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Abstract—This paper presents a tractable analytical framework
for the exact calculation of the probability of node isolation and
the minimum node degree distribution when N sensor nodes are
independently and uniformly distributed inside a finite square
region. The proposed framework can accurately account for the
boundary effects by partitioning the square into subregions, based
on the transmission range and the node location. We show that for
each subregion, the probability that a random node falls inside
a disk centered at an arbitrary node located in that subregion
can be analytically expressed in closed form. Using the results for
the different subregions, we obtain the exact probability of node
isolation and minimum node degree distribution that serves as an
upper bound for the probability of k-connectivity. Our theoretical
framework is validated by comparison with the simulation results
and shows that the minimum node degree distribution serves as
a tight upper bound for the probability of k-connectivity. The
proposed framework provides a very useful tool to accurately
account for the boundary effects in the design of finite wireless
networks.

Index Terms—k-connectivity, node degree distribution, prob-
ability of connectivity, probability of node isolation, sensor net-
works, wireless multihop networks.

I. INTRODUCTION

W IRELESS multihop networks, which are also referred
to as wireless sensor networks and wireless ad hoc

networks, consist of a group of sensor nodes deployed over
a finite region [1]–[5]. The nodes operate in a decentralized
manner without the need of any fixed infrastructure, i.e., the
nodes communicate with each other via a single-hop wireless
path (if they are in range) or via a multihop wireless path. In
most of the applications, such wireless networks are formed by
distributing a finite (small) number of nodes in a finite area,
which is typically assumed to be a square region [6]–[9].

Connectivity is a basic requirement for the planning and
effective operation of wireless multihop networks [10], [11].
k-connectivity is the most general notion of connectivity and
an important characteristic of wireless multihop networks
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[12], [13]. The network being k-connected ensures that there
exists at least k independent multihop paths between any two
nodes. In other words, a k-connected network would still be
1-connected if (k − 1) nodes forming the network fail. The
probability of node isolation, which is defined as the probability
that a randomly selected node has no connections to any other
nodes, plays a key role in determining the overall network
connectivity (1-connectivity) [12], [14]. The minimum node
degree distribution, which is the probability that each node in
the network has at least k neighbors, is crucial in determining
the k-connectivity of the network [12].

For large-scale wireless sensor networks, assuming Poisson
distributed nodes in an infinite area, the connectivity properties,
such as probability of isolation, average node degree, and
k-connectivity, have been well studied [12], [15]–[21]. When
the node locations follow an infinite homogeneous Poisson point
process and assuming all nodes have the same transmission
range, it has been shown that the network becomes k-connected
with high probability (close to 1) at the same time the minimum
node degree of the network approaches k [15]. This was used to
approximate the probability of k-connectivity by the minimum
node degree distribution in [12]. It was also used to determine
the asymptotic value of the minimum transmission range for
k-connectivity for a uniform distribution of nodes in a unit
square and disk [9].

A. Related Work

Since many practical multihop networks are formed by dis-
tributing a finite number of nodes in a finite area, there has been
an increasing interest to model and determine the connectivity
properties in finite multihop networks [9], [12], [14], [22]–[27].
This is also due to the fact, established earlier in [12], [14],
and recently in [25], that the asymptotic connectivity results for
large-scale networks provide an extremely poor approximation
for finite wireless networks. This poor approximation is due to
the boundary effects experienced by the nodes near the borders
of the finite region over which the nodes are deployed. Since the
nodes located close to the physical boundaries of the network
have a limited coverage area, they have a greater probability
of isolation. Therefore, the boundary effects play an important
role in determining the overall network connectivity.

Different approaches have been used in the literature, to try
to model the boundary effects, including 1) using geometrical
probability [28] and dividing the square region into smaller

0018-9545 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



KHALID et al.: EXACT PROBABILITY OF NODE ISOLATION AND MINIMUM NODE DEGREE DISTRIBUTION 2837

subregions to facilitate asymptotic analysis of the transmission
range for k-connectivity [9], [22] and to find the mean node
degree in different subregions [29]; 2) using a cluster expansion
approach and decomposing the boundary effects into corners
and edges to yield high-density approximations [27]; and 3) us-
ing a deterministic grid deployment of nodes in a finite area [30]
to approximate the boundary effects with random deployment
of nodes [25]. The given approaches provide bounds, rather
than exact results, for the probability of node isolation and/or
probability of connectivity. For a wireless network deployed
over a finite area, the existing results for k-connectivity and
minimum node degree are asymptotic (infinite N ) [9], [31]. An
attempt was made in [17] to study the minimum node degree
and k-connectivity by circumventing modeling of the boundary
effects, but the results were shown to be valid for large density
(number of nodes) only. Therefore, it is still largely an open
research problem to characterize the boundary effects and to
find general frameworks for deriving the exact results for the
probability of node isolation and the minimum node degree
distribution when a finite number of nodes are independently
and uniformly distributed inside a finite region.

B. Contributions

In the given context, we address the following open questions
in this paper for a wireless network of N nodes, which are
uniformly distributed over a square region.

Q1) How can we accurately account for the boundary effects
to determine the exact probability of node isolation?

Q2) How can we incorporate the boundary effects to find the
minimum node degree distribution?

In this paper, addressing the given two open questions, we
present a tractable analytical framework for the exact calcu-
lation of the probability of node isolation and the minimum
node degree distribution in finite wireless multihop networks
when N nodes are independently and uniformly distributed in
a square region. Our proposed framework partitions the square
into unequal subregions, based on the transmission range and
the location of an arbitrary node. Using geometrical probability,
we show that for each subregion, the probability that a random
node falls inside a disk centered at an arbitrary node located
in that subregion can be analytically expressed in closed form.
This framework accurately models the boundary effects and
leads to an exact expression for the probability of node isolation
and the minimum node degree distribution, which can be easily
evaluated numerically. We show that the minimum node degree
distribution can be used as an upper bound for the probability
of k-connectivity.

Since the k-connectivity depends on the number of nodes de-
ployed over the finite region and the transmission range of each
node [9], [31], the transmission range must be large enough
to ensure that the network is connected but small enough to
minimize the power consumption at each node and interference
between nodes [12], [32], which, in turn, maximizes the net-
work capacity. This fundamental tradeoff between the network
connectivity and the network capacity leads to the following
network design question.

Q3) Given a network of N nodes distributed over a square
region, what is the minimum transmission range such
that a network is connected with a high probability or,
alternatively, what is the minimum number of nodes
for a given transmission range such that the network is
connected?

Addressing this network design problem, we show through an
example how the proposed framework can be used to determine
the minimum transmission range required for the network to be
connected with high probability.

The rest of this paper is organized as follows: The system
model, problem formulation, and connectivity properties of a
wireless network are presented in Section II. The proposed
framework to evaluate the probability of node isolation and the
minimum node degree distribution is provided in Section III.
The boundary effects in the different regions formed with the
change in transmission range are presented in Section IV. The
validation of the proposed framework via simulation results
and the design example are presented in Section V. Finally,
Section VI concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Distribution of Nodes and Node Transmission Model

Consider N nodes that are uniformly and independently
distributed inside a square region R ∈ R

2, where R
2 denotes

the 2-D Euclidean domain. Let S� and V�, for � ∈ {1, 2, 3, 4},
denote the side and the vertex of the square, respectively, which
are numbered in an anticlockwise direction. Without loss of
generality, we assume that the first vertex V1 of the square is
located at the origin (0,0), and we consider a unit square region
defined as

R =
{
u = (x, y) ∈ R

2|0 ≤ x ≤ 1, 0 ≤ y ≤ 1
}
. (1)

Let u = (x, y) denote the position of an arbitrary node inside
the square R. The node distribution probability density function
(pdf) can be expressed as

fU(u) =

{
1, u ∈ R
0, u ∈ R

2\R.
(2)

We define |R| =
∫
R ds(u) as a measure of the physical area

of the square region, where ds(u) = dxdy, and the integration
is performed over the 2-D square region R. Note that |R| = 1,
since we assume a unit square.

We assume that each sensor node has a fixed transmission
range ro, and the coverage region of a node located at u is then
a disk O(u; ro) of radius ro centered at the node. Note that the
coverage area |O(u; ro)| = πr2o . The number of nodes inside
the coverage area of a certain node is called its neighbors.

B. Connectivity Properties

Here, we define the key connectivity properties of a multihop
network, which are considered in this paper.

Definition 1—Conditional Probability of Connectivity: Let
the cumulative distribution function (cdf) F (u; ro) denote the
conditional probability of connectivity that a randomly placed
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node according to a uniform pdf is connected to a node located
at u. Mathematically, we have

F (u; ro)
Δ
= |O(u; ro) ∩R|. (3)

Definition 2—Probability of Node Isolation: Let Piso denote
the probability of node isolation that any node in the network
is isolated. Assuming that the probability of node isolation is
independent for each node, the probability that a given node
at u is isolated is given by (1 − F (u; ro))

N−1, which can be
averaged over all possible locations to evaluate Piso as

Piso
Δ
=

∫
R2

(1 − F (u; ro))
N−1 fU(u)ds(u)

=

∫
R
(1 − F (u; ro))

N−1 ds(u). (4)

Definition 3—Minimum Node Degree: For a uniform distri-
bution of N nodes in a square region, define the minimum node
degree as the minimum number of neighbors of any node in the
region. Let the discrete random variable D denote the minimum
node degree. The associated pdf, which is called the minimum
node degree distribution, is given by

fD(k; ro)

= P(D = k)

Δ
=

(
1 −

k−1∑
d=0

(
N − 1

d

)

×
∫
R

(F (u; ro))
d (1 − F (u; ro))

N−d−1 ds(u)

)N

.

(5)

The details of the formulation of fD(k; ro) are provided in the
Appendix.

Definition 4—1-Connected Network: A network of N nodes
is said to be 1-connected (or connected) if there exists at least
one path between any pair of randomly chosen nodes.

Definition 5—k-Connected Network: A network of N nodes
is said to be k-connected (k = 1, 2, . . . , N − 1) if there ex-
ist at least k mutually independent paths between any pair
of randomly chosen nodes. In other words, a network is
k-connected if the network stays 1-connected with the removal
of any (k − 1) nodes. Let Pk−con denote the probability that
the network of N nodes (each with transmission range ro) is
k-connected.

Next, we examine the relation between probability Pk−con

and the minimum node degree distribution fD(k; ro). Penrose
[15] presented in his work on graph theory that a random net-
work for large enough number of nodes becomes k-connected
at the same instant it achieves the minimum node degree k with
high probability, that is, fD(k; ro) serves as an upper bound
on Pk−con, which gets tighter as both fD(k; ro) and Pk−con

approach one or the number of nodes approaches infinity.
Mathematically, we can express this as

fD(k; ro) ≥Pk−con(ro)

fD(k; ro) =Pk−con, Pk−con(ro) → 1. (6)

We note that the minimum node degree distribution is of fun-
damental importance [12] as 1) it determines the connectivity
of the network (P1−con), 2) it takes into account the failure
of the nodes, and 3) it also determines the minimum node
degree of the network (Pk−con). Using (4) and (5), we also note
the relationship between Piso(ro) and fD(k; ro): fD(1; ro) =
(1 − Piso(ro))

N . Since fD(1; ro) denotes the probability that
each node has at least one neighbor, it has been also referred to
as the probability of no isolated node in the literature [12], [14].

C. Problem Statement

There are two key challenges in evaluating the probability
of node isolation Piso(ro) in (4) and the minimum node degree
distribution fD(k; ro) in (5). The first challenge is to find the
cdf in (3), which requires the evaluation of the overlap area
|O(u; ro) ∩R|. In [23], using polar coordinates and dividing
the square into different radial regions were proposed to find
this intersection area. However, due to the dependence between
the polar radius and the polar angle, this approach does not lead
to closed-form solutions. In [33], an alternative approach is pre-
sented for finding the intersection area, i.e., by first finding the
area of circular segments formed outside the sides and vertices
and then subtracting from the area of the disk. This approach
leads to closed-form solutions and is adopted in this work.

The second challenge is to average the cdf given in (3)
over the square to determine the probability of node isolation
Piso(ro) in (4) and the minimum node degree distribution
fD(k; ro) in (5). F (u; ro) is a function of both node location
u and transmission range ro. For a unit square, if ro ≥

√
2,

then the disk O(u; ro) will cover the whole square R, and
hence, F (u; ro) = 1, irrespective of the node location. For
intermediate values of the node range 0 ≤ ro ≤

√
2, both u and

ro need to be taken into account in determining F (u; ro). This
adds further complexity to the task of evaluating (4) and (5).
A tractable exact solution to this problem is presented in the
following section.

III. PROPOSED FRAMEWORK

A. Boundary Effects

We use the approach suggested in [33] to quantify the overlap
area |O(u; ro) ∩R|. The basic building blocks in this approach
to characterize the boundary effects are 1) the circular segment
areas formed outside each side (border effects) and 2) the corner
overlap areas between two circular segments formed at each
vertex (corner effects). We modify the approach in [33] by
placing the origin at vertex V1, rather than at the center of the
square. This leads to a simpler formulation, as discussed below.

Let B1(u; ro) denote the area of the circular segment formed
outside side S1, as shown in Fig. 1. Using the fact that the area
of the circular segment is equal to the area of the circular sector
minus the area of the triangular portion, we obtain

B1=

{
r2o arccos

(
x
ro

)
−x

√
r2o − x2, Δs(u, S1) = x ≥ ro

0, otherwise
(7)
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Fig. 1. Border and corner effects in a unit square.

where Δs(u, S�) denotes the Euclidean distance between u
and side S�, � = 1, 2, 3, 4. Similarly, the areas of the circular
segments formed outside sides S2, S3, and S4, respectively, can
be expressed as

B2(u; ro) = r2o arccos

(
y

ro

)
− y

√
r2o − y2 (8)

B3(u; ro) = r2o arccos

(
1 − x

ro

)
− (1 − x)

√
r2o − (1 − x)2

(9)

B4(u; ro) = r2o arccos

(
1 − y

ro

)
− (1 − y)

√
r2o − (1 − y)2.

(10)

Let C1(u; ro) denote the area of the corner overlap region
between two circular segments at vertex V1, as shown in Fig. 1.
Using the fact that the area of the overlap region is equal to
the area of the circular sector minus the area of two triangular
portions, we can easily show that

C1(u; ro) =
1
2
r2oθ −

1
2

(√
r2o − y2 − x

)
y

−1
2

(√
r2o − x2 − y

)
x (11)

where angle θ is given by

θ = 2 arcsin

(
abs

(√
θ1
)

2ro

)
(12)

where abs(·) denotes the absolute value or modulus, and θ1 =
2r2o − 2x

√
r2o − y2 − 2y

√
r2o − x2. Similarly, the areas of the

corner overlap region formed at vertices V2, V3, and V4, respec-
tively, can be expressed as

C2(u; ro) =
1
2
r2oα− 1

2

(√
r2o − y2 − (1 − x)

)
y

− 1
2

(√
r2o − (1 − x)2 − y

)
(1 − x) (13)

C3(u; ro) =
1
2
r2oβ − 1

2

(√
r2o − (1 − y)2 − (1 − x

)
(1 − y)

− 1
2

(√
r2o − (1 − x)2 − (1 − y)

)
(1 − x) (14)

C4(u; ro) =
1
2
r2oγ − 1

2

(√
r2o − (1 − y)2 − x

)
(1 − y)

− 1
2

(√
r2o − x2 − (1 − y)

)
x (15)

where angles α, β, and γ are given by

α = 2 arcsin

(
abs

(√
α1

)
2ro

)
(16)

β = 2 arcsin

(
abs

(√
β1

)
2ro

)
(17)

γ = 2 arcsin

(
abs

(√
γ1
)

2ro

)
(18)

where α1=2r2o−2(1−x)
√

r2o−y2−2y
√
r2o−(1−x)2, β1 =

2r2o−2(1−x)
√

r2o−(1−y)2−2(1−y)
√

r2o−(1−x)2, and
γ1 = 2r2o−2x

√
r2o−(1−y)2−2(1−y)

√
r2o−x2. We note that

the expressions for C� are valid only when Δs(u, V�) ≥ ro,
where Δs(u, V�) denotes the Euclidean distance between u
and vertex V�, � = 1, 2, 3, 4. For the case when Δs(u, V�) < ro,
C� = 0.

Using (7)–(11) and (13)–(15), the cdf F (u; ro) in (3) can
be expressed in closed form, e.g., if ro = 0.1 and u = (0, 0),
then two circular segments are formed outside sides S1 and
S2, and there is overlap between them. Hence, in this case,
F (u; ro) = πr2o − (B1(u; ro) +B2(u; ro)− C1(u; ro)). This
will be further illustrated in the following subsection.

B. Tractable Framework

As illustrated in the previous subsection, for a given value
of the transmission range ro and the location of the arbitrary
node u, F (u; ro) can be expressed in closed form using
(7)–(11), (13)–(15). To facilitate the averaging of (3) over
the whole square region, we divide the square region into
different nonoverlapping subregions based on the different
border and corner effects that occur in that region. Due to
the symmetry of the square, some subregions have the same
number of border and corner effects that can be exploited to
further simplify the averaging. This will be elaborated in detail
shortly.

Let R1, R2, . . . ,RM denote the type of nonoverlapping
subregions and ni, i ∈ {1, 2, . . . ,M} denote the number of
subregions of type Ri. If Fi(u; ro) denotes the conditional
probability of connectivity for a node located at u ∈ Ri, we
can write the probability of node isolation in (4) as

Piso(ro) =

M∑
i=1

ni

∫
Ri

(1 − Fi(u; ro))
N−1 ds(u) (19)
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and the minimum node degree distribution fD(k; ro) in (5) as

fD(k; ro) = P(D = k) =

⎛
⎜⎝1 −

k−1∑
d=0

M∑
i=1

ni

(
N − 1

d

)

×
∫
Ri

(F (u; ro))
d (1 − F (u; ro))

n−d−1 ds(u)

⎞
⎟⎠

N

. (20)

We note that the average node degree denoted by D can also
be determined using our framework as [14]

D =(N − 1)
∫
R

F (u; ro)ds(u)

= (N − 1)
M∑
i=1

ni

∫
Ri

F (u; ro)ds(u). (21)

In fact,
∫
R F (u; ro)ds(u) in (21) denotes the cdf of the distance

between two randomly placed nodes, and the closed-form ana-
lytical results exist in the literature for square, hexagon [6], and
convex regular polygons [34].

Remark 1: The general formulation for Piso(ro) in (4) is
also indirectly suggested in [25]. However, no guidelines are
presented to evaluate (4). Hence, Eslami et al. in [25] use
a deterministic grid deployment of nodes to approximate the
boundary effects when nodes are uniformly and independently
distributed in a square region. By contrast, we provide a
tractable framework for complete and exact characterization of
the boundary effects in (19).

Remark 2: While Fi(u; ro) in (3) can be analytically ex-
pressed in closed form, the integration in (19) and (20) does
not have a closed form due to the N − 1 factor in the exponent.
However, it can be easily evaluated numerically using the ex-
plicit closed-form expressions for Fi(u; ro) for different trans-
mission ranges and different subregions. It must be noted that
numerical evaluation of twofold integrals is widely practiced in
the literature [35].

Remark 3: We have considered a unit square region for the
sake of simplicity in the proposed formulation. For the general
case of a square of side length L, (19)–(21) can be used with
appropriate scaling of the transmission range as ro → ro/L.

Since the subregions are classified on the basis of the bound-
ary effects, the subregions change with transmission range ro.
We divide range ro over the desired interval 0 ≤ ro ≤

√
2, as

explained in Section II-C, such that the boundary effects are the
same for the different subregions over each subinterval of the
transmission range. This is explained in detail in the following
section.

IV. EFFECT OF BOUNDARIES FOR THE DIFFERENT

TRANSMISSION RANGE CASES

A. Transmission Range: 0 ≤ ro ≤ 1/2

Consider the first case of the transmission range, i.e., 0 ≤
ro ≤ 1/2, as shown in Fig. 2. This case may be of greatest
interest in many practical situations where, typically, the sensor
transmission range is a small fraction of the side length of

Fig. 2. (Top) Subregions for transmission range 0 ≤ ro ≤ 1/2. (Bottom,
Table I) Conditional probabilities Fi(u; ro) and number of subregions ni for
each subregion.

the square. In this case, we can divide the square into four
(M = 4) types of subregions R1, R2, R3, and R4. As shown
in Fig. 2, although there is one subregion of type R1, there are
four subregions of types R2, R3, and R4, respectively, which
are shaded in the same color for ease of identification, e.g.,
for an arbitrary node located in any subregion of type R2, the
disk O(u; ro) is limited by one side only. Hence, we determine
Fi(u; ro) only for the following subregions:

• R1 = {x ∈ (ro, 1 − ro), y ∈ (ro, 1 − ro)}
• R2 = {x ∈ (0, ro), y ∈ (ro, 1 − ro)}
• R3 = {x ∈ (0, ro), y ∈ (

√
r2o − x2, ro)}

• R4 = {x ∈ (0, ro), y ∈ (0,
√

r2o − x2)}.

It is easy to see that for an arbitrary node located anywhere in
subregion R1, the disk O(u; ro) is completely inside square R,
i.e., there are no border or corner effects. Hence, F1(u; ro) =
πr2o . For an arbitrary node located anywhere in subregion
R2, the disk O(u; ro) is limited by side S1, i.e., there is a
circular segment formed outside side S1. Hence, F2(u; ro) =
πr2o − (B1(u; ro)). For an arbitrary node located anywhere in
subregion R3, the disk O(u; ro) is limited by sides S1 and S2,
i.e., there are two circular segments formed outside sides S1

and S2, and there is no corner overlap between them. Hence,
F3(u; ro) = πr2o − (B1(u; ro) +B2(u; ro)). For an arbitrary
node located anywhere in subregion R4, the disk O(u; ro)
is limited by sides S1 and S2 and vertex V1, i.e., there are
two circular segments formed outside sides S1 and S2, and
there is corner overlap between them. Hence, F4(u; ro) =
πr2o − (B1(u; ro) +B2(u; ro)− C1(u; ro)). The number of
subregions ni of each type and the corresponding closed-form
Fi(u; ro) are tabulated in Table I in Fig. 2. For the sake of
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Fig. 3. (Top) Subregions for transmission range 1/2 ≤ ro ≤ (2 −
√

2).
(Bottom, Table II) Conditional probabilities Fi(u; ro) and number of subre-
gions ni for each subregion.

brevity, B�(u; r0) and C�(u; r0) are denoted by B� and C�,
respectively, in this and subsequent tables.

As ro increases from 0 to 1/2, we can see that the subregions
of types R1 and R2 become smaller and the subregions of types
R3 and R4 become larger. For the value of range ro = 1/2, the
subregions of types R1 and R2 approach zero.

Remark 4: The division of square R into subregions for
transmission range 0 ≤ ro ≤ 1/2 has been previously shown
in [25, Fig. 7], [26, Fig. 2], and [29, Fig. 2] to illustrate the in-
tuitive argument that the nodes situated in boundary subregions
experience boundary effects. However, subregions R3 and R4

are indicated as one subregion in [25] and [26]. Using our
framework, we show that these are two distinct subregions with
unique border and corner effects. In addition, we formulate all
the subregions for all possible values of the range. This is differ-
ent from [29] and [36], where only the transmission range 0 ≤
ro ≤ 1/2 was considered for finding the average node degree.

B. Transmission Range: 1/2 ≤ ro ≤ (2 −
√

2)

For the case of the transmission range in the interval 1/2 ≤
ro ≤ 2 −

√
2, we have M = 6 types of subregions, which are

shown in Fig. 3 and can be expressed as
• R1={x∈(0,

√
2ro−1), y∈(0, 1−ro)}∪{x∈(

√
2ro−1,

1 − ro), y ∈ (0,
√

r2o − x2)}
• R2 = {x ∈ (1 − ro, 0.5), y ∈ (0,

√
r2o − (x− 1)2)}

• R3={x∈(1−ro, 0.5), y∈(
√

r2o−(x−1)2,
√
r2o−x2)}

• R4 = {x ∈ (1 − ro, 0.5), y ∈ (
√
r2o − x2, 1 − ro)}

Fig. 4. (Top) Subregions for transmission range (2 −
√

2) ≤ ro ≤ 5/8.
(Bottom, Table III) Conditional probabilities Fi(u; ro) and number of sub-
regions ni for each subregion.

• R5={x ∈ (
√

2ro−1, 1−ro), y ∈ (
√

r2o−x2, 1−ro)}
• R6 = {x ∈ (1 − ro, 0.5), y ∈ (1 − ro, 0.5)}.
The upper limit for this interval of transmission range, i.e.,

(2 −
√

2), is computed as the range ro for which lines x =
1 − ro, y = 1 − ro and circle x2 + y2 = r2o intersect. As ro
approaches (2 −

√
2), subregion R5 squeezes to zero. The

number of subregions ni of each type and the corresponding
closed-form Fi(u; ro) are tabulated in Table II in Fig. 3.

C. Transmission Range: (2 −
√

2) ≤ ro ≤ 5/8

For the case of the transmission range in the interval (2 −√
2) ≤ ro ≤ 5/8, we again have M = 6 types of subregions,

which are shown in Fig. 4 and can be expressed as
• R1 = {x ∈ (0, 1 − ro), y ∈ (0, 1 − ro)}
• R2 = {x ∈ (1 − ro, 0.5), y ∈ (0,

√
r2o − (x− 1)2)}

• R3={x∈(1−ro,
√

2ro−1), y∈(
√

r2o −(x−1)2, 1−ro)}∪
{x∈(

√
2ro−1, 0.5), y∈(

√
r2o −(x−1)2,

√
r2o −x2)}

• R4 = {x ∈ (
√

2ro − 1, 0.5), y ∈ (
√

r2o − x2, 1 − ro)}
• R5={x ∈ (1−ro,

√
2ro−1), y ∈ (1−ro,

√
r2o−x2)}

• R6 = {x ∈ (1 − ro,
√

2ro − 1), y ∈ (
√

r2o − x2, 0.5)} ∪
{x ∈ (

√
2ro − 1, 0.5), y ∈ (1 − ro, 0.5)}.

The upper limit for this interval of the transmission range,
i.e., 5/8, is determined as the range ro where subregion R4

squeezes to zero and is computed as an intersection of line y =
1 − ro and two circles x2 + y2 = r2o and (x− 1)2 + y2 = r2o .
The number of subregions ni of each type and the correspond-
ing closed-form Fi(u; ro) are tabulated in Table III in Fig. 4.
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Fig. 5. (Top) Subregions for transmission range 5/8 ≤ ro ≤ 1/
√

2. (Bottom,
Table IV) Conditional probabilities Fi(u; ro) and number of subregions ni for
each subregion.

D. Transmission Range: 5/8 ≤ ro ≤ 1/
√

2

For the case of the transmission range in the interval 5/8 ≤
ro ≤ 1/

√
2, we have M = 6 types of subregions, which are

shown in Fig. 5 and can be expressed as
• R1 = {x ∈ (0, 1 − ro), y ∈ (0, 1 − ro)}
• R2 = {x ∈ (1 −

√
r2o − y2, 0.5), y ∈ (0, 1 − ro)}

• R3 = {x ∈ (1 − ro, 1 −
√

r2o − y2), y ∈ (0, 1 − ro)}
• R4={x∈(1−

√
2ro−1, 0.5), y∈(1−ro,

√
r2o −(x−1)2)}

• R5 = {x ∈ (1 − ro,
√
r2o − 0.25), y ∈ (1 − ro, 1 −√

r2o − x2)} ∪ {x ∈ (
√

r2o − 0.25, 1 −
√

2ro − 1), y ∈
(1 − ro,

√
r2o − x2)} ∪ {x ∈ (1 −

√
2ro − 1, 0.5), y ∈

(
√

r2o − (x− 1)2,
√

r2o − x2)}
• R6 = {x ∈ (

√
r2o − 0.25, 0.5), y ∈ (

√
r2o − x2, 0.5)}.

The upper limit for this interval of the transmission range,
i.e., 1/

√
2, is determined as the range ro where the four circles

x2 + y2 = r2o , (x− 1)2 + y2 = r2o , (x− 1)2 + (y − 1)2 = r2o ,
and (x)2 + (y − 1)2 = r2o intersect. The number of subregions
ni of each type and the corresponding closed-form Fi(u; ro)
are tabulated in Table IV in Fig. 5.

E. Transmission Range: 1/
√

2 ≤ ro ≤ 1

For the case of the transmission range in the interval 1/
√

2 ≤
ro ≤ 1, we have M = 7 types of subregions, which are shown
in Fig. 6 and can be expressed as

• R1 = {x ∈ (0, 1 − ro), y ∈ (0, 1 − ro)}
• R2={x∈(1−ro, 1−

√
2ro−1), y∈(0,

√
r2o −(x−1)2)}∪

{x ∈ (1 −
√

2ro − 1, 0.5), y ∈ (0, 1 − ro)}

Fig. 6. (Top) Subregions for transmission range 1/
√

2 ≤ ro ≤ 1. (Bottom,
Table V) Conditional probabilities Fi(u; ro) and number of subregions ni for
each subregion.

• R3={x∈(1−ro, 1−
√

2ro−1), y∈(
√
r2o −(x−1)2, 1−ro)}

• R4={x ∈ (1−
√

2ro−1, (1−
√

2r2o−1)/2), y ∈ (1−ro,√
r2o − (x− 1)2)} ∪ {x ∈ ((1 −

√
2r2o − 1)/2, 0.5), y ∈

(1 − ro, 1 −
√

r2o − x2)}
• R5 = {x ∈ (1 − ro, 1 −

√
2ro − 1), y ∈ (1 − ro, 1 −√

r2o − x2)} ∪ {x ∈ (1 −
√

2ro−1, (1 −
√

2r2o − 1)/2),
y ∈ (

√
r2o − (x− 1)2, 1 −

√
r2o − x2)}

• R6 = {x ∈ ((1−
√

2r2o−1)/2, 1−
√

r2o−0.25), y ∈ (1−√
r2o − x2,

√
r2o − (x− 1)2)} ∪ {x ∈ (1 −

√
r2o − 0.25,

0.5), y ∈ (1 −
√
r2o − x2, 1 −

√
r2o − (x− 1)2)}

• R7={x∈(1−
√

r2o−0.25, 0.5), y∈(1−
√
r2o−(x− 1)2,

0.5)}.
The upper limit for this interval of the transmission range,

i.e., 1 corresponds to the length of the side of the square region.
For ro ≥ 1, there is always the effect of the sides of the square
on the coverage area of a node, irrespective of the location of
the node. The number of subregions ni of each type and the
corresponding closed-form Fi(u; ro) are tabulated in Table V
in Fig. 6.

F. Transmission Range: 1 ≤ ro ≤
√

5/2

For the case of the transmission range in the interval 1 ≤
ro ≤

√
5/2, we have M = 3 types of subregions, which are

shown in Fig. 7 and can be expressed as
• R1={x∈(0, 1−

√
r2o −0.25), y∈(0,

√
r2o −(x−1)2)} ∪

{x∈(1−
√
r2o −0.25,

√
r2o −1), y∈(0, 1−

√
r2o −(x−1)2)}∪

{x∈(
√
r2o −1, 0.5), y∈(1−

√
r2o −x2, 1−

√
r2o −(x−1)2)}
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Fig. 7. (Top) Subregions for transmission range 1 ≤ ro ≤
√

5/2. (Bottom,
Table VI) Conditional probabilities Fi(u; ro) and number of subregions ni for
each subregion.

• R2 = {x ∈ (
√

r2o − 1, 0.5), y ∈ (0, 1 −
√
r2o − x2)}

• R3={x∈(1−
√
r2o −0.25, 0.5), y∈(1−

√
r2o −(x−1)2, 0.5)}.

The upper limit for this interval of the transmission range,
i.e.,

√
5/2, is determined as ro for which the circles (x−

1)2 + (y − 1)2 = r2o , x2 + (y − 1)2 = r2o intersect, and subre-
gion R2 vanishes. The number of subregions ni of each type
and the corresponding closed-form Fi(u; ro) are tabulated in
Table VI in Fig. 7.

G. Transmission Range:
√

5/2 ≤ ro ≤
√

2

Finally, we have M = 2 types of subregions for the case of
the transmission range in the interval

√
5/2 ≤ ro ≤

√
2. The

regions are shown in Fig. 8 and can be expressed as
• R1={x∈(0, 1−

√
r2o−1), y∈(0, 1−

√
r2o−(x−1)2)}

• R2 = {x ∈ (0, 1 −
√
r2o − 1), y ∈ (1 −

√
r2o − (x−1)2,

0.5)} ∪ {x ∈ (1 −
√
r2o − 1, 0.5), y ∈ (0, 0.5)}.

The number of subregions ni of each type and the corre-
sponding closed-form Fi(u; ro) are tabulated in Table VII in
Fig. 8. As highlighted earlier, we note that F (u : ro) = 1 for
transmission range ro greater than or equal to

√
2 (diagonal

length of the square).

V. RESULTS

Here, we present the numerical results and compare them
with the simulation results to validate the proposed framework.
We also compare them with the results from the prior work
to demonstrate the advantage of our proposed framework,
particularly for smaller number of sensor nodes N . We have
implemented (19) and (20) in Mathematica. We consider the

Fig. 8. (Top) Subregions for transmission range
√

5/2 ≤ ro ≤
√

2. (Bottom,
Table VII) Conditional probabilities Fi(u; ro) and number of subregions ni

for each subregion.

Fig. 9. Probability of node isolation Piso(ro) versus transmission range ro
for N = 10, 20, 50 nodes independently and uniformly distributed in a unit
square.

nodes to be independently and uniformly distributed in a square
region of side length L = 1. The simulation results are obtained
by averaging over S = 50 000 Monte Carlo simulation runs.

A. Probability of Node Isolation

Fig. 9 plots the probability of node isolation, i.e., Piso(ro),
in (19), versus the transmission range ro for N = 10, 20,
50 nodes. The probability of node isolation in infinite homoge-
nous Poisson point process networks [12], i.e.,

Piso(ro) = e−ρπr2o (22)

assuming constant node density ρ = 10, 20, 50 nodes/m2 is
also plotted as a reference. We can see in Fig. 9 that the
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Fig. 10. Minimum node degree distribution fD(k; ro) and probability of k-connectivity P1−con(ro) versus transmission range ro for (a) N = 10, (b) N = 20,
and (c) N = 50 nodes independently and uniformly distributed in a unit square.

simulation results for finite networks perfectly match the nu-
merical results. This is to be expected since we account for
boundary effects accurately and evaluate (19) exactly. Fig. 9
shows that the probability of node isolation is greater in finite
networks than in Poisson networks. This is due to the inclusion
of the border and corner effects, as explained in Section III.

B. Minimum Node Degree Distribution and k-Connectivity

Here, through simulations, we validate our framework to de-
termine the minimum node degree distribution. Using (20), we
determine the minimum node degree distribution fD(k; ro) for
k=1, 2, 3 and for number of nodes N=10, 20, 50. The simula-
tion results for fD(k; ro) are obtained by uniformly distributing
N nodes in a square region, each with transmission range ro,
over a square region and determining if the minimum number
of neighbors for all nodes in the network is equal to k. Note that
the simulation results for fD(k; ro) are obtained by averaging
over all S=50 000 random topologies for each ro and k. The
simulation results for fD(k; ro) are also plotted in Fig. 10 and
perfectly match with the analytical results using (20).

As highlighted earlier in Section II-B, the probability of
k-connectivity Pk−con is bounded by the minimum node degree
distribution fD(k; ro). This is because we obtain a k-connected
network at the same time we obtain a network with minimum
node degree k, both with and without boundary effects [12],
[14], [15]. Here, we validate through simulation results that the
minimum node degree distribution fD(k; ro) serves as an upper
bound for Pk−con, and the bound gets tighter as Pk−con(ro)
approaches one.

We repeat the simulation environment in Section V-B, and
now, for each of the 50 000 random topologies, we measure the
k-connectivity of the network for k = 1, 2, 3. The simulation
results for Pk−con are plotted in Fig. 10 along with the ana-
lytical results for minimum node degree distribution fD(k; ro)
obtained using (20) and our proposed framework. It is evident in
the plots that the relation between fD(k; ro) and Pk−con given
in (6) holds, that is, fD(k; ro) → Pk−con as Pk−con → 1.

We note that the simulation tests for k-connectivity are
computationally intensive, and the computational complexity
to check k-connectivity scales with Nk−1 for k ≥ 2. For exam-
ple, the complexity to check 1-connectivity and 2-connectivity
is of the order O(N + S), and the complexity to determine

Fig. 11. Probability of connectivity: Upper bound as minimum node degree
distribution fD(k; ro), high-density approximation P̃1−con(ro), and simu-
lated P1−con(ro) versus transmission range ro for N = 10, 20, 50 nodes
independently and uniformly distributed in a unit square.

3-connectivity is O(N(N + S)), where S denotes the number
of simulations. However, (20) can be numerically evaluated
very easily. This illustrates an advantage of the proposed frame-
work over simulations.

C. 1-Connectivity

Since P1−con(ro) is one of the essential characteristics of
wireless multihop networks, we analyze the tightness of the
bound provided by fD(1; ro) for P1−con(ro) in more detail and
compare with the existing bounds in the literature.

Fig. 11 plots fD(1; ro) as an upper bound for the probability
of connectivity (obtained via simulations) versus transmission
range ro for N = 10, 20, 50 nodes. For comparison, we plot the
high-density approximation for P1−con(ro), which is derived in
[27] using a cluster expansion approach as

P̃1−con(ro)≈1−L2ρe−
π
β ρ−4L

√
β

π
e−

π
2β ρ− 16β

ρπ
e−

π
4β ρ (23)

where L denotes the side length, ρ denotes the node density,
and β = (ro/L)

−2.
The high-density approximation in (23) is comparatively a

better estimate for P1−con for N = 50 nodes but is not useful
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Fig. 12. Differences Δ = |P1−con(ro)− fD(1; ro)| and Δ̃ = |P1−con(ro)− P̃1−con(ro)| denotes the deviation of simulated P1−con(ro) from the
proposed bound as minimum node degree distribution fD(1; ro) in (20) and high-density approximation P̃1−con(ro) given in (23), respectively. Both Δ and Δ̃
are plotted for (a) N = 10, (b) N = 20, and (c) N = 50.

for N = 10 nodes. We analyze the tightness of the bounds in
more detail over the value of probabilities in the interval 0.9 ≤
P1−con ≤ 1. The differences between the bounds, i.e., Δ =
|P1−con(ro − fD(1; ro)| and Δ̃ = |P1−con(ro)− P̃1−con(ro)|,
are plotted in Fig. 12 for 0.9 ≤ P1−con(ro) ≤ 1. For a small
number of nodes (N = 10, 20), it can be noted that the
proposed minimum node degree distribution fD(1; ro) is com-
paratively a tight bound for P1−con than the high-density ap-
proximation P̃1−con(ro).

On the basis of simulation results presented here and in
the previous section, we can say that the upper bound for the
connectivity provided by the minimum node degree distribution
in (6) provides a good approximation for the simulation results
when P1−con ≈ 1. This is consistent with the observation in
[14] for circular areas with or without boundary effects. Thus,
the proposed framework can be used to accurately predict
the network connectivity properties, even when the number of
nodes is small.

D. Network Design Example: Minimum Transmission Range
and Minimum Number of Nodes

We now address the network design problems: 1) Determine
the minimum transmission range rco for a given number of
nodes, or 2) find the minimum number of nodes N c, each
with given transmission range ro, such that the network is
k-connected with high probability Pk−con, e.g., 0.95 or 0.99.
Such a minimum value transmission range and the minimum
number of nodes to achieve the desired level of Pk−con are often
termed as critical transmission range and critical number of
nodes, respectively [9], [12], [31]. For a given transmission range,
the minimum number of nodes must be deployed to minimize
the cost and reduce the interference between the nodes [12]. For
a network with fixed number of nodes, the transmission range
must not only be large enough to ensure network connectivity
but must also be small enough to minimize the power consump-
tion and reduce the interference between the nodes.

Since Pk−con(ro) is a monotonic function of both transmis-
sion range ro and the number of nodes N , the solution to the
given problem is to determine the curve in the N − ro plane
for which Pk−con(ro) = 0.95 or Pk−con(ro) = 0.99. We can
carry out simulations to determine rco or N c. However, as high-

Fig. 13. Surface plot for fD(1; ro) as a function of number of nodes N and
transmission range ro. The curves denote (N, ro) pairs for which fD(1; ro) =
0.95 or 0.99 and (Nc, rco) pairs for which Pk−con = 0.95 ± 0.5% or 0.99 ±
0.5%.

lighted earlier, it would be very computationally intensive to
obtain simulation results with sufficient accuracy, particularly
for large values of k. We demonstrate here that we can obtain
analytical solutions to the aforementioned design problems
using the proposed framework. Recalling that minimum node
degree distribution fD(k; ro) serves as a good approximation
for Pk−con(ro), we can use fD(k; ro) given in (20) to determine
the critical transmission range and critical number of nodes.
The surface plot for fD(1; ro) is shown in Fig. 13 as a function
of the number of nodes N and the transmission range ro,
where we have also shown the analytical curves consisting
of (N, ro) pairs for which fD(1; ro) = 0.95 or fD(1; ro) =
0.99 and the simulation curves denoting (N c, rco) pairs for
which P1−con = 0.95 or P1−con = 0.99 with the tolerance of
±0.5%. It can be observed that the analytical determination of
(N c, rco) using the proposed minimum node degree distribution
fD(1; ro) yields a fairly good approximation for both P1−con =
0.95 and P1−con = 0.99. Nevertheless, by virtue of our analysis
in the previous section and Penrose theorem on connectivity
of random graphs [15], the analytical determination is more
accurate for P1−con = 0.99.
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VI. CONCLUSION

In this paper, we have presented a tractable analytical frame-
work for the exact calculation of the probability of node
isolation and the minimum node degree distribution in finite
wireless sensor networks. We have considered N sensor nodes,
each with transmission range ro, which are independently
and uniformly distributed in a square region. The proposed
framework can accurately account for the boundary effects by
partitioning the square into subregions, based on the trans-
mission range and the node location. The exact modeling of
the boundary effects has not been taken into consideration in
previous studies in the literature. Our results confirm that the
boundary effects play a key role in determining the connectivity
metrics of the network: probability of node isolation, minimum
node degree distribution, and probability of k-connectivity,
particularly when the number of nodes is small (N < 50).
We have also validated the proposed framework with the help of
simulations.

Future research can consider natural generalizations of the
work presented here. First, the proposed framework can be
extended for the case of a polygon region (generalization of
a square region). Second, the consideration of channel fading
and interference in the transmission model (generalization of
a disk model) is an open problem that is outside the scope of
this paper.

APPENDIX

MINIMUM NODE DEGREE DISTRIBUTION

Here, we present the formulation of the probability distribu-
tion of the minimum node degree D presented in (5). For N
uniformly distributed nodes, the number of neighbors d for a
node located at u follows a binomial distribution [12], [14],
[24], i.e.,

(
N − 1

d

)
(F (u; ro))

d (1 − F (u; ro))
N−d−1

and the probability that any node in the network has at least d
neighbors is, therefore, given by

(
N − 1

d

)∫
R

(F (u; ro))
d (1 − F (u; ro))

N−d−1 ds(u).

Now, the probability that any node in the network has at least k
neighbors can be expressed as

1 −
k−1∑
d=0

(
N − 1

d

)∫
R

(F (u; ro))
d (1 − F (u; ro))

N−d−1 ds(u)

which gives rise to the minimum node degree distribution
fD(k; ro) = P(D = k) that all the nodes have at least k neigh-
bors, with an assumption of independence between the nodes.
This leads to the result in (5).
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