 2: In the formulation of spatio-spectral transforma-

tion of signal in (21), we note that can be any representa-
tion of signals in spatio-spectral domain. However, here, we are
specifically considering SLSHT distribution as the signal repre-
sentation in spatio-spectral domain.

A. Exact Inverse Spatio-Spectral Transform

We note that not every spatio-spectral distribution, , is a
valid SLSHT distribution. In other words, it is possible that there
exists no signal belonging to for which is its cor-
responding SLSHT distribution. An obvious example would be
a spatio-spectral distribution truncated both in spatial and spec-
tral domains. From the uncertainty principle, one can expect that
there exists no signal which corresponds to this type of modified
distribution.
But first, let us assume that the modified distribution vector
is indeed a valid SLSHT distribution. Then there exists a

signal with spectral response corresponding to
, which can be recovered through the “inversion formula”

(18) as
(23)

Applying this back into (14) results in the following admissi-
bility condition

(24)

The admissibility condition in (24) is expressed on the modified
distribution . By using the definition of SLSHT distribu-
tion in (16), the formulation of modified distribution in
(22) and the inversion relation in (19), we can also express the
admissibility condition on the set of kernels as

(25)

If the modified distribution satisfies the condition in (24) or the
set of kernels are chosen to satisfy the condition in (25),
we can find a signal , such that .
We remind ourselves that according to the discussion following
(21), the effective length of , , can be smaller than

. For example, if we choose each kernel as
bandlimited Dirac-delta function given by

(26)

where and denotes any complex number,
the set of kernels satisfies the condition in (25) and the
modified distribution distribution is a valid SLSHT distri-
bution of the signal such that . The choice of
kernel in (26) is the simplest case and we note that any set of
kernels which satisfies the admissibility condition results in a
valid SLSHT distribution .

B. Least Squares Solution

For the case that the modified distribution is not a valid
SLSHT distribution, we seek to solve an optimization problem
to find a signal having the spectral response

and the SLSHT distribution , which ap-
proximates in least squares sense. For this purpose, we de-
fine the error term

where is the -th row of . The total error is then

(27)

where the norm is, in fact, the norm of vectors in the spatio-
spectral domain. Setting the gradient of with respect to to
zero will result in the least squares approximate solution and we
summarize this in the following theorem, which is also shown
in Fig. 2.
Theorem 1 (Least Squares Solution): Let the SLSHT distri-

bution , as defined in (12)–(17), be modified into
according to (20)–(21). The signal that

best describes in the least squares sense has its spectral re-
sponse defined through

(28)

and is found to be

(29)

where denotes Hermitian transpose and is defined as the
energy of the window kernel given by

(30)

Proof: See Appendix B.
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Fig. 2. Spatio-spectral processing: is the spectral response of the signal on the unit sphere, is corresponding SLSHT distribution in the

spatio-spectral domain, is the modified SLSHT distribution under operator with kernel in the spatio-spectral domain, and is the spectral response
of the output signal on the unit sphere. The transformation between the spectral responses is linear and given by the spatio-spectral transformation matrix .

Corollary 1: If the modified distribution is a valid SLSHT
distribution, by plugging into (29) and following
the mathematical details provided Appendix B, it is easy to
verify that Theorem 1 becomes the exact solution.

C. Spatio-Spectral Transformation as Linear Transformation

From Fig. 2, it becomes clear that we can express the overall
process of transforming the bandlimited signal with spectral re-
sponse , with themaximum spectral degree , to another ban-
dlimited signal according to the following linear transforma-
tion

(31)

where is a matrix of size and is referred to
as the spatio-spectral transformation matrix as shown in Fig. 2.
This transformation matrix is useful, because in a single step
it encapsulates 1) projection of into the spatio-spectral do-
main to obtain , 2) processing in the spatio-spectral domain
which yields , and 3) transformation from the spatio-spec-
tral domain back to spectral domain to obtain . Therefore,
knowing is enough for spatio-spectral transformation of .
Using the result in Theorem 1, the formulation of modified dis-
tribution in (22) and the SLSHT distribution expression in (16),
we can express as

(32)
which depends on the kernel vector and the SLSHT
distribution operator matrix . Since depends on the
chosen window function used for spatial localization, the kernel
and the window function completely characterize the spatio-
spectral transformation and processing of signals in the pro-
posed framework.

IV. FILTERING IN SPATIO-SPECTRAL DOMAIN

In the previous section, we provided a general framework for
modification of the SLSHT distribution using integral opera-
tors and discussed how the modified distribution can be trans-
formed back to a valid signal on the sphere. In this section, we
address the third question posed in the introduction. That is, we
aim to study specific, but useful types of signal filtering in joint
spatio-spectral domain. The filtering can be either taken as mul-
tiplication or convolution of the filter function and the SLSHT
distribution in the spatio-spectral domain, which will be dis-
cussed in the following two subsections. But first, we define the

filter function in spatio-spectral domain that modifies the given
SLSHT distribution of a signal.
Definition 1 (Filter Function in Spatio-Spectral Domain):

Define to be the filter function in spatio-spectral domain as

(33)

where each element for can be a fi-
nite-norm, square integrable function on the unit sphere with the
maximum spectral degree and spherical harmonic expan-
sion , where .
The spectral response of each component of the filter function is
defined as .
We use the definition of signal transformation in the joint

spatio-spectral domain using the operator as defined in (21)
and relate the kernel to the filter function to define
filtering operations in joint spatio-spectral domain. The modi-
fied distribution , which is obtained as either multiplication
or convolution of the filter function and the SLSHT distribution
of the signal, may not be a valid SLSHT distribution and it may
not be possible to find the signal , which exactly describes
the distribution . Thus, the approximate approach as men-
tioned in Theorem 1 can be employed to determine the signal

, whose SLSHT distribution is closest to the modified dis-
tribution in the least squares sense.
In the following two subsections, we define multiplicative

and convolutive filtering operations in spatio-spectral domain,
respectively and formulate the expressions to determine the
signal from the modified distribution .We also present
the proposed filtering operations as linear transformations of
the signal as given in (31) and provide specific expressions for
the spatio-spectral transformation matrix in (32) for these
two types of filtering operations.

A. Multiplicative Modification of SLSHT Distribution

In the time-frequency analysis, a time-domain signal can be
filtered in joint time-frequency domain through multiplication
of its time-frequency representation and the filter function as
described in [26]–[30], [33], [41]. Using SLSHT distribution as
spatio-spectral representation of a signal on the sphere, we de-
fine an analogous multiplicative filtering in joint spatio-spectral
domain.
Definition 2 (Multiplicative SLSHT Modification): Relating

the kernel in (21) to the filter function as

(34)
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Fig. 3. Block diagram that represents the concept of filtering in spatio-spectral
domain as (a) multiplicative modification of the SLSHT distribution and (b)
convolutive modification of the SLSHT distribution.

where is the Dirac delta function on the sphere (See
Appendix A, (62)), we define component-wise multiplication
of the SLSHT distribution and the filter function to
obtain the multiplicative modified distribution (MMD),
through

(35)

for , which results in

(36)

Multiplicative modification of the SLSHT distribution in spatio-
spectral domain is depicted in the first two blocks of Fig. 3(a).
Remark 3: Since each component of the SLSHT distribution

describes the contribution of spherical harmonic in the spatial
domain, the multiplication of the filter function and the
SLSHT distribution can be thought of as a type of spatially-
varying spectral filtering.
Remark 4: If the filter function is real, then the kernel

in (34) is real and satisfies , which
implies that the operator is self adjoint.
The general least squares approximation method of is

shown in the third block of Fig. 3(a) according to (29). For the
special case of exact recovery, we can explicitly provide the
expression for obtaining the signal exactly from the modified
distribution .
Lemma 1: If the MMD, given in (36), is a valid SLSHT

distribution, then the -th spherical harmonic coefficient of the
transformed signal , denoted by , is related to the signal

as

(37)

where is the result of isotropic convolution of the
-th filter component and the azimuthally symmetric
window function . That is,

(38)
Proof: See Appendix C.

In what follows, we first explicitly discuss the case where
the MMD, , is a valid SLSHT distribution and provide the
elements of the transformation matrix for this special case.
We then discuss the elements of the transformation matrix in
the general approximation approach.
Lemma 2: Assume that the MMD, , is a valid SLSHT

distribution. Then the spatio-spectral transformation matrix
in (31), which relates to , is given by

(39)

where returns the diagonal matrix with diagonal en-
tries specified by and selects the first sub-matrix of
size . The entries of are

(40)

Proof: See Appendix C.
Lemma 3: For multiplicative modification of the SLSHT dis-

tribution, the general spatio-spectral transformation matrix in
(32) is simplified to

(41)

with entries given by

(42)

where the mappings , , and
are used.

Proof: See Appendix C.
We note that this approximate solution cannot be further sim-

plified because of the coupling of Wigner- symbols.

B. Convolutive Modification of the SLSHT Distribution

We now consider signal transformation in the spatio-spectral
domain as the convolutive modification of the SLSHT distri-
bution, which can be achieved through convolution of the filter
function and the SLSHT distribution . The convolu-
tive modification can also be thought of as spatially-varying
spectral filtering of the signal, which is accomplished by fil-
tering the spatially-varying spectral components of the signal
in spatial domain. The analog of convolutive modification in
time-frequency analysis is the smoothing of time-frequency dis-
tribution to remove the artifacts in the time-frequency domain
[41], [42].We first specify the kernel in terms of the con-
volutive filter function and then express this operation as a linear
transformation of the signal. Later, we discuss the special case
in which each component of the filter function is azimuthally
symmetric.
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Definition 3 (Convolutive SLSHT Modification): Let
and a spatio-spectral filter function be given ac-

cording to Definition 1. The kernel in (21) is obtained
by rotating each component of , such as , as follows

(43)

As a result, the convolutive modified distribution (CMD)
will have the elements given by

(44)

for . More concisely, we can write

(45)

where ‘ ’ denotes spherical convolution operation. This type of
filtering in spatio-spectral domain as convolutive modification
of the SLSHT distribution is depicted in the first two blocks of
Fig. 3(b).
Using the definition of the SLSHT distribution for signal
, we now formulate an expression that relates the CMD
to . Such a relation will be useful in finding

the signal with spectral response that corresponds to the
CMD , and in expressing as a linear transformation of .
This is accomplished by defining the matrix

of size with entries

(46)

with and , which is obtained using (13)
and (17). Therefore, referring to (16) we express the CMD
in (45) as

(47)

Now, we derive the expressions for spatio-spectral transform
matrix in (31) for both exact and approximate cases.
Lemma 4: If the CMD defined in (45) is a valid SLSHT

distribution, the spatio-spectral transform matrix is obtained
by using the inversion operation defined in (18) as

(48)

where entries are obtained by integrating the elements of
in (46) as

(49)

The integral above can be evaluated using the relation between
spherical harmonic function and Wigner- function in (8) and

the expression for the integral of associated Legendre function
[43] as

(50)

(51)

Proof: The proof follows directly from (46) and is omitted
for brevity.
Lemma 5: For the case that the CMD in (45) is not a

valid SLSHT distribution, the approximate solution presented
in Theorem 1 specializes to

(52)

with entries

(53)

where the mappings and are used.
The integral in (53) is the projection of Wigner- function

onto spherical harmonics and can be evaluated
by employing the expansion of product of Wigner-D func-
tions using Wigner symbols. The details are provided in
Appendix D.

Proof: We use (29), (31), and (47) to infer (52). Equation
(53) follows from (46) and (75), where the latter is defined in
Appendix D.
Again, further simplification of this approximate solution is

not possible because of coupling of Wigner- symbols and ir-
reducible Wigner-D functions. However, for the special case
where each component of the filter function is azimuthally sym-
metric, we obtain further simplifications as follows.
1) Special Case – Azimuthally Symmetric Filter Function: If

each component of the filter function is azimuthally symmetric,
then for in (53) for all . Using
the relation betweenWigner- function and spherical harmonic
in (8) and orthonormal property of spherical harmonics, the ex-
pression for the entries in (53) simplifies to

(54)
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Fig. 4. Signal : (a) as a function of co-latitude and (b) on the sphere. (c) Spectrum of the signal vs degree for order , . (d) SLSHT
distribution of the signal as a function of degree and co-latitude .

Let us assume that in addition to being azimuthally symmetric,
the components of filter function also satisfy
with the mapping for all , which in-
dicates that there is the same filter function component of de-
gree for all the spherical harmonic orders . With
this assumption and employing the orthogonality relations of
Wigner- symbols [17], in (54) simplifies to

(55)

and the spatio-spectral transformation matrix becomes a di-
agonal matrix.

V. EXAMPLES

In this section, we provide an illustration of the filtering oper-
ation in spatio-spectral domain. In our experiments, we have im-
plemented the method outlined in [8] to calculate the spherical
harmonic coefficients and the triple product (15) in MATLAB.

We use equiangular sampling with samples on the
sphere as , for . Note
that the exact quadrature can be evaluated using this tessellation.
We use the most optimally concentrated azimuthally symmetric
bandlimited Slepian eigenfunction as the window function to
obtain the SLSHT distribution of a signal [1], [15]. For inverse
spherical harmonic transform of a function with the maximum
spherical harmonic degree , we use the minimum resolution

for the evaluation of exact quadrature [8]. Fur-
thermore, we consider unit energy normalized functions in our
experiments.

A. First Example

In our first example, we consider the bandlimited azimuthally
symmetric signal on the sphere with the maximum
spherical harmonic degree . The signal under consider-
ation is shown in Fig. 4(a) and (b) and is obtained by spectrally
truncating the following signal defined as

otherwise,
(56)
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Fig. 5. (a) Spatially-varying filter as defined in (57). (b) The approximated distribution as the SLSHT distribution of the signal . (c) Signal
in spatial domain as a function of co-latitude and (d) in spectral domain as vs degree for order .

to a maximum spherical harmonic degree . Since the signal
is azimuthally symmetric, only zero-order spherical harmonic
coefficients can be non-zero, which are shown in Fig. 4(c).
Since we are seeking the contribution of zero-order spherical
harmonics, the SLSHT distribution is shown in Fig. 4(d)
as a function of co-latitude and degree . The SLSHT distribu-
tion is obtained using an azimuthally symmetric eigenfunction
window of maximum degree , which is spatially con-
centrated in the region . We are interested to obtain
the MMD , defined in (36), using the following filter func-
tion

, ,
otherwise

(57)
where the maximum spectral degree is considered to be
for each non-zero filter component for
. The filter function is shown in spatio-spectral domain

in Fig. 5(a) as a function of degree and co-latitude . The negli-
gible ringing, which can be observed outside the spatio-spectral
region defined in (57) along the spatial domain, is due to the

consideration that each component of filter function is bandlim-
ited with . Since the filter function truncates both
in the spatial and spectral domain, the resulting MMD is
not a valid SLSHT distribution. Therefore, we employ the ap-
proximate solution to determine the signal , the
SLSHT distribution of which best approximates the MMD
in least squares sense. The approximated distribution is
shown in Fig. 5(b) which is the SLSHT distribution of signal

. The signal is shown in Fig. 5(c) and (d) in the spa-
tial and spectral domains, respectively. The approximated dis-
tribution shows that the signal is concentrated around the
desired spatio-spectral region. There are some artifacts near the
poles at and , which is due to the fact that zero-order
spherical harmonics have relatively higher values near the poles.

B. Second Example

The type of filtering shown in Section V-A which truncates
the signal in spatio-spectral domain can also be considered as
spatial truncation followed by spectral truncation. However, this
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Fig. 6. (a) Spatially-varying filter as defined in (58). (b) The approximated distribution as the SLSHT distribution of the signal . (c) Signal
in spatial domain as a function of co-latitude and (d) in spectral domain as vs degree for order .

will not ensure the concentration of the filtered signal in the
spatio-spectral domain. In order to further illustrate the capa-
bility of the proposed framework, we consider another example
of multiplicative modification of the SLSHT distribution, in
which we carry out spatially-varying spectral filtering in the
spatio-spectral domain.
We consider the following filter function in the spatio-

spectral domain

, ,
, ,
, , ,

otherwise,
(58)

which is shown in Fig. 6(a), where we have again assumed
that each filter function component is bandlimited with the
maximum spherical harmonic degree equal to . It
is evident from the Fig. 6(a) that the filter function is spa-
tially-varying in the spatio-spectral domain and thus filters
out different spectral contents in different spatial regions. For
example, it filters the contribution of all spherical harmonics
of degree greater than 10 around region, whereas it
filters spherical harmonics of degree greater than 70 around

region. Thus such type of filtering can be regarded
as spatially-varying low pass filtering, where the bandwidth
of the filter function is changing with the co-latitude. Using
proposed least squares solution, we determine the signal
whose SLSHT distribution approximates the MMD in
least squares sense. The approximated distribution in
spatio-spectral domain and the signal in spatial and spec-
tral domains are shown in Fig. 6(b)–(d), where the effect of
spatially-varying low-pass filtering is apparent.

VI. CONCLUSION

The spatially localized spherical harmonic transform
(SLSHT) distribution presents a mechanism to transform,
modify and filter the signal in the joint spatio-spectral domain
to realize spatially varying spectral filtering. As in the time-fre-
quency analogy, such a transformation in the spatio-spectral
domain can lead to a modified distribution that is not a SLSHT
distribution of physically valid spatial signal. Therefore, we
formulated and solved an optimization problem to find the
closest physically valid signal to the modified SLHT distri-
bution by deriving an expression for an appropriate inverse
spatio-spectral transform.
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We illustrated two types of transformation to the SLSHT dis-
tribution, both being instances of a general linear integral oper-
ator. Multiplicative modification of the SLSHT was considered
in Section IV-B and a convolutive modification was considered
in Section IV-C. Both can be regarded as representing spatially
varying spectral filtering. The power of the technique was illus-
trated in two examples of spatially-varying spectral that allows
processing of signals in joint spatio-spectral domain, in a way
that cannot be accomplished separately in either spatial or spec-
tral domain.
There are natural generalizations of the work presented. The

technique we developed to recover a spectral response of a valid
signal on the unit sphere from a modified SLSHT distribution
is not limited to linear transformations in the spatio-spectral do-
main. Since there exist efficient computational techniques to ex-
actly evaluate the spherical harmonic transform of the bandlim-
ited signals [8], [18], we have considered the signal in the spec-
tral domain in the proposedmathematical developments and for-
mulations. We consider the development of efficient computa-
tional techniques to do the given processing as an open problem
for further work.

APPENDIX A
MATHEMATICAL BACKGROUND

Spherical Harmonics: The spherical harmonic function,
, for degree and order is

defined as [17]

(59)

where is the normalization factor given by

(60)

such that , where is the Kronecker
delta function: for and is zero otherwise.

is the associated Legendre function defined for degree
and order as

for . We also note the following relation between
and

(61)

Spherical Dirac Delta Function: The Dirac delta function
on the sphere with the sifting property

(62)

has following expansion, called the completeness relation, in
spherical harmonic domain

(63)

Note that .
Spherical Harmonics Triple Product: Using theWigner-

symbols [17], the spherical harmonic triple product
can be written using the mappings , and

as

(64)

We note that Wigner- symbols [17] are real-valued. There-
fore, , which can also be directly proven
using , symmetry relations of Wigner- symbols and the
fact that is non-zero only when is even.

Wigner- Functions: The Wigner- function
used in (6) is defined as [17], [44]

(65)

where the sum is over all such that denominator terms do not
become negative.

APPENDIX B
PROOF OF THEOREM 1 (LEAST SQUARES SOLUTION)

We take the derivative of the total error in (27) with respect
to the -th element of , and set it to zero

Now using
and rearranging the terms results in
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which can be written in matrix form as

(66)

from which (29) becomes clear. Now, let us examine the entries
of in more detail

(67)

Upon using the definition of the elements of in (17), we obtain

which can be simplified using (7) and employing the or-
thonormal property of spherical harmonics

where the mapping has been used. Now using
, the additional mapping

and (64) we arrive at

Now we invoke the following orthogonality relation of
Wigner- symbols,

(68)
to reach that is only non-zero when and or
when , that is,

(69)
where the following identity ofWigner- symbols is employed
in obtaining the second equality

(70)
We note here that the entries of the matrix given by (69) also
appeared in [15], [45] as the sum of the rows of the coupling

matrix (see [45] for details). With the entries of matrix in
(69), the becomes identity matrix scaled by the energy of
the window function defined in (30) and Theorem 1 is proved.

APPENDIX C
PROOF OF LEMMAS 1–3

From the definition of MMD in (35) and using the inversion
relation in (18), we conclude that the -th component of can
be obtained as

Using the spherical harmonic expansion
, the SLSHT distribution formulation in

(14) and the orthogonality relation of spherical harmonics, we
obtain

(71)

Now according to (10),

(72)

can be understood as the spherical harmonic coefficient of the
convolution output between and the azimuthally sym-
metric window function . Hence, we can express in
(71) as

(73)
Now using the expression for on the right hand
side of (15), , and

we obtain the stated result in Lemma
1.
Proof of Lemma 2 is easy. First, according to (36) and (16)

(74)
Therefore, according to (19) we can write the spectral response
of signal , , corresponding to as

And by comparison with (31) we conclude (39).
Equation (40) follows from using (13), (17),

, and orthogonality relation of spherical har-
monics. This was also implied in (72) and (73) in the proof of
Lemma 1.
For the proof of Lemma 3, we first use (34) in (32) and the

the sifting property of Dirac delta function to arrive at (41). For
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obtaining the entries of , we proceed as follows. From (13)
and (17), we know that

(75)

(76)

Upon using the above, in (41), we
obtain

(77)

Finally, recalling and the definition (15)
for the integral in (77), we obtain

(78)

which is identical to (42).

APPENDIX D
EVALUATION OF INTEGRAL IN (53)

Following the relation between Wigner- function and
spherical harmonics in (8), the integral in (53) can be expressed
as

(79)

where the integral over can be evaluated by employing the fol-
lowing expansion of product of Wigner- functions in terms of
Wigner- symbols and then using the computation of integral
given in (50)

(80)
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