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Abstract

The work in this dissertation is related to the development of novel techniques for
processing of signals defined on the sphere. Known as spherical signals, these are
encountered in areas of science and engineering where the underlying configuration
of the problem has a spherical geometry, e.g., in astronomy, cosmology, acoustics,
medical imaging, geophysics and wireless communication. In most of these areas,
acquired signals are almost always marred with unwanted, yet unavoidable noise due
to different sources of interference, which places signal filtering and estimation at
the heart of signal processing methods. In this context, the first part of the disser-
tation addresses the problem of signal filtering and estimation on the sphere in the
presence of random anisotropic noise. In particular, filters are designed in the joint
SO(3)-spectral domain, rendered by the directional spatially localized spherical har-
monic transform, and the joint SO(3)-scale domain, yielded by the scale-discretized
wavelet transform on the sphere. Additionally, optimal window signals are designed
to enhance the performance of the joint spatial-spectral domain filter and the pro-
posed joint SO(3)-spectral domain filter. The utility of these filtering frameworks is
demonstrated on bandlimited Earth and Mars topography maps.

The second part of this dissertation is focused on the use of Slepian functions,
which are obtained as a solution of the Slepian spatial-spectral concentration prob-
lem on the sphere, to support localized signal analysis. Such analysis is motivated by
the unavailability or unreliability of the spherical data over some region on the sphere.
In this respect, an analytical formulation for the (i) surface integration of signals, and
(ii) computation of Slepian basis functions, over regions represented by simple spher-
ical polygons, is presented. Through a polygon right-angled triangulation algorithm,
the problem of localized signal analysis over simple spherical polygon is broken down
into simpler analyses over spherical right-angled triangles. Using appropriate rotation
angles and Wigner-D functions, the computations for spherical right-angled triangles,
which span the spherical polygon, are combined to yield the results for the polygon.
Slepian functions are also employed to formulate a new joint spatial-Slepian domain
representation of spherical signals through the novel spatial-Slepian transform. The
joint spatial-Slepian domain representation is given by the spatial-Slepian coefficients,
which are analyzed for their spatial localization on the sphere. Spatial-Slepian trans-
form is utilized for detecting the presence of hidden and weak localized variations in
a signal. Furthermore, a framework for generalized linear transformations in the joint
spatial-Slepian domain is presented, which is exemplified through particular forms of
the underlying spatial-Slepian transformation kernel. All of these formulations are
validated using bandlimited Earth and Mars topography maps.

The third part of the dissertation considers the use of Slepian functions for the
framework of multiscale (multiresolution) analysis of spherical signals through hierar-
chical partitioning of the sphere into pixels of varying spatial extent. In this context,
different sampling and partitioning methods on the sphere are reviewed and Hier-
archical Equal Area iso-Latitude iso-Longitude Pixelization (HEALLPix) scheme is
proposed. Employing the formulation available in the literature, Slepian functions
for the HEALLPix pixels are computed and an overcomplete multiscale dictionary
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of Slepian functions is constructed. Additionally, a framework for analytical com-
putation of Slepian functions for pixels generated using Hierarchical Equal Area iso-
Latitude Pixelization (HEALPix) scheme is formulated. Exploiting the symmetries
between HEALPix pixels, an efficient framework for the construction of an overcom-
plete multiscale dictionary of Slepian functions for HEALPix is presented. Elements
of both dictionaries are shown to span the space of bandlimited functions on the
sphere, while most of the elements of both dictionaries are also shown to exhibit neg-
ligibly small mutual coherence. As an outcome of the review of sampling schemes on
the sphere, an efficient and accurate spherical harmonic transform is also formulated
for HEALPix.
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Notation

On some rare occasions, a symbol is used to represent more than one mathematical

quantity across different chapters. Hence, the scope of mathematical notation should

be considered local to the chapters in order to avoid any confusion. As an exception,

same symbol θ0 has been used to represent the angle of a polar cap region as well as

focus colatitude of a spherical ellipse throughout the dissertation.

x scalar

x 2D or 3D Euclidean column vector

x̂ 3D Euclidean unit column vector (representing points on the sphere)

x column vector

X matrix

xk kth element of the column vector x

Xk,k′ element in row k and column k′ of the matrix X

trace(X) trace of the matrix X

S2 2-sphere or unit sphere or sphere

AR area of a spherical region R ⊂ S2

∆(x̂, ŷ) Angular distance between points x̂ and ŷ on the sphere

〈f, g〉R inner product between functions f(x̂), g(x̂) over a region R ⊂ S2

〈f, g〉S2 inner product between functions f(x̂), g(x̂) over the sphere

‖·‖R L2 norm of a function over a region R ⊂ S2

‖·‖S2 L2 norm of a function over the sphere

L2(S2) Hilbert space of functions on the sphere

HL Hilbert space of bandlimited functions on the sphere
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H0 Hilbert space of azimuthally symmetric functions on the sphere

Y m
` spherical harmonic function of degree ` and order m

SO(3) SO(3) rotation group

ρ 3-tuple of Euler angles (ϕ, ϑ, ω)

〈f, g〉SO(3) inner product between functions f(ρ), g(ρ) over SO(3)

‖·‖SO(3) L2 norm of a function over the SO(3) rotation group

L2(SO(3)) Hilbert space of functions on the SO(3) rotation group

D`
m,m′ Wigner-D function of degree ` and orders m,m′

d`m,m′ Wigner-d function of degree ` and orders m,m′

∆`
m,m′ Wigner-d function of degree ` and orders m,m′, evaluated at π/2

T (·; ·; ·) spherical harmonic triple product

|·| absolute value of the scalar or norm of the Euclidean vector

Re{·} real part of the parameter

(·) complex conjugate operation

(·)T vector transpose operation

(·)H conjugate transpose operation

NR spherical Shannon number for a region R ⊂ S2

b·c integer floor function

d·e integer ceiling function

δ`,p Kronecker delta function

δ(·) Dirac delta function

∗ convolution of Euclidean domain signals

? convolution of spherical signals

~ convolution of signals defined on SO(3) rotation group

max{} maximum of the parameters

min{} minimum of the parameters

j scale-discretized wavelet scale

J maximum scale-discretized wavelet scale

E statistical expectation

Cd spectral covariance matrix of a spherical signal d
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F joint spatial-spectral domain filter function

ζ joint SO(3)-spectral domain filter function

Ξ multiscale optimal filter function

Emse mean square error

Ese squared error

KGW Gauss-Weierstrass kernel

EKS squared error for Gauss-Weierstrass kernel smoothing

var spatial variance

# {·} number of elements satisfying the logical condition inside the braces

r fractional ratio of the number of spatial-Slepian coefficients having

smaller spatial variance than the scale-discretized wavelet coefficients

Σ2 sample variance

ζα,β spatial-Slepian transformation kernel

S spatial-Slepian transformation operator

ζM multiplicative spatial-Slepian transformation kernel

ζ~ convolutive spatial-Slepian transformation kernel

L resolution parameter for HEALLPix scheme

Nside resolution parameter for HEALPix scheme

Npix number of pixels for HEALPix scheme

hT quaternary tree level

H height of the quaternary tree

D overcomplete multiscale dictionary of well-optimally concentrated

Slepian functions

Jn Bessel function of first kind and order n

MC mutual coherence

Nsig,MC
number of inner products between dictionary elements which result

in significant mutual coherence
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Chapter 1

Introduction

1.1 Background and motivation

Signals are functions which convey meaningful information about the attributes of

physical systems/phenomena. The objective of signal processing theories and meth-

ods is to find mathematically convenient representations of such functions in order

to analyze and process them in an effective and efficient manner to extract use-

ful information. The underlying mathematics of these methods is highly dependent

on the nature of the signals under consideration. For signals defined on the 1 di-

mensional real line, which is usually identified with the time domain, signal pro-

cessing techniques such as sampling, filtering, prediction, correlation, detection, es-

timation and reconstruction in the presence of noise, have been thoroughly investi-

gated (e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]). A natural extension of the

time domain signals is the class of signals which are defined on the multidimensional

Euclidean domain. There is an abundance of literature available on the processing of

multidimensional Euclidean domain signals as well (e.g. [17, 18, 19, 20, 21]).

With rich literature available on the processing of Euclidean domain signals, it is

only instinctive to extend these methods in a way so as to effectively process signals

defined on the 2 dimensional surface of the 2-sphere1, called spherical signals, which

12-sphere is defined as the set of points in the 3D Euclidean domain which are equidistant from
a given point. Unit sphere, 2-sphere or simply sphere refers to the same thing.
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arise whenever the underlying configuration of the problem has a spherical geometry.

Hence, such signals have inherent angular dependence and are encountered in various

fields of science and engineering, such as wireless communication (e.g. [22, 23, 24, 25]),

3D beamforming (e.g. [26]), computer graphics (e.g. [27, 28, 29]), medical imag-

ing (e.g. [30, 31]), acoustics (e.g. [32, 33, 34, 35]), geodesy (e.g. [36, 37, 38]), quan-

tum chemistry (e.g. [39, 40]), cosmology (e.g. [41, 42, 43, 44, 45, 46, 47]), astron-

omy (e.g. [48, 49]) and planetary sciences (e.g. [50, 51, 52, 53, 54, 55]). Examples of

spherical signals include gravitational, topographic and magnetic fields of the planets,

cosmic microwave background (CMB), a relic radiation from the Big Bang, pouring

down on us from space, electromagnetic radiation pattern of an antenna array in

spherical geometry, acoustic signal received using spherical configuration of micro-

phones etc.

As opposed to 1D and multidimensional Euclidean domain signals, which are de-

fined on flat Euclidean domains, spherical signals are defined on a curved domain due

to which extension of Euclidean domain signal processing techniques to the spherical

domain is not a trivial task. However, over the years, a lot of methods developed for

Euclidean domain signals have been carefully extended to process spherical signals.

Some of them include sampling and reconstruction (e.g. [56, 57, 58, 59, 60]), convo-

lution on 2-sphere (e.g. [61, 62, 63, 64]), signal filtering (e.g. [65, 66, 67, 68, 69, 70,

71, 72]), spectrum estimation (e.g. [36, 37, 38]), Slepian spatial-spectral concentration

problem (e.g. [73, 74, 75, 76, 77]) and wavelet analysis (e.g. [78, 79, 80, 81, 82, 83,

84, 85]). A brief review of the literature on some of the these methods, which are

directly related to the work of this dissertation, is given below.

1.1.1 Signal filtering and estimation

Spherical observations in most of the application areas are marred with unwanted,

yet unavoidable noise due to the presence of different sources of interference. Hence,

many noise removal techniques, with different assumptions and constraints, have been

proposed in the literature. For instance, matched filter, proposed in [67], has been

used for detecting cosmic bubble collisions in [69]. Matched filter and Wiener filter

2
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are proposed in [71] as a special case of the formulation in an abstract homogeneous

space under the action of the rotation group. An isotropic Wiener filter is used

for spatial averaging of the GRACE gravity-field solutions in [66]. These filtering

methods process signals in either spatial or spectral domain, assuming the noise to

be a realization of an isotropic process on the sphere.

To estimate signals contaminated by anisotropic noise2, a minimum mean-square

error filter is developed in [70]. Moreover, a zero-forcing and minimum mean-square

error criterion is adopted in [72] using linear operators for equalizing linear distortions

and anisotropic noise. Motivated by the idea of filtering non-stationary processes in

the joint time-frequency domain proposed in [86], a spatially varying optimal filter is

proposed in [87] for the estimation of spherical signals contaminated by zero-mean and

anisotropic noise. The resulting filter estimates the underlying signal by performing

filtering in the joint spatial-spectral domain using spatially localized spherical har-

monic transform [88].

1.1.2 Localized signal analysis

Signals can be analyzed globally (over the whole sphere) or locally (over a region on

the sphere). Localized signal analysis is particularly important for applications in

astronomy, cosmology, geodesy and planetary sciences, where the data is either unre-

liable or unavailable over some region on the sphere. Localized analysis requires signal

representation in terms of localized basis functions. One such basis set, referred to as

Slepian basis, is obtained by solving the Slepian spatial-spectral concentration prob-

lem on the sphere [73, 36, 74, 75, 76, 77]. This problem was first studied by Slepian

and his co-authors in their seminal work for the 1D time domain signals [89, 90],

and was later extended to multidimensional Euclidean domain signals [91]. Spatial-

spectral concentration problem on the sphere was first formulated by Albertella et

al. in [73], who studied localized basis functions for the bounded region of latitudinal

belt about the equator on the sphere. A rigorous mathematical treatment of the

spatial-spectral concentration problem on the sphere was given by Simons et al. [74].

2See Chapter 3 for the definition of isotropic and anisotropic processes.
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The resulting localized basis set on the sphere, referred to as Slepian basis, has proved

very useful for accurate representation, estimation and reconstruction of signals over

spatially limited spherical regions [38]. A subset of Slepian basis functions, called

the zonal Slepian basis, has been used to carry out localized spectral analysis in [36].

The problem of polar gap in geodesy has been addressed in [75], where Slepian basis

functions have been employed to estimate the potential fields, at the source level,

from the noise-contaminated satellite data at an altitude over an incomplete portion

of the sphere.

1.1.3 Sampling of signals on the sphere

In real world applications we can generate, store and process only discrete signals, i.e.,

signals defined at discrete points in their respective domains. For instance, gravita-

tional, topographic and magnetic fields of a planet can only be quantified at discrete

positions on its surface, cosmic microwave background radiation can only be detected

at discrete angular positions on the celestial sphere3, radiation pattern of an antenna

can only be measured at discrete angles in space (no matter how small the step in

angular displacement is, it is still discrete), acoustic signal captured by multiple mi-

crophones placed in a spherical configuration is available only at discrete angular

positions in space etc. Signal measurements at discrete points in their respective do-

mains are called “samples”. The number and position of the samples on the sphere is

an important attribute of any sampling scheme for complete characterization of the

underlying signal.

Just as knowledge of the spectrum (frequency or spectral domain representation)

of a Euclidean domain signal is pivotal for its perfect reconstruction [92], knowledge of

the spectrum of a spherical signal is critical in exact reconstruction from its samples

on the sphere. Spectral representation of a spherical signal is obtained through the

spherical harmonic transform, which is the Fourier representation of the signal in

terms of spherical harmonic functions [64]. Perfect reconstruction of a spherical signal

depends on the ability of the sampling scheme to exactly compute its SHT.

3A celestial sphere is defined as an imaginary sphere with the observer at its center.
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1.1 Background and motivation

Unlike for signals in the Euclidean domain, there exists no sampling theorem on

the sphere which enables exact reconstruction of a signal from an optimal number of

its samples on the sphere. There exist sampling schemes which reconstruct the signal

exactly but at the cost of using more than optimal number of its samples [56, 58, 59].

Khalid et al. proposed a sampling scheme which uses optimal number of samples

but presents accurate, rather than exact, reconstruction of the signal [60]. These

methods suffer from the problem of oversampling near the poles of the sphere, which

can be avoided by using equal area sampling schemes that partition the sphere into

equal area regions. Hierarchical equal area partitioning schemes hierarchically divide

the sphere into equal area regions which can be further divided into equal area sub-

regions. One such scheme that has been extensively used in cosmology to generate

full sky maps, and for the analysis of cosmic microwave background, is Hierarchical

Equal Area iso-Latitude Pixelization (HEALPix) [57]. However, HEALPix results in

approximate reconstruction of signals from the samples.

1.1.4 Multiresolution (multiscale) analysis

Apart from global and local analysis, signals can be analyzed at different scales, i.e.,

over varying extents of the domain. The latter is called multiresolution or multiscale

analysis and has been extensively used to study time domain signals using tools

such as the wavelet transform (e.g. [93, 94, 95]), which has also been extended to

study signals on the sphere [78, 51, 79, 81, 82, 83]. Wavelet transform enables a

joint space-scale domain representation, which records the scale-dependent features

of the signals in what are called as wavelet coefficients. Unlike in Euclidean domain,

dilation on the sphere can be defined in different ways, which results in different

formulations and algorithms for wavelet analysis on the sphere [80, 82, 96, 83, 85].

One of the ways to define dilation is to project wavelet functions onto a plane, which

is tangent to one of the poles of the sphere. Known as dilation via stereographic

projection, this method involves mapping of the wavelet functions onto the tangent

plane, followed by inverse mapping of the dilated wavelet functions from the tangent

plane to the sphere [80, 82, 96]. Alternatively, wavelet functions can be dilated in
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the spherical harmonic degree space through the use of an infinitely differentiable

Schwartz function, resulting in the wavelet transforms proposed in [83, 85].

1.2 Scope of the dissertation

The work in this dissertation is a contribution towards development of novel tech-

niques for processing of signals defined on the sphere, and can be divided into three

parts.

1. The first part is concerned with the development of novel techniques for signal

filtering and estimation, using joint domain representations, in the presence of

anisotropic noise.

2. The second part is related to the localized signal analysis using Slepian functions

on the sphere.

3. The third part is focused on the development of a framework for multiscale (mul-

tiresolution) analysis of signals on the sphere.

1.2.1 Summary of research contributions

Highlights of the major contributions of this work, in the context of above-mentioned

scope, along with the compiled research work (for ease of reference), are given below.

1. The spatially varying optimal filter, also referred to as joint spatial-spectral

domain filter, proposed in [87], lacks a systematic design of the window signal

required for spatial localization of signals under consideration. In this con-

text, an optimal window design is presented to enhance the performance of the

joint spatial-spectral domain filter. The utility of the filter, using the designed

window signal, is illustrated on a Mars topography map. Results of this work

have been published in the proceedings of IEEE International conference on

acoustics, speech and signal processing, with the following details:
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1.2 Scope of the dissertation

(C3) Adeem Aslam and Zubair Khalid, “Optimal Window Design for Joint

Spatial-Spectral Domain Filtering of Signals on the Sphere,” ICASSP 2020

- 2020 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), Barcelona, Spain, 2020, pp. 5785–5789.

2. A framework for the joint SO(3)-spectral domain filtering of spherical signals,

in the presence of anisotropic noise, is presented using the directional spatially

localized spherical harmonic transform, which has been demonstrated on an

Earth topography map in the following publication:

(J2) Adeem Aslam and Zubair Khalid, “Joint SO(3)-Spectral Domain Fil-

tering of Spherical Signals in the Presence of Anisotropic Noise,” in IEEE

Signal Processing Letters, vol. 27, pp. 2109–2113, 2020.

3. Performance of the joint SO(3)-spectral domain filter is further enhanced by

designing a directional optimal window signal. Better performance of the joint

SO(3)-spectral domain filter, using the designed window signal, is demonstrated

on an Earth topography map. Results of this work have been submitted to the

journal of IEEE Signal Processing Letters, with the following details:

(J6) Adeem Aslam and Zubair Khalid, ”Optimal Window Design For Joint

SO(3)-Spectral Domain Filtering of Signals on the Sphere,” submitted to

IEEE Signal Processing Letters.

4. Motivated by the idea of signal filtering in the joint spatial-spectral domain,

an optimal filter is also formulated in the joint SO(3)-scale domain, which is

enabled by the scale-discretized wavelet transform [83, 85]. The resulting mul-

tiscale optimal filter is compared in its performance to the hard thresholding

method and weighed-SPHARM based signal estimation framework. Better per-

formance of the multiscale optimal filter is demonstrated on an Earth topogra-

phy map. This work has been published with the following details:

(J3) Adeem Aslam, Zubair Khalid and Jason D. McEwen, “Multiscale Opti-

mal Filtering on the Sphere,” in IEEE Signal Processing Letters, vol. 28,
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pp. 394–398, 2021.

5. In the context of localized signal analysis, a framework for localized signal anal-

ysis over simple spherical polygons is formulated using bandlimited Slepian

functions. Specifically, analytical expressions for the (i) surface integration of

signals, and (ii) computation of Slepian basis functions, over simple spherical

polygons, are presented. The framework has been validated using Earth and

Mars topography maps, in the following publication:

(J1) Adeem Aslam and Zubair Khalid, “Localized Analysis of Signals on the

Sphere Over Polygon Regions,” in IEEE Transactions on Signal Process-

ing, vol. 68, pp. 4568–4582, 2020.

6. Slepian functions are also used to formulate a novel spatial-Slepian transform

on the sphere, resulting in the joint spatial-Slepian domain representation of

spherical signals in the form of spatial-Slepian coefficients, which are analyzed

for spatial localization on the sphere. Spatial-Slepian transform is utilized for

detecting the presence of hidden and weak localized variations in the signals.

Furthermore, spatial-Slepian transform is employed to construct a framework of

generalized linear transformations of signals in the joint spatial-Slepian domain,

which is exemplified through particular forms of the underlying spatial-Slepian

transformation kernel. These works have resulted in the following research

contributions:

(J4) Adeem Aslam and Zubair Khalid, “Spatial-Slepian Transform on the

Sphere,” in IEEE Transactions on Signal Processing (accepted with minor

revision for English usage, revision submitted on May 16, 2021).

(J5) Adeem Aslam and Zubair Khalid, ”Linear Transformations and Signal

Estimation in the Joint Spatial-Slepian Domain,” submitted to IEEE Sig-

nal Processing Letters (accepted for publication).

7. Slepian functions are also considered for the development of a framework of

multiscale (multiresolution) analysis of spherical signals through hierarchical
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partitioning of the sphere into regions, called pixels, of varying spatial extent.

Different sampling (partitioning) methods on the sphere are reviewed in this

respect and Hierarchical Equal Area iso-Latitude iso-Longitude Pixelization

(HEALLPix) scheme is proposed. Employing the formulation available in the

literature, an overcomplete multiscale dictionary of Slepian functions is con-

structed for HEALLPix. Additionally, a framework for analytical computation

of Slepian functions for pixels generated using HEALPix scheme is formulated,

which facilitates the construction of another overcomplete multiscale dictionary

of Slepian functions on the sphere. Both dictionaries are analyzed for the range

and mutual coherence of their elements. The dictionaries are shown to span the

space of bandlimited signals on the sphere, with most of their respective ele-

ments exhibiting negligibly small mutual coherence. These works have resulted

in the following research contributions:

(C2) Adeem Aslam and Zubair Khalid, “Construction of Overcomplete Mul-

tiscale Dictionary of Slepian Functions on the Sphere,” ICASSP 2019 -

2019 IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), Brighton, United Kingdom, 2019, pp. 5137–5141.

(J7) Adeem Aslam and Zubair Khalid, “Overcomplete Multiscale Dictio-

nary of Slepian Functions for HEALPix on the Sphere,” manuscript under

preparation for submission to IEEE Transactions on Signal Processing.

In addition, as an outcome of the review of sampling schemes, an efficient and

accurate spherical harmonic transform is formulated for HEALPix, which has

been published with the following details:

(C1) Adeem Aslam, Zubair Khalid and Rodney A. Kennedy, “Efficient Sam-

pling on HEALPix Grid,” 2018 IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), Calgary, AB, 2018, pp. 4589–

4593.
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1.3 Organization

The research contributions of this dissertation are divided into five chapters. A sep-

arate chapter is dedicated to the mathematical preliminaries of signal analysis on

the sphere and SO(3) rotation group. The overall organization of the dissertation is

given below. The organization is also graphically presented through a flowchart in

Figure 1-1.

� Chapter 2 presents an overview of the fundamentals of spherical signal analysis.

Signal representations on the sphere, signal rotations on the sphere, signal anal-

ysis on the SO(3) rotation group, and convolution of signals on the sphere as

well as SO(3) rotation group are discussed. Furthermore, a brief overview of the

Slepian spatial-spectral concentration problem along with the joint domain rep-

resentations, enabled by spatially localized spherical harmonic transform and

scale-discretized wavelet transform, are presented.

� In Chapter 3, optimal filters in the joint SO(3)-spectral domain and joint SO(3)-

scale domain, which are enabled by spatially localized spherical harmonic trans-

form and the scale-discretized wavelet transform respectively, are presented.

Moreover, optimal window signals are designed to enhance the performance of

joint spatial-spectral domain filter (i.e., spatially varying filter in [87]) and the

joint SO(3)-spectral domain filter.

� In Chapter 4, a framework for localized signal analysis over spherical polygons,

using bandlimited Slepian functions, is presented.

� In Chapter 5, spatial-Slepian transform is formulated and employed for localized

variation analysis to detect the presence of hidden and weak localized variations

in the signals on the sphere. The resulting spatial-Slepian coefficients are also

used to construct a framework for generalized linear transformations in the joint

spatial-Slepian domain.

� A review of different sampling (partitioning) schemes is presented in Chapter 6
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1.3 Organization

Figure 1-1: Flowchart of the organization of dissertation.

and an efficient spherical harmonic transform is presented for the HEALPix

scheme.

� In Chapter 7, we formulate the HEALLPix scheme for hierarchical partitioning

of the sphere and employ it to develop a framework for multiscale (multireso-

lution) analysis of spherical signals by constructing an overcomplete multiscale

dictionary of Slepian functions. Furthermore, analytical expressions for the

computation of Slepian functions are presented for the HEALPix pixels, and

an overcomplete multiscale dictionary of Slepian functions for HEALPix is con-

structed.

� In Chapter 8, we conclude by presenting a concise summary of the research

contributions and discuss some potential research directions.
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Chapter 2

Signal analysis on the sphere and

SO(3) rotation group

In this chapter, we review the spherical coordinate system and necessary mathemat-

ical background for signal analysis on the sphere as well as SO(3) rotation group.

We discuss spatial-spectral concentration problem, summarize different methods of

convolution of spherical signals, and present convolution of signals on SO(3) rotation

group. We also review mathematical formulations of joint spatial-spectral domain

and joint space-scale domain representations for signals defined on the sphere.

2.1 2-sphere

Any point in the 3D Euclidean space R3 can be represented by a 3-vector as

x ≡ (xx, xy, xz)
T ∈ R3, (2.1)

where (·)T denotes the vector transpose. The components xx, xy and xz are coordi-

nates along the x, y and z axes respectively. Norm of the vector x in the 3D Euclidean

space is defined as

|x| =
√
x2
x + x2

y + x2
z. (2.2)
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Figure 2-1: 2-sphere embedded in R3 with a point on its surface represented by a unit
vector x̂(θ, φ), where θ ∈ [0, π] is the colatitude and φ ∈ [0, 2π) is the longitude.

The 2-sphere, or unit sphere or just sphere, is defined as the following set

S2 = {x ∈ R3 : |x| = 1}, (2.3)

which represents a 2D surface embedded in the 3D Euclidean space. Although the

points on the sphere belong to R3, this surface is essentially different from R3 as it is

bounded and curved, having positive Gaussian curvature [97]. In contrast, Euclidean

spaces have zero Gaussian curvature and are called flat.

Vectors representing points on the sphere have unit norm and hence, are called

unit vectors. Unit vectors are denoted with a “hat” on top to differentiate them from

non-unit vectors. Every vector x has an associated unit vector x̂ which is obtained

as

x̂ =
x

|x|
. (2.4)

Unit vector x̂ can be interpreted as the direction and |x| as the magnitude of the

vector x. Surface of the sphere can then be redefined as S2 = {x̂ ∈ R3}.
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2.1 2-sphere

2.1.1 Spherical coordinates

Each point on the surface of the sphere is parameterized by two angles, namely

colatitude, denoted by θ ∈ [0, π] and measured from the positive z-axis, and longitude,

denoted by φ ∈ [0, 2π] and measured from the positive x-axis in the x − y plane.

Any point on the surface of the sphere can then by represented by a unit vector

parameterized by colatitude and longitude as

x̂ ≡ x̂(θ, φ) , (sin θ cosφ, sin θ sinφ, cos θ)T. (2.5)

Conversely, given any unit vector on the sphere, one can find the colatitude and

longitude as

φ = tan−1

(
xy
xx

)
, θ = cos−1 xz, (2.6)

where four-quadrant definition of tan−1 should be used as φ varies from 0 to 2π.

Angular distance between two points on the sphere, represented by the unit vectors

x̂ = (sin θ0 cosφ0, sin θ0 sinφ0, cos θ0)T and ŷ = (sin θ1 cosφ1, sin θ1 sinφ1, cos θ1)T, is

denoted by ∆(x̂, ŷ) and is given by

cos ∆(x̂, ŷ) = x̂.ŷ = sin θ0 sin θ1 cos(φ0 − φ1) + cos θ0 cos θ1, cos ∆(x̂, ŷ) ∈ [−1,+1].

(2.7)

2.1.2 Regions on the sphere

A regular region1 on the sphere, denoted by R, has a surface area given by

AR =

∫
R

ds(x̂), (2.8)

where ds(x̂) = sin θdθdφ is the differential area element on the sphere. One of the

regions of particular interest is the azimuthally symmetric polar cap region centered

1A compact set S in Rn is a regular region if every neighborhood of every point on the boundary
of S contains points in the interior of S.
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at the north pole, also called north polar cap region, which is parameterized by the

maximum colatitude θ0 and is defined as [64]

Rθ0 = {(θ, φ) : 0 ≤ θ ≤ θ0, 0 ≤ φ < 2π}. (2.9)

Similarly, south polar cap region is parameterized by the minimum colatitude θ0 and

is defined as

Rπ−θ0 = {(θ, φ) : π − θ0 ≤ θ ≤ π, 0 ≤ φ < 2π}. (2.10)

Surface area of both polar cap regions is given by 2π(1− cos θ0).

(a) Rθ0 (b) Rπ−θ0

Figure 2-2: North and south polar cap regions shown as shaded areas on the surface
of the sphere.

Another region of interest called the spherical ellipse, centered at the north pole

and aligned with x-axis, is defined as [98]

R(θ0,a) =
{
(θ, φ) : ∆

(
x̂1(θ, φ), ŷ1(θ0, 0)

)
+∆

(
x̂1(θ, φ), ŷ2(θ0, π)

)
≤ 2a

}
, (2.11)

where ∆
(
x̂1, ŷ1

)
represents the angular distance between points x̂1 and ŷ1, 0 ≤ θ0 ≤

a ≤ π/2, θ0 is called the focus colatitude and a � ∆
(
x̂(0, 0), ŷ(a, 0)

)
is the semi-major
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Figure 2-3: Spherical elliptical region, centered at the north pole and aligned with
x-axis, with focus colatitude θ0 = 35◦ and semi-major axis a = 40◦.

axis of the spherical ellipse. Eccentricity of the ellipse is controlled by the difference

between the focus colatitude and semi-major axis; ellipse become more eccentric, i.e.,

more directional along the x-axis, as a approaches θ0. For a = θ0, spherical ellipse

becomes an arc of length 2a, whereas for a = π/2 and θ0 = 0, it becomes a north polar

cap region of polar cap angle π/2 and a respectively. Figure 2-3 shows a spherical

ellipse of focus colatitude θ0 = 35◦ and semi-major axis a = 40◦.

2.1.3 Rotations on the sphere

There are different ways to define rotations on the sphere. In this work, we define

rotations by three angles around three fixed axes. Such rotations are also called

extrinsic, as opposed to intrinsic rotations which are defined by three angles around

three moving axes. Since there are three independent choices for the first axis of

rotation and two independent choices for each of the second and third axis of rotation,

there are a total of 12 possibilities for choosing the axes for applying rotations. Also,

there are right handed and left handed rules for applying rotations, which gives 24
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possibilities for defining rotations. Out of these, we choose the right handed zyz

convention in which a rotation is defined by three Euler angles namely, ω ∈ [0, 2π)

around z-axis, ϑ ∈ [0, π] around y-axis and ϕ ∈ [0, 2π) around z-axis. Rotation by

each Euler angle is represented by a 3 × 3 orthogonal matrix. Hence, the overall

rotation is given by

R ≡ Rzyz(ϕ, ϑ, ω) , Rz(ϕ)Ry(ϑ)Rz(ω), (2.12)

in the order from right to left, where Ry(ϑ) and Rz(ω) are 3× 3 orthogonal matrices

representing rotations around y and z axes by angles ϑ and ω respectively, and are

given by [64]

Ry(ϑ) =


cosϑ 0 sinϑ

0 1 0

− sinϑ 0 cosϑ

 , Rz(ω) =


cosω − sinω 0

sinω cosω 0

0 0 1

 . (2.13)

2.2 Signal analysis on the sphere

We consider complex-valued functions f(θ, φ) ≡ f(x̂) defined on the sphere, which

are square-integrable, i.e.,

‖f‖S2 =

√∫
S2

|f(x̂)|2ds(x̂) <∞, (2.14)

where, as before, ds(x̂) = sin θdθdφ is the invariant measure on the sphere and

integration is carried out over the whole sphere, i.e.,

∫
S2

≡
∫ 2π

φ=0

∫ π

θ=0

. (2.15)

Equipped with the following inner product between two functions f(x̂) and h(x̂)

〈f, h〉S2 ,
∫
S2

f(x̂)h(x̂)ds(x̂), (2.16)
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where (·) denotes the complex conjugate, the set of such functions forms a Hilbert

space, denoted by L2(S2). Norm of the function in (2.14), which is induced by the

inner product in (2.16), is a measure of the energy of the function, which is given by

〈f, f〉S2 . Finite energy functions are referred to as signals on the sphere.

2.2.1 Spherical harmonics

The Hilbert space L2(S2) is separable and contains a complete set of orthonormal

basis functions, called spherical harmonic functions or spherical harmonics for short,

defined as [64]

Y m
` (θ, φ) , Nm

` P
m
` (cos θ)eimφ, Nm

` =

√
2`+ 1

4π

(`−m)!

(`+m)!
, (2.17)

for integer degree ` ≥ 0 and integer order2 |m| ≤ `. Pm
` (cos θ) is the associated

Legendre polynomial of degree ` and order m, given by [64]

Pm
` (z) =

(−1)m

2``!
(z2 − 1)m/2

d`+m

dx`+m
(z2 − 1)`, z , cos θ, 0 ≤ m ≤ `, (2.18)

and Nm
` is a normalization constant which ensures orthonormality of spherical har-

monics, i.e.,

〈
Y m
` , Y

q
p

〉
S2 =

∫
S2

Y m
` (x̂)Y q

p (x̂)ds(x̂) = δ`,p δm,q, (2.19)

where

δ`,p =

1, ` = p,

0, ` 6= p,

(2.20)

is the Kronecker delta function.

Associated Legendre polynomials for negative orders can be obtained from their

2|m| denotes the absolute value (which is in fact the Euclidean norm) of the scalar m.
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positive order counterparts as [64]

P−m` (z) = (−1)m
(`−m)!

(`+m)!
Pm
` (z), 0 ≤ m ≤ `, (2.21)

from which we get the following conjugate symmetry property of spherical harmonics

Y −m` (θ, φ) = (−1)mY m
` (θ, φ). (2.22)

Table 2.1 tabulates associated Legendre polynomials and spherical harmonics for de-

grees ` = 0, 1, 2, 3 and orders |m| ≤ `.

As a result of completeness of spherical harmonics, any signal f ∈ L2(S2) can be

expressed as

f(x̂) =
∞∑
`,m

(f)m` Y
m
` (x̂),

∞∑
`,m

≡
∞∑
`=0

∑̀
m=−`

, (2.23)

where

(f)m` , 〈f, Y m
` 〉S2 =

∫
S2

f(x̂)Y m
` (x̂) ds(x̂) (2.24)

is the spherical harmonic, or spectral, coefficient of degree ` and order m. The

transformation in (2.24) yields spectral content of the signal f(x̂) and hence, is called

spherical harmonic transform (SHT). For real-valued signals, we have

f(x̂) = f(x̂),

∞∑
`,m

(f)m` Y
m
` (x̂) =

∞∑
`,m

(f)m` Y
m
` (x̂),

(2.25)

which, using (2.22), results in the following symmetry for the spectral coefficients

(f)m` = (−1)m(f)−m` . (2.26)

From orthonormality of spherical harmonics in (2.19) and the signal expansion in
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Table 2.1: Associated Legendre polynomials and spherical harmonic functions for
degrees ` = 0, 1, 2, 3 and orders |m| ≤ `.

Degree, ` Order, m Pm
` (x) Y m

` (θ, φ)

0 0 1 1
2

√
1
π

1 −1 1
2
(1− x2)1/2 1

2

√
3

2π
e−iφ sin θ

1 0 x 1
2

√
3
π

cos θ

1 1 −(1− x2)1/2 −1
2

√
3

2π
eiφ sin θ

2 −2 1
8
(1− x2) 1

4

√
15
2π
e−2iφ sin2 θ

2 −1 1
2
x(1− x2)1/2 1

2

√
15
2π
e−iφ sin θ cos θ

2 0 1
2
(3x2 − 1) 1

4

√
5
π
(3 cos2 θ − 1)

2 1 −3x(1− x2)1/2 −1
2

√
15
2π
eiφ sin θ cos θ

2 2 3(1− x2) 1
4

√
15
2π
e2iφ sin2 θ

3 −3 1
48

(1− x2)3/2 1
8

√
35
π
e−3iφ sin3 θ

3 −2 1
8
x(1− x2) 1

4

√
105
2π
e−2iφ sin2 θ cos θ

3 −1 1
8
(5x2 − 1)(1− x2)1/2 1

8

√
21
π
e−iφ sin θ(5 cos2 θ − 1)

3 0 1
2
(5x3 − 3x) 1

4

√
7
π
(5 cos3 θ − 3 cos θ)

3 1 −3
2
(5x2 − 1)(1− x2)1/2 −1

8

√
21
π
eiφ sin θ(5 cos2 θ − 1)

3 2 15x(1− x2) 1
4

√
105
2π
e2iφ sin2 θ cos θ

3 3 −15(1− x2)3/2 −1
8

√
35
π
e3iφ sin3 θ

(2.23), we note that energy of the signal f(x̂) can be written as

〈f, f〉S2 =

∫
S2

|f(x̂)|2 ds(x̂) =
∞∑
`,m

|(f)m` |
2 , (2.27)

which is called the Parseval’s relation for signals defined on the sphere.

2.2.2 Space of bandlimited signals on the sphere

A signal f ∈ L2(S2) is called bandlimited to degree L if (f)m` = 0 for ` ≥ L, |m| ≤ `.

Set of all such bandlimited signals on the sphere forms an L2 dimensional subspace
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Signal analysis on the sphere and SO(3) rotation group

of L2(S2), which is denoted by HL and defined as

HL ,
{
f ∈ L2(S2) : (f)m` = 0, ∀ ` ≥ L, |m| ≤ `

}
. (2.28)

For a signal f ∈ HL, sum over degree in (2.23) is truncated at L− 1, i.e.,

f(x̂) =
L−1∑
`,m

(f)m` Y
m
` (x̂),

L−1∑
`,m

≡
L−1∑
`=0

∑̀
m=−`

, (2.29)

and the spectral coefficients (f)m` can be represented by an L2 × 1 column vector as

f =
[
(f)0

0, (f)−1
1 , (f)0

1, (f)1
1, . . . , (f)

−(L−1)
(L−1) , . . . , (f)

(L−1)
(L−1)

]T

, (2.30)

which can be indexed by a single variable, defined as

n , `(`+ 1) +m, ` =
⌊√

n
⌋
,m = n−

⌊√
n
⌋ (⌊√

n
⌋

+ 1
)
, (2.31)

where b·c is the integer floor function. Hence, (f)m` ≡ (f)n, n = 0, 1, . . . , L2 − 1. In

practice, signals have vanishingly small spectral coefficients beyond a certain degree

and hence, can be treated as bandlimited.

2.2.3 Space of azimuthally symmetric signals on the sphere

A signal f ∈ L2(S2) is called azimuthally symmetric or axisymmetric if f(θ, φ) = f(θ).

Set of all such signals forms a subspace of L2(S2), denoted by H0 and defined as

H0 , {f ∈ L2(S2) : f(θ, φ) = f(θ)}. (2.32)

It can be observed from (2.23) that for any signal f ∈ H0, (f)m` = 0 for m 6= 0.

Hence,

f(θ, φ) = f(θ) =
∞∑
`=0

(f)0
`Y

0
` (θ) =

∞∑
`=0

√
2`+ 1

4π
(f)0

`P`(cos θ), (2.33)
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2.3 Signal analysis on the SO(3) rotation group

where P`(cos θ) , P 0
` (cos θ) is called the Legendre polynomial of integer degree `,

which is related to spherical harmonics through the following addition theorem [64]

∑̀
m=−`

Y m
` (x̂)Y m

` (ŷ) =

(
2`+ 1

4π

)
P`(x̂.ŷ). (2.34)

2.3 Signal analysis on the SO(3) rotation group

A group is an algebraic structure, denoted by (G, ◦), i.e., it is a set of elements G,

equipped with a binary operator, ◦, which satisfies the following axioms:

1. (Closure): ∀x, y ∈ G, x ◦ y ∈ G,

2. (Associativity): ∀x, y, z ∈ G, x ◦ (y ◦ z) = (x ◦ y) ◦ z,

3. (Identity): ∀x ∈ G, there exists I ∈ G such that I ◦ x = x ◦ I = x,

4. (Inverse): ∀x ∈ G, there exists x−1 ∈ G such that x ◦ x−1 = x−1 ◦ x = I.

Defining ρ as the 3-tuple of Euler angles, i.e., ρ , (ϕ, ϑ, ω), the special orthogonal

rotation group, denoted by SO(3), is defined as the following set

SO(3) , {Rzyz(ρ) : det (Rzyz(ρ)) = 1} , (2.35)

i.e., the set of all proper rotations3, which in turn are represented by orthogonal

matrices having determinant +1.

Square-integrable and complex-valued functions defined on the SO(3) rotation

group, i.e., f(ρ), form a Hilbert space L2(SO(3)) which is equipped with the following

inner product

〈f, h〉SO(3) ,
∫
SO(3)

f(ρ)h(ρ)dρ, f, h ∈ L2(SO(3)), (2.36)

3Improper rotation are reflections about either some axis or the center of the coordinate system,
and are represented by rotation matrices having determinant −1.
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Signal analysis on the sphere and SO(3) rotation group

where dρ , dϕ sinϑdϑdω is the invariant measure on the SO(3) rotation group and

integration is carried out over all angles, i.e.

∫
SO(3)

≡
∫ 2π

ϕ=0

∫ π

ϑ=0

∫ 2π

ω=0

. (2.37)

Inner product in (2.36) induces a norm of the function f(ρ) as ‖f‖SO(3) ,
√
〈f, f〉SO(3),

and gives its energy as 〈f, f〉SO(3). Finite energy functions are referred to as signals

on the SO(3) rotation group.

2.3.1 Wigner-D functions

The Hilbert space L2(SO(3)) is separable and has a complete set of orthogonal basis

functions, called Wigner-D functions, which are denoted by D`
m,m′ for integer degree

` ≥ 0 and integer orders |m|, |m′| ≤ `, and are defined as [64]

D`
m,m′(ρ) , e−imϕ d`m,m′(ϑ) e−im

′ω, ρ ≡ (ϕ, ϑ, ω), (2.38)

where d`m,m′(ϑ) are the Wigner-d functions of degree ` and orders m,m′. Wigner-d

functions are real and obey the following orthogonality relation [64]

∫ π

0

d`m,m′(ϑ) dpm,m′(ϑ) sinϑdϑ =
2

2`+ 1
δ`,p, (2.39)

which results in the following orthogonality condition for Wigner-D functions

∫ 2π

ϕ=0

∫ π

ϑ=0

∫ 2π

ω=0

D`
m,m′(ϕ, ϑ, ω)Dp

q,q′(ϕ, ϑ, ω) sinϑdωdϑdϕ =
8π2

2`+ 1
δ`,pδm,qδm′,q′ .

(2.40)

As a result of completeness of Wigner-D functions, any signal f ∈ L2(SO(3)) can be

expanded as

f(ρ) =
∞∑

`,m,m′

(f)`m,m′D
`
m,m′(ρ),

∞∑
`,m,m′

≡
∞∑
`=0

∑̀
m=−`

∑̀
m′=−`

, (2.41)
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where

(f)`m,m′ ,

(
2`+ 1

8π2

)〈
f,D`

m,m′

〉
SO(3)

=

(
2`+ 1

8π2

)∫
SO(3)

f(ρ)D`
m,m′(ρ)dρ, (2.42)

is the spectral coefficient of degree ` and orders m,m′, and constitutes the spectral

domain representation of the signal f(ρ).

From orthogonality of Wigner-D functions in (2.40) and the signal expansion in

(2.41), we note that energy of the signal f(ρ) is given by

〈f, f〉SO(3) =

∫
SO(3)

|f(ρ)|2 dρ =
∞∑

`,m,m′

(
8π2

2`+ 1

) ∣∣(f)`m,m′
∣∣2 , (2.43)

which is referred to as the Parseval’s relation for signals defined on the SO(3) rotation

group.

2.3.2 Space of bandlimited signals on SO(3) rotation group

A signal f ∈ L2(SO(3)) is considered bandlimited to degree L if f `m,m′ = 0, ∀ ` ≥

L, |m|, |m′| ≤ `. For such signals, sum over degree in (2.41) is truncated at L−1. Set

of such bandlimited signals forms a subspace of the Hilbert space L2(SO(3)) whose

dimension is given by L(4L2 − 1)/3.

2.4 Rotation of signals on the sphere

Given the rotation matrix R ≡ Rzyz(ρ) in (2.12), we associate with it the following

rotation operator [64]

D(ρ) ≡ D(ϕ, ϑ, ω) = Dz(ϕ) ◦ Dy(ϑ) ◦ Dz(ω), (2.44)

where Dy and Dz are operators for rotation around y and z axes respectively. Action

of the rotation operator D(ϕ, ϑ, ω) on a signal f ∈ L2(S2) is defined by the inverse
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Signal analysis on the sphere and SO(3) rotation group

rotation of the underlying spherical coordinate system, i.e.,

(D(ρ)f)(x̂) = f
(
R−1x̂

)
. (2.45)

Under the action of D(ρ), spectral coefficients of the rotated signal are given by [64]

〈D(ρ)f, Y m
` 〉S2 =

∑̀
m′=−`

D`
m,m′(ρ)(f)m

′

` , (2.46)

which gives the following Fourier representation for the rotated signal

(D(ρ)f)(x̂) =
∞∑
`,m

( ∑̀
m′=−`

D`
m,m′(ρ)(f)m

′

`

)
Y m
` (x̂). (2.47)

Using orthonormality of spherical harmonics, the expression in (2.46) can be used to

obtain a more intuitive definition of the rotation operator as

〈
D(ρ)Y m′

` , Y m
`

〉
S2

= D`
m,m′(ρ). (2.48)

It can be observed from (2.46) that the rotation operator keeps the degrees intact

but mixes the orders. From (2.38), we note that when m′ = 0, the first rotation by ω

around z-axis does not have any effect on Wigner-D function and hence, can be taken

to be 0. The resulting Wigner-D function is related to spherical harmonics as [64]

D`
m,0(ϕ, ϑ, 0) =

√
4π

2`+ 1
Y m
` (ϑ, ϕ), (2.49)

which directly results in the following relation

d`m,0(ϑ) =

√
(`−m)!

(`+m)!
Pm
` (cosϑ). (2.50)

From the following rotation operator decomposition identity [64]

D(ϕ, ϑ, ω) = D(ϕ+
π

2
,
π

2
, ϑ+ π) ◦ D(0,

π

2
, ω +

π

2
), (2.51)
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and the spectral representation of rotated signal in (2.46), we obtain the following

useful expression for Wigner-d functions [64]

d`m,m′(ϑ) = im−m
′ ∑̀
m′′=−`

∆`
m′′,m∆`

m′′,m′e
−im′′ϑ, (2.52)

where ∆`
m′′,m , d`m′′,m(π/2). Using the relation between spherical harmonics and

Wigner-D functions in (2.49), along with the expansion for Wigner-d functions in

(2.52) (with m′ = 0), we can rewrite spherical harmonics as

Y m
` (θ, φ) =

√
2`+ 1

4π
(−i)m

∑̀
m′=−`

∆`
m′,m ∆`

m′,0 e
im′θeimφ. (2.53)

Wigner-d functions ∆`
m,m′ can be computed using either the recursive relations given

in [99] or the recursion proposed in [100], both of which are stable up to very large

degrees.

2.5 Localized basis on the sphere

Spherical harmonic functions, defined in (2.17), are global basis functions, i.e., their

energy is distributed over the whole sphere, due to which they are not suitable for

analyzing signals over local regions R ⊂ S2. Since, real world spherical signals are

bandlimited, it is desirable to find bandlimited basis functions for localized signal

analysis on the sphere. Such a bandlimited basis set cannot be spatially limited to

the region of analysis R [101], but can only be optimally concentrated within R,

which nevertheless, provides a useful tool for accurate representation, estimation and

reconstruction of signals within R. One such localized basis set is obtained by solving

the Slepian spatial-spectral concentration problem, which was first studied by David

Slepian and his co-authors in their seminal work on time domain signals [89, 90]. The

problem was later extended to multidimensional Euclidean domain signals [91, 20],

and for signals defined on the sphere [73, 36, 74, 75, 76, 77]. The problem studies

temporal (or spatial) concentration of bandlimited signals (or equivalently spectral
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Signal analysis on the sphere and SO(3) rotation group

concentration of spatially or temporally limited signals), by optimizing a quadratic

energy concentration measure to obtain an orthogonal family of strictly bandlimited

signals, called prolate spheroidal wavefunctions (referred to as Slepian functions in

this work), which are optimally concentrated within a given time interval (or a spatial

region). In the next section, we present a brief overview of the spatial concentration

of bandlimited signals on the sphere.

2.5.1 Spatial concentration of bandlimited signals on the

sphere

Defining local inner product between two functions f, h ∈ L2(S2) over a region R as

〈f, h〉R ,
∫
R

f(x̂)h(x̂) ds(x̂), R ⊂ S2, (2.54)

which induces local norm of the signal f as

‖f‖R =
√
〈f, f〉R =

√∫
R

|f(x̂)|2 ds(x̂), (2.55)

the spatial energy concentration of a bandlimited signal g ∈ HLg in the region R ⊂ S2

can be maximized by optimizing the following measure of fractional energy

λ =
〈g, g〉R
〈g, g〉S2

=

∫
R

|g(x̂)|2 ds(x̂)∫
S2

|g(x̂)|2 ds(x̂)
. (2.56)

Using Fourier expansion of signals in (2.23), fractional energy can be rewritten as

λ =

∫
R

Lg−1∑
p,q

(g)qpY
q
p (x̂)

(
Lg−1∑
`,m

(g)m` Y
m
` (x̂)

)
∫
S2

Lg−1∑
p,q

(g)qpY
q
p (x̂)

(
Lg−1∑
`,m

(g)m` Y
m
` (x̂)

) =

Lg−1∑̀
,m

Lg−1∑
p,q

(g)m` (g)qpK`m,pq

Lg−1∑̀
,m

(g)m` (g)m`

, (2.57)
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where

K`m,pq ,
∫
R

Y m
` (x̂)Y q

p (x̂) ds(x̂), (2.58)

and we have used orthonormality of spherical harmonics on the sphere to get the final

equality. Adopting the indexing introduced in (2.30), we define an L2
g ×L2

g matrix K

with elements K`m,pq for 0 ≤ `, p ≤ Lg − 1, |m| ≤ `, |q| ≤ p, and an L2
g × 1 column

vector g with elements (g)m` , to rewrite (2.57) in matrix form as

λ =
gHKg

gHg
, (2.59)

where (·)H represents complex conjugate transpose. Column vectors g which render

λ in (2.59) stationary are solution to the following eigenvalue problem

Kgα = λαgα, 1 ≤ α ≤ L2
g. (2.60)

From (2.58) and (2.57), it can be seen that the matrix K is Hermitian and posi-

tive definite and hence, eigenvalues λα are real and eigenvectors gα are orthogonal4.

Eigenvalues (and the associated eigenvectors) are indexed such that

1 > λ1 ≥ λ2 ≥ . . . ≥ λL2
g
> 0, (2.61)

i.e., eigenvector with highest energy concentration in region R is ranked first and

eigenvector with lowest energy concentration in region R is ranked last.

For each spectral domain eigenvector gα, associated with the eigenvalue λα, a

spatial eigenfunction gα(x̂) can be obtained from the Fourier expansion of signals in

(2.23) as

gα(x̂) =

Lg−1∑
`,m

(gα)m` Y
m
` (x̂), 1 ≤ α ≤ L2

g. (2.62)

4We choose the eigenvectors gα to be orthonormal in this dissertation.
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Set of spatial eigenfunctions, gα(x̂), α = 1, 2, . . . , L2
g, is orthogonal over the region R

and orthonormal over the sphere S2, i.e.,

〈gα, gβ〉R = gH
αK gβ = λαδα,β, 〈gα, gβ〉S2 = gH

α gβ = δα,β. (2.63)

These functions serve as an alternate basis for the space of bandlimited signals, i.e,

HLg , and are referred to as Slepian functions. Consequently, any signal g̃ ∈ HLg can

be represented as

g̃(x̂) =

L2
g∑

α=1

(g̃)α gα(x̂), (2.64)

where

(g̃)α , 〈g̃, gα〉S2 =

∫
S2

g̃(x̂)gα(x̂)ds(x̂) = gH
α g̃, 1 ≤ α ≤ L2

g (2.65)

are called the Slepian coefficients, which constitute the Slepian domain representation

of the signal g̃(x̂).

As investigated in detail in [74], if most of the eigenvalues in (2.60) are either

nearly 1 or nearly 0 (suggesting maximal and minimal concentration respectively

for the corresponding eigenfunctions in the region R) with a sharp transition, then

sum of the eigenvalues (rounded to the nearest integer), called the spherical Shannon

number, is a good measure of the number of well-optimally concentrated Slepian

functions within the region R. Denoted by NR, spherical Shannon number is given

by [74]

NR ,

L2
g∑

α=1

λα = trace(K)

=

Lg−1∑
`,m

K`m,`m =

∫
R

Lg−1∑
`=0

∑̀
m=−`

Y q
p (x̂)Y m

` (x̂)ds(x̂)

=

Lg−1∑
`=0

(
2`+ 1

4π

)∫
R

ds(x̂) =
AR
4π

L2
g, (2.66)
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where trace(·) represents trace of a matrix, AR , ‖1‖2
R is the surface area of the spatial

region R, defined in (2.8), and we have used the spherical harmonic addition theorem,

given in (2.34), along with the fact that P`(1) , 1. Hence, the set of first NR well-

optimally concentrated Slepian functions in (2.62) (rounded to the nearest integer)

forms a (reduced) localized basis for the accurate reconstruction and representation

of bandlimited signals in the spatial region R.

2.6 Convolution of signals on the sphere

A frequently carried out operation on signals defined on the sphere is filtering through

spherical convolution. Unlike the Euclidean domain signals, there are multiple com-

peting definitions of convolution for signals defined on the sphere [64]. These defi-

nitions primarily differ in the way rotations5 of the filter signal are defined on the

sphere. In this section, we review different ways of convolving spherical signals, denot-

ing the Euclidean domain convolution by ∗ and spherical convolution by ?. Spherical

convolution will be called “isotropic” if the filter is an azimuthally symmetric signal.

2.6.1 Spherical convolution of type 1

For signals defined in the 2D Euclidean domain, convolution operation can be written

as

(f ∗ h)(x) =

∫
R2

h(x− y)f(o+ y)dy, x ∈ R2, (2.67)

where f(x) is the signal of interest, h(x) is the filter signal, o represents the origin and

y represents the signal parameter in R2. Euclidean convolution in (2.67) computes the

output at point x as the integral of the product of h(−y), translated by x units, and

f(y). Type 1 convolution on the sphere is defined in an analogous way by replacing

5Rotations can be thought of as spherical analogue of translations in the Euclidean domain.
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translations with full rotations in the SO(3) rotation group as [64]

(f ? h)(x̂) =
1

2π

∫ 2π

ϕ=0

∫ π

ϑ=0

∫ 2π

ω=0

h
(
R−1x̂

)
f(Rη̂) dω sinϑdϑdϕ

=

∫ 2π

ϕ=0

∫ π

ϑ=0

(Dz(ϕ) ◦ Dy(ϑ)h0)(x̂) f(ϑ, ϕ) sinϑdϑdϕ, (2.68)

where η = [0, 0, 1]T (which takes up the role of origin in R2) represents the north pole

on the sphere, R is the rotation matrix defined in (2.12), Euler angles ω, ϑ, ϕ define

rotations around the z, y, z axes respectively, and the second equality is obtained by

observing that Rη̂ = Rz(ϕ)Ry(ϑ)Rz(ω)[0, 0, 1]T = (ϑ, ϕ), and noting the following

relation [64]

h0(x̂) =
1

2π

∫ 2π

ω=0

(Dz(ω)h)(x̂) dω =
∞∑
`=0

(h)0
`Y

0
` (x̂). (2.69)

From (2.68), it can be seen that spherical convolution of type 1 is isotropic and

non-commutative, with the following spectral representation [64]

(f ? h)m` =

√
4π

2`+ 1
(h)0

`(f)m` . (2.70)

2.6.2 Spherical convolution of type 2

An equivalent way of defining spherical convolution of type 1 between the signal of

interest f(x̂) and a filter signal h(x̂) is given by [102, 103]

(f ? h)(x̂) =

√
1

2π

∫
S2

h0(x̂.ŷ)f(ŷ)ds(ŷ), (2.71)

where x̂.ŷ is the angular distance between points x̂ and ŷ, defined in (2.7), and h0(·)

is the azimuthally symmetric kernel whose response depends only on the angular

distance between the two points and not their relative orientation. Since, spherical

convolution of type 2 is equivalent to type 1, spectral coefficients of its output are

given by (2.70) [64].
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2.6.3 Spherical convolution of type 3

A more general definition of spherical convolution between the signal of interest f(x̂)

and filter signal h(x̂) (not necessarily azimuthally symmetric) is given by [64]

(f ? h)(ρ) =

∫
S2

f(x̂) (D(ρ)h)(x̂)ds(x̂), (2.72)

where, unlike types 1 and 2, spherical convolution of type 3 maps spherical signals to

the Hilbert space L2(SO(3)). This convolution is anisotropic and non-commutative

in general, with spectral representation given by [64]

(f ? h)`m,m′ = (−1)m(f)−m` (h)m
′

` . (2.73)

Another closely related definition of spherical convolution is given by Wandelt

et al. as [61]

(f ? h)(ρ) , 〈f,D(ρ)h〉S2 =

∫
S2

f(x̂)(D(ρ)h)(x̂) ds(x̂). (2.74)

2.6.4 Commutative anisotropic spherical convolution

A commutative anisotropic spherical convolution, with output on the sphere, was for-

mulated by Sadeghi et al. [62], which, for a signal f(x̂) and filter h(x̂) (not necessarily

azimuthally symmetric), is defined as

(f ? h)(ϑ, ϕ) =

∫
S2

(D(ϕ, ϑ, π − ϕ)h)(x̂)f(x̂)ds(x̂), (2.75)

for which the spectral representation is given by [62]

(f ? h)m` = (−1)m
√
π(2`+ 1)

∞∑
p,q

(f)−qp (h)q+mp ×

∑
k,k′

(−1)k+k′c1(p, q,m, k)c2(`,m, k′)c3(p, `, k, k′), (2.76)
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where max{−p,−p−m} ≤ q ≤ min{p, p−m}, max{0,m} ≤ k ≤ min{p−q, p+q+m},

max{0,−m} ≤ k′ ≤ min{`, `−m}, k + k′ ≤ p+ ` and

c1(p, q,m, k) ,

√
(p+ q +m)!(p− q −m)!(p+ q)!(p− q)!

(p+ q +m− k)!(k)!(p− k − q)!(k −m)!
,

c2(`,m, k′) ,

√
(`)!(`)!(`+m)!(`−m)!

(`− k′)!(k′)!(`− k′ −m)!(k′ +m)!
,

c3(p, `, k, k′) , 2
(p+ `− k − k′)!(k + k′)!

(p+ `+ 1)!
.

(2.77)

2.6.5 Harmonic multiplication

Motivated by the idea of spectral representation of convolution between Euclidean

domain signals, spherical convolution between two signals f, h ∈ L2(S2) can be defined

as [87]

(f ? h)(x̂) ,
∞∑
`,m

(f)m` (h)m` Y
m
` (x̂), (2.78)

which is commutative and, in general, anisotropic.

2.7 Convolution of signals on SO(3) rotation group

For two signals f, h ∈ L2(SO(3)), SO(3) convolution, denoted by ~, is given by [104,

105]

(f ~ h)(ρ) =

∫
SO(3)

f
(
ρρ−1

1

)
h(ρ1)dρ1, (2.79)

where ρ, ρ1 are the 3-tuple of Euler angles. From the spectral representation of signals

in (2.42), we can write

(f ~ h)`m,m′ =

(
2`+ 1

8π2

)∫
SO(3)

(∫
SO(3)

f(ρρ−1
1 )h(ρ1) dρ1

)
D`
m,m′(ρ)dρ

=

(
2`+ 1

8π2

)∫
SO(3)

(∫
SO(3)

f(ρ)D`
m,m′(ρρ1) dρ

)
h(ρ1)dρ1, (2.80)
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where we have used (2.79) and right invariance of the Haar measure dρ6, i.e.,

∫
SO(3)

f(ρ)dρ =

∫
SO(3)

f(ρρ1)dρ, (2.81)

to obtain the second equality. Using (2.48), D`
m,m′(ρρ1) can be expanded to get the

addition formula for Wigner-D functions as

D`
m,m′(ρρ1) =

〈
D(ρρ1)Y m′

` , Y m
`

〉
S2

=
〈
D(ρ)D(ρ1)Y m′

` , Y m
`

〉
S2

=
〈
D(ρ1)Y m′

` ,D(ρ)†Y m
`

〉
S2

=
∞∑
p,q

〈
D(ρ1)Y m′

` , Y q
p

〉
S2

〈
D(ρ)†Y m

` , Y
q
p

〉
S2

=
∞∑
p,q

〈
D(ρ1)Y m′

` , Y q
p

〉
S2

〈
D(ρ)Y q

p , Y
m
`

〉
S2

=
∞∑
p,q

(
p∑

q′=−p

Dp
q,q′(ρ1)

〈
Y m′

` , Y q′

p

〉
S2

)( ∑̀
m′=−`

D`
m,m′(ρ)

〈
Y q
p , Y

m′

`

〉
S2

)

=
∑̀
q=−`

D`
m,q(ρ)D`

q,m′(ρ1), (2.82)

where (·)† denotes the adjoint of an operator, we have used the following definition

of the adjoint B† of an operator B [64]

〈Bf1, f2〉 =
〈
f1,B†f2

〉
, (2.83)

the following property of the inner product between two signals f1, f2 ∈ L2(S2) [64]

〈f1, f2〉S2 = 〈f2, f1〉S2 , (2.84)

spectral representation of rotated signals in (2.46), and orthonormality of spherical

harmonics on the sphere to get the final result, which can be used to obtain the

6Haar measure, which is also left invariant, is actually given by 1
8π2 dρ = 1

8π2 dϕ sinϑdϑdω, but

the invariance will hold for dρ as well. Here 8π2 is the normalization factor, i.e.,

∫
SO(3)

1

8π2
dρ = 1.
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spectral representation of SO(3) convolution as

(f ~ h)`m,m′ =
∑̀
q=−`

[(
2`+ 1

8π2

)∫
SO(3)

f(ρ)D`
m,q(ρ)dρ

] [∫
SO(3)

h(ρ1)D`
q,m′(ρ1)dρ1

]

=

(
8π2

2`+ 1

) ∑̀
q=−`

(f)`m,q(h)`q,m′ . (2.85)

The output of SO(3) convolution can then be represented in terms of Wigner-D

functions through (2.41) using (2.85).

2.8 Spatial-spectral analysis on the sphere

Spherical harmonic transform in (2.24) integrates the signal over the whole spherical

domain to generate discrete frequency spectrum, in which each spherical harmonic

coefficient reveals global contribution of the spherical harmonic basis functions in

the signal. The concept is similar to the 1D Fourier transform for time domain

signals, in which integration is carried out over all time to yield a frequency spectrum

with no time localization (or information). However, a variant of the time domain

Fourier transform, called the windowed Fourier transform or more commonly the

short-time Fourier transform, performs frequency analysis for different segments of

the time domain, resulting in the time-localized frequency content of the signal. Such

a tool is specially useful when the time domain signal is non-stationary, i.e., its

characteristics (e.g., the fundamental frequency) vary with time.

Motivated by the idea of short-time Fourier transform for time domain signals and

driven by the need to carry out localized spectral analysis for non-stationary signals

on the sphere, Khalid et al. proposed a windowed variant of the SHT in (2.24), called

the spatially localized spherical harmonic transform (SLSHT) [88], which employs

a window signal to spatially mask the signal of interest before computing its SHT,

resulting in a distribution of localized spectra at every point x̂(θ, φ) on the surface

of the sphere. In this section, we review the mathematical details of the forward and

inverse SLSHT.
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2.8.1 SLSHT

For a signal f ∈ HLf , directional SLSHT is defined as [98]

gf (ρ;u) ,
∫
S2

(D(ρ)h)(x̂)f(x̂)Yu(x̂) ds(x̂), (2.86)

where h ∈ L2(S2) is a window signal, bandlimited to degree Lh, which is required to be

spatially concentrated within a region on the sphere to provide spatial localization for

the signal f(x̂), D(ρ) is the rotation operator, which rotates the window signal h(x̂)

around z, y and z axes by Euler angles ω, ϑ and ϕ respectively, u , v(v+ 1) +w, 0 ≤

v ≤ Lg− 1, |w| ≤ v is the spectral index, and gf (ρ;u) is called the directional SLSHT

distribution of the signal f(x̂), bandlimited to degree Lg. The SLSHT distribution

is called directional, for when the window signal h(x̂) (which is not azimuthally

symmetric) is centered at the north pole, it is first oriented by the rotation operator

by angle ω around z-axis before getting rotated to the point ŷ(ϑ, ϕ) on the sphere.

Hence, window signal h(x̂) masks the signal f(x̂) in various orientations at every

point ŷ(ϑ, ϕ) on the sphere to reveal its directional features in the form of directional

SLSHT distribution, and is called directional window signal.

Using Fourier expansion of signals in (2.47) and (2.23), we can rewrite the direc-

tional SLSHT distribution as

gf (ρ;u) =

∫
S2

Lh−1∑
p,q,q′

Dp
q,q′(ρ)(h)q

′

p Y
q
p (x̂)

L2
f−1∑
n=0

(f)nYn(x̂)Yu(x̂)ds(x̂)

=

L2
f−1∑
n=0

(f)nψu,n(ρ), (2.87)

where n is the spectral index defined in (2.31),

ψu,n(ρ) =

Lh−1∑
p,q,q′

Dp
q,q′(ρ)(h)q

′

p T (n; p, q;u), (2.88)

and T (n; p, q;u) ≡ T (`,m; p, q; v, w) is the spherical harmonic triple product, defined
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as [64]

T (n; p, q;u) ,
∫
S2

Yn(x̂)Y q
p (x̂)Yu(x̂) ds(x̂), (2.89)

which is real-valued and non-zero for 0 ≤ v ≤ Lf + Lh − 2. Hence, the directional

SLSHT distribution is bandlimited to degree Lg = Lf + Lh − 1 in u. Moreover, as is

apparent from (2.87) and (2.88), gf (ρ;u) is bandlimited to Lh in ρ.

Azimuthally symmetric window signal

For an azimuthally symmetric window signal, i.e., h(θ, φ) = h(θ), first rotation by ω

around z-axis has no effect on h(θ) and can be set to 0. Therefore, (D(ϕ, ϑ, 0)h)(x̂)

represents the rotationally symmetric window signal centered at the point ŷ(ϑ, ϕ) on

the sphere. The resulting SLSHT distribution of the signal f(x̂) becomes [88]

gf (ŷ;u) =

∫
S2

(D(ŷ)h)(x̂)f(x̂)Yu(x̂) ds(x̂). (2.90)

From the representation of azimuthally symmetric signals in (2.33) and Fourier ex-

pansion of rotated signals in (2.47), we can write the rotated window signal as

(D(ŷ)h)(x̂) =

Lh−1∑
p,q,q′

Dp
q,q′(ϕ, ϑ, 0)(h)q

′

p δq′,0Y
q
p (x̂) =

Lh−1∑
p,q

√
4π

2p+ 1
Y q
p (ŷ)(h)0

pY
q
p (x̂),

(2.91)

where we have used the relation between Wigner-D functions and spherical harmonics

in (2.49) to get the final result. Using Fourier expansion of signals in (2.23) along

with the expression in (2.91), we can rewrite the SLSHT distribution as

gf (ŷ;u) =

∫
S2

Lh−1∑
p,q

√
4π

2p+ 1
Y q
p (ŷ) (h)0

pY
q
p (x̂)

L2
f−1∑
n=0

(f)nYn(x̂)Yu(x̂) ds(x̂)

=

L2
f−1∑
n=0

(f)nψu,n(ŷ), (2.92)
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where, unlike before, ψu,n ∈ L2(S2) and is given by

ψu,n(ŷ) =

Lh−1∑
p,q

√
4π

2p+ 1
(h)0

p Y
q
p (ŷ)T (n; p, q;u), (2.93)

and T (n; p, q;u) is the spherical harmonic triple product, defined in (2.89). The

SLSHT distribution in (2.90) and (2.92) is non-directional, i.e., it uses rotationally

symmetric window signal to spatially mask the signal f(x̂) and hence, cannot probe

directional, i.e., rotationally asymmetric, features of the signal f(x̂).

2.8.2 SLSHT – Inverse transform

Spectral coefficients of the signal can be obtained from its directional spatially lo-

calized spherical harmonic transform, as has been shown in [98], by integrating the

directional SLSHT distribution in (2.87) over all angles, i.e.,

∫
SO(3)

gf (ρ;u)dρ =

L2
f−1∑
n=0

(f)n

Lh−1∑
p,q,q′

(h)q
′

p T (n; p, q;u)

∫
SO(3)

Dp
q,q′(ρ)dρ

=

L2
f−1∑
n=0

(f)n

Lh−1∑
p,q,q′

(h)q
′

p T (n; p, q;u)(8π2)δp,0δq,0δq′,0

= (8π2)

L2
f−1∑
n=0

(f)n(h)0
0

∫
S2

Yn(x̂)Y 0
0 (x̂)Yu(x̂)ds(x̂)

=
√

16π3(f)u(h)0
0, (2.94)

where we have used orthogonality of complex exponential functions over ϕ, ω ∈ [0, 2π),

i.e.,

∫ 2π

ω=0

e−iq
′ωdω = 2π δq′0, (2.95)

the relation in (2.50), along with the fact that

∫ π

ϑ=0

Pp(cosϑ) sinϑdϑ =

∫ 1

cosϑ=−1

Pp(cosϑ)d(cosϑ) = 2 δp,0, (2.96)
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and orthonormality of spherical harmonics on the sphere to obtain the final result.

Hence, spectral components of the signal f(x̂) can be recovered from its directional

SLSHT distribution as

(f)u =
1√

16π3(h)0
0

∫
SO(3)

gf (ρ;u)dρ, 0 ≤ u ≤ L2
f − 1. (2.97)

In case of azimuthally symmetric window signal, the SLSHT distribution is inte-

grated over the sphere, i.e., [88]

∫
S2

gf (ŷ;u)ds(ŷ) =

L2
f−1∑
n=0

(f)n

Lh−1∑
p,q

√
4π

2p+ 1
(h)0

p T (n; p, q;u)

∫
S2

Y q
p (ŷ)ds(ŷ)

=

L2
f−1∑
n=0

(f)n

Lh−1∑
p,q

√
4π

2p+ 1
(h)0

p T (n; p, q;u)
√

4πδp,0δq,0

= (4π)

L2
f−1∑
n=0

(f)n(h)0
0

∫
S2

Yn(x̂)

√
1

4π
Yu(x̂)ds(x̂) =

√
4π(f)u(h)0

0,

(2.98)

where again we have used (2.95) and (2.96), along with orthonormality of spheri-

cal harmonics, to obtain the final result, which can be used to invert the SLSHT

distribution as follows

(f)u =
1√

4π(h)0
0

∫
S2

gf (ŷ;u)ds(ŷ), 0 ≤ u ≤ L2
f − 1. (2.99)

From (2.97) and (2.99), we observe that the SLSHT distribution can only be

inverted when the first spectral coefficient of the window signal, i.e., (h)0
0, is non-zero.

2.9 Multiscale representation for signals on the

sphere

As stated earlier, spectral representation of spherical signals, obtained through spher-

ical harmonic transform in (2.24), reveals global characteristics of the signal without
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regards to the scale of those characteristics. More sophisticated signal representations

are required to extract scale-dependent features from the signal. A tool that has been

extensively used to represent time domain signals at different scales is the wavelet

transform [93, 94, 95], which uses wavelet functions to probe scale-dependent features

of the underlying signal.

The framework of wavelet transform has also been extensively investigated in

the literature for signals defined on the sphere [78, 51, 79, 80, 82, 81, 83, 84, 85].

As discussed in Section 1.1.4, there are different formulations for wavelet analysis of

spherical signals due to different methods of dilating spherical wavelet functions. In

this section, we review the scale-discretized wavelet transform presented in [83, 85],

which uses harmonic space dilation method.

2.9.1 Scale-discretized wavelet transform on the sphere

Scale-discretized wavelet transform of a signal f ∈ L2(S2) is defined by the convolution

of the signal f(x̂) with the wavelet function, denoted by Ψ(j) ∈ L2(S2), as

wΨ(j)

f (ρ) ,
〈
f,D(ρ)Ψ(j)

〉
S2 =

∫
S2

f(x̂)(D(ρ)Ψ(j))(x̂) ds(x̂), (2.100)

where wΨ(j)

f ∈ L2(SO(3)) is called the scale-discretized wavelet coefficient of the signal

f(x̂), j ∈ [0, j2] is the discrete wavelet scale (j2 is the largest wavelet scale) and (2.74)

has been used to define convolution of spherical signals. Using the Fourier expansion

of signals in (2.23), (2.47), along with orthonormality of spherical harmonics, we can

write the scale-discretized wavelet coefficients as

wΨ(j)

f (ρ) =
∞∑
`,m

(f)m`

∞∑
p,q,q′

(Ψ(j))
q′

p D
p
q,q′(ρ)

∫
S2

Y m
` (x̂)Y q

p (x̂)ds(x̂)

=
∞∑
`,m

(f)m`
∑̀
m′=−`

(Ψ(j))
m′

` D`
m,m′(ρ). (2.101)

Wavelet functions, centered at the north pole, are oriented by the rotation operator

by an angle ω around z-axis and rotated to the point ŷ(ϑ, ϕ) on the sphere before
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projecting the signal f(x̂) onto them, hence, encoding scale-dependent directional

features of the signal into wavelet coefficients. Since, wavelet functions are designed to

have “band-pass” spectrum, wavelet coefficients cannot capture low frequency content

of the signal f(x̂). Scaling coefficient, which is defined in terms of the axisymmetric

scaling function, i.e., Φ ∈ H0, is used to represent low frequency content of f(x̂) as

wΦ
f (ŷ) , 〈f,D(ŷ)Φ〉S2 =

∫
S2

f(x̂)(D(ŷ)Φ)(x̂) ds(x̂), ŷ ≡ ŷ(ϑ, ϕ), (2.102)

where wΦ
f ∈ L2(S2) denotes the scaling coefficient and we have used the fact that first

rotation by ω around z-axis has no effect on Φ(θ). Scaling function is designed to

have a “low-pass” spectrum, which is the motivation behind its azimuthally symmetric

profile. Using Fourier expansion of signals in (2.23), (2.47), along with the relation

between Wigner-D functions and spherical harmonics in (2.49), we can rewrite the

scaling coefficient as

wΦ
f (ŷ) =

∞∑
`,m

(f)m`

∞∑
p,q

(Φ)0
p

√
4π

2p+ 1
Y q
p (ŷ)

∫
S2

Y m
` (x̂)Y q

p (x̂)ds(x̂)

=
∞∑
`,m

√
4π

2`+ 1
(Φ)0

`(f)m` Y
m
` (ŷ), (2.103)

where we have used orthonormality of spherical harmonics to get the second equality.

Inverse transform

Scaling and wavelet coefficients encode complete information of the signal at different

frequencies (scales) and hence, can be used to reconstruct the signal as

f(x̂) =

∫
S2

wΦ
f (ŷ) (D(ŷ)Φ)(x̂) ds(ŷ) +

j2∑
j=0

∫
SO(3)

wΨ(j)

f (ρ)
(
D(ρ)Ψ(j)

)
(x̂) dρ, (2.104)

provided the following admissibility condition holds

[(
4π

2`+ 1

) ∣∣(Φ)0
`

∣∣2 +

j2∑
j=0

(
8π2

2`+ 1

) ∑̀
m′=−`

∣∣∣(Ψ(j)
)m′
`

∣∣∣2] = 1, ∀ `. (2.105)
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The admissibility condition in (2.105) is obtained from (2.104) by solving the integrals

as

∫
S2

wΦ
f (ŷ)(D(ŷ)Φ)(x̂)ds(x̂)=

∞∑
`,m

√
4π

2`+ 1
(Φ)0

`(f)m`

∞∑
p,q

√
4π

2p+ 1
(Φ)0

pY
q
p (x̂)

〈
Y m
` , Y

q
p

〉
S2

=
∞∑
`,m

(
4π

2`+ 1

) ∣∣(Φ)0
`

∣∣2 (f)m` Y
m
` (x̂), (2.106)

∫
SO(3)

wΨ(j)

f (ρ)
(
D(ρ)Ψ(j)

)
(x̂)dρ =

∞∑
`,m,m′

(f)m` (Ψ(j))
m′

`

∞∑
p,q,q′

(
Ψ(j)

)q′
p
Y q
p (x̂)

〈
D`
m,m′ , D

p
q,q′

〉
SO(3)

=
∞∑

`,m,m′

(
8π2

2`+ 1

) ∣∣∣(Ψ(j)
)m′
`

∣∣∣2 (f)m` Y
m
` (x̂), (2.107)

and comparing the spectral representations of the left and right hand sides.

Axisymmetric wavelet functions

For axisymmetric wavelet functions Ψ(j) ∈ H0, the scale-discretized wavelet coeffi-

cients are given by an expression similar to (2.102), i.e.,

wΨ(j)

f (ŷ) ,
〈
f,D(ŷ)Ψ(j)

〉
S2 =

∫
S2

f(x̂)(D(ŷ)Ψ(j))(x̂) ds(x̂)

=
∞∑
`,m

√
4π

2`+ 1

(
Ψ(j)

)0

`
(f)m` Y

m
` (ŷ), ŷ ≡ ŷ(ϑ, ϕ), (2.108)

where the wavelet coefficients in this case are signals on the sphere, i.e., wΨ(j)

f ∈ L2(S2).

Signal f(x̂) is now reconstructed from its scaling and wavelet coefficients as

f(x̂) =

∫
S2

wΦ
f (ŷ)(D(ŷ)Φ)(x̂)ds(ŷ) +

j2∑
j=0

∫
S2

wΨ(j)

f (ŷ)
(
D(ŷ)Ψ(j)

)
(x̂)ds(ŷ), (2.109)

if the following admissibility condition holds

(
4π

2`+ 1

)[∣∣(Φ)0
`

∣∣2 +

j2∑
j=0

∣∣∣(Ψ(j)
)0

`

∣∣∣2] = 1, ∀ `, (2.110)
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which can be readily obtained by employing (2.106) and the following similar expres-

sion for scale-discretized wavelet coefficients

∫
S2

wΨ(j)

f (ŷ)
(
D(ŷ)Ψ(j)

)
(x̂) ds(x̂) =

∞∑
`,m

(
4π

2`+ 1

) ∣∣∣(Ψ(j)
)0

`

∣∣∣2 (f)m` Y
m
` (x̂), (2.111)

to simplify the integrals in (2.109), and comparing the spectral representations of its

left and right hand sides.

Construction of wavelet and scaling functions

Wavelet and scaling functions are designed to satisfy the admissibility conditions in

(2.105) and (2.110), which results in the following spectral representations

(
Ψ(j)

)m
`

=

√
2`+ 1

8π2
Γ

(j)
Ψ (`, ε) (ξ)m` ,(

Ψ(j)
)0

`
=

√
2`+ 1

4π
Γ

(j)
Ψ (`, ε),

(Φ)0
` =

√
2`+ 1

4π
ΓΦ(`, ε),

(2.112)

where
∑̀

m=−`
|(ξ)m` |2 = 1 for all values of ` for which (ξ)m` is non-zero for at least one

value of m. Here, (ξ)m` , 〈ξ, Y m
` 〉S2 , encodes the directional features of the wavelet

functions and Γ
(j)
Ψ (`, ε), ΓΦ(`, ε) are the harmonic tiling functions, which satisfy

|ΓΦ(`, ε)|2 +

j2∑
j=0

∣∣∣Γ(j)
Ψ (`, ε)

∣∣∣2 = 1, ∀ `, (2.113)

and control the angular localization of the wavelet and scaling functions. ε > 1 is the

harmonic space dilation parameter, which defines dilation of the wavelet functions.

It is straightforward to show that using the harmonic tiling functions constraint in

(2.113), spectral coefficients of the wavelet and scaling functions in (2.112) satisfy the

admissibility conditions in (2.105) and (2.110).

Harmonic tiling functions are defined as zero-order, square-integrable and posi-

tive continuous functions over the domain of non-negative real numbers, which are
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constructed using the following infinitely differentiable Schwartz function7

hε(x) , h

(
2ε

ε− 1

(
x− 1

ε

)
− 1

)
, (2.114)

where

h(x) ,

e
− 1

1−x2 , −1 ≤ x ≤ 1,

0, otherwise.

(2.115)

From (2.115), we note that hε(x) has compact support over the closed interval x ∈

[ε−1, 1]. Now considering the smoothly decreasing function, defined as

gε(x) ,

∫ 1

x

h2
ε(y)

1

y
dy∫ 1

ε−1

h2
ε(y)

1

y
dy

=


1, x ≤ ε−1,

1→ 0, ε−1 < x ≤ 1,

0, x > 1,

(2.116)

the harmonic tiling functions are given by

Γ
(j)
Ψ (`, ε) ,

√
gε

(
εj−1

`

L

)
− gε

(
εj
`

L

)
. (2.117)

From (2.116), we note that gε (εj−1`L−1) has compact support over the interval ` ≤

ε1−jL (with it being 1 for ` ≤ ε−jL) whereas gε (εj`L−1) has compact support over

the interval ` ≤ ε−jL (with it being 1 for ` ≤ ε−j−1L). Hence, Γ
(j)
Ψ (`) has compact

support over the closed interval given by

` ∈
[
`min(j) =

⌊
ε−1−jL

⌋
, `max(j) =

⌈
ε1−jL

⌉]
, (2.118)

where d·e is the integer ceiling function (integer floor and ceiling functions are used

7An infinitely differentiable function defined over n dimensional Euclidean domain Rn, i.e., f ∈
C∞(Rn), is called a Schwartz function if the function and all its derivatives go to zero, as |x| → ∞,
faster than any inverse power of x, where x ∈ Rn. [Source: https://mathworld.wolfram.com/

SchwartzFunction.html]
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Signal analysis on the sphere and SO(3) rotation group

Figure 2-4: Tiling of the spherical harmonic degree space using Γ
(j)
Ψ (�) and ΓΦ(�) for

bandlimit L = 64, ε = 2 and j2 = J = 6.

to end the support at integer values of �), and it peaks at � = ε−jL.

From (2.118), we see that both �min and �max increase by decreasing the wavelet

scale j. Hence, small scale wavelet functions probe higher frequency and large scale

wavelet functions probe lower frequency content of the signal under consideration.

The maximum wavelet scale, denoted by J , is defined as

ε−JL ≤ 1,

J ≥ logε L ⇒ J � �logε L� . (2.119)

For scales above J , we observe that

�min(J + k) = �ε−1−J−kL� =
⌊
ε−1−k L

εJ

⌋
= 0,

�max(J + k) = �ε1−J−kL� =
⌈
ε1−k L

εJ

⌉
= 1,

1 ≤ k < ∞, (2.120)

because L/εJ ≤ 1, ε−1−k < 1 and ε1−k ≤ 1. Hence, wavelet functions at scales

j = J + k, 1 ≤ k < ∞ have compact support in the open interval � ∈ (0, 1) (without

considering integer flooring and ceiling) and are discarded, because they probe the
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region of the spectrum that has no signal content.

Increasing the wavelet scale decreases `min but in order to make `min = 0, an infinite

wavelet scale is required. As a result, wavelet functions alone cannot cover the entire

spherical harmonic degree space. Hence, for largest wavelet scale 0 ≤ j2 ≤ J , ΓΦ(`)

is defined to have compact support in the interval ` ∈ [0, ε−j2L], i.e.,

ΓΦ(`) ,

√
gε

(
εj2

`

L

)
. (2.121)

Figure 2-4 shows tiling of the spherical harmonic degree space using harmonic tiling

functions in (2.117) and (2.121) for bandlimit L = 64, dilation parameter ε = 2 and

largest wavelet scale set to J = 6. The band-pass and low-pass nature of the wavelet

and scaling tiling functions can be clearly observed, which asserts the claim, made

earlier, about the band-pass and low-pass nature of the spectra of wavelet and scaling

functions respectively.

Design of the directionality component of the wavelet functions in (2.112), i.e.,

(ξ)m` , is a bit more involved and we refer the reader to the work in [83, 85] for details.
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Chapter 3

Joint domain optimal filtering on

the sphere

In almost all of the research areas that support signal processing, the acquired signal,

called observation, is influenced by the unwanted, yet unavoidable noise due to the

presence of different sources of interference, which places signal filtering and estima-

tion from its noise-contaminated samples at the heart of signal processing techniques,

resulting in abundant literature on signal estimation [66, 67, 96, 70, 71, 69, 72]. These

methods assume particular settings for the signal estimation problem. For instance,

the filters proposed in [66, 67, 71, 69] process signals in either spatial or spectral do-

main, assuming noise to be a realization of an isotropic process on the sphere1, while

the filters proposed in [70, 72] estimate signals in the presence of anisotropic noise2.

Since, anisotropic processes are spherical non-stationary random processes, it is

desirable to construct filters which adapt according to the statistics of noise. Us-

ing the filtering framework presented in [106], and connecting with the idea of joint

time-frequency filtering of non-stationary processes in [86], a joint spatial-spectral

domain filter has been designed in [87] for the estimation of signals that have been

contaminated by zero-mean and anisotropic noise. The resulting filter estimates the

underlying (noise-free) source signal by filtering the joint spatial-spectral domain rep-

1Isotropic processes are counterparts of wide-sense stationary processes in the Euclidean domain.
2Anisotropic processes are spherical analogues of non-stationary processes in the Euclidean do-

main.
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resentation of signals, which is given by the non-directional SLSHT [88]. However,

as noted in Section 2.8, non-directional SLSHT employs azimuthally symmetric win-

dow signal, due to which filtering in the joint spatial-spectral domain is unable to

effectively recover the directional features of the source signal.

Signal filtering and estimation, in the Euclidean domain, has also been carried out

using the joint space-scale domain representation (e.g. [107, 108]), which is enabled by

the wavelet transform [93, 94, 95]. Signal estimation using wavelet transform is based

on the observation that noise has a distributed representation in the wavelet domain,

whereas signals of interest are typically sparsely represented, which can be exploited

using different thresholding methods [109, 84]. Multiscale signal estimation in the

Euclidean domain has also been carried out using noise statistics through Wiener

filtering [107].

In this chapter, we formulate different frameworks for filtering and estimation

of spherical signals, which are assumed to be contaminated by realizations of zero-

mean and anisotropic noise processes. In particular, to recover directional features

in the underlying signal, we design a filter in the joint SO(3)-spectral domain, which

is enabled by the directional SLSHT, and present a least square solution for the

estimation of the underlying noise-free signal from the filtered representation. The

resulting filter is optimal in the sense that the filtered representation is the minimum

mean-square error estimate of the directional SLSHT distribution of the underlying

noise-free signal. Since, the directional SLSHT distribution depends on the directional

window signal, we also present an optimal window design to further improve the

performance of the joint SO(3)-spectral domain filtering framework. Furthermore, we

design an optimal azimuthally symmetric window signal to improve the performance

of the joint spatial-spectral domain filter in [87].

We also design a filter in the joint space-scale domain using the scale-discretized

wavelet transform on the sphere and show it to be optimal in the sense of mean-square

error criterion. The resulting filter is shown to perform better compared to the hard

thresholding method for signal denoising in the wavelet domain, and the weighted

spherical harmonics (weighted-SPHARM) signal estimation framework [110].
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3.1 Joint domain filtering – Problem formulation

3.1 Joint domain filtering – Problem formulation

We consider a noise-free source signal, denoted by s ∈ L2(S2), as a realization of an

anisotropic random process on the sphere, which is contaminated by a realization of

a zero-mean and anisotropic random noise process, z ∈ L2(S2), to give

f(x̂) = s(x̂) + z(x̂) ∈ L2(S2) (3.1)

as the noise-contaminated observation on the sphere. The objective is to determine

an estimate of the source signal, denoted by s̃(x̂), which is optimal in the mean-square

sense. We assume that noise is uncorrelated with the source signal, i.e.,

E
{
s(x̂)z(x̂)

}
=
∞∑
`,m

∞∑
p,q

E
{

(s)m` (z)qp
}
Y m
` (x̂)Y q

p (x̂) = 0,

⇒ E
{

(s)m` (z)qp
}

= 0, ∀ `, p, |m| ≤ `, |q| ≤ p, (3.2)

where (s)m` and (z)qp are the spectral representations of the source and noise signals

and E{·} denotes the expectation operator. We refer to this assumption by simply

stating “uncorrelated noise” in the rest of this work.

Spectral covariance of a signal d ∈ L2(S2) is defined as

Cd
`m,pq = E

{
(d)m` (d)qp

}
, ∀ `, p, |m| ≤ `, |q| ≤ p. (3.3)

Hence, Cs
`m,pq, C

z
`m,pq represent the elements of the spectral covariance matrices Cs

and Cz for the source and noise signals respectively.

Performance of the filtering framework is gauged by the signal to noise ratio, which

for a signal d ∈ L2(S2) is defined as

SNRd , 10 log
‖s(x̂)‖2

S2

‖d(x̂)− s(x̂)‖2
S2

. (3.4)

Hence, the input and output SNR is given by SNRf and SNRs̃ respectively.
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3.1.1 Real bandlimited Gaussian noise

Assuming the noise signal z(x̂) to be bandlimited to degree L, we can represent its

spectral coefficients (z)qp by a column vector z, of size L2 × 1, which can be indexed

using the scheme introduced in (2.30). Spectral coefficients of the noise signal are

then constructed to have Gaussian probability distribution as

z = A c + µ, (3.5)

where the vector c contains elements (c)qp which are drawn from the standard normal

distribution, i.e., (c)qp ∼ N (0, 1), 0 ≤ p ≤ L− 1, |q| ≤ p, and µ is the statistical mean

of the noise vector, i.e.,

E {z} = AE {c}+ µ = µ. (3.6)

For zero-mean noise signal, µ = 0 and hence, z = Ac. Matrix A defines spectral

covariance of the Gaussian noise process, i.e.,

E
{
zzH
}

= AE
{
ccH
}

AH = A I AH = A AH = Cz, (3.7)

where elements of matrix Cz are given by (3.3) and I denotes the identity matrix.

For the zero-mean noise signal z(x̂) to be real-valued, we observe from (2.26) that

(z)qp = (−1)q(z)−qp ,

L−1∑
p′,q′

Apq,p′q′(c)
q′

p′ = (−1)q
L−1∑
p′,q′

Ap(−q),p′q′ (c)
q′

p′ ,
(3.8)

where we have used (3.5), with µ = 0, to get the last expression . As a result, we get

the following constraint on the matrix A and vector c

Apq,p′q′ = (−1)qAp(−q),p′q′ ,

(c)q
′

p′ = (c)q
′

p′ ,
A non− diagonal, (3.9)
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Apq,pq = (−1)qAp(−q),p(−q),

(c)qp = (c)−qp ,
A diagonal. (3.10)

Anisotropic noise

To generate real-valued, bandlimited, zero-mean and anisotropic Gaussian noise, we

construct the matrix A in such a way that its elements are complex, with real and

imaginary parts uniformly distributed in the interval (−1, 1), and obey the constraint

in (3.9). Energy of the noise process is given by trace of the matrix Cz, which is set

by source signal energy and the specified SNR, i.e, matrix A is normalized as

AN =
A√

trace(A AH)

√
〈z, z〉S2 , 〈z, z〉S2 = 10−

SNR
10 〈s, s〉S2 , (3.11)

so that

trace(Cz
N) = trace(AN AH

N) =
trace(A AH)

trace(A AH)
〈z, z〉S2 = 〈z, z〉S2 . (3.12)

Furthermore, vector c is taken to be real-valued. Hence, to summarize, the noise

realization z(x̂), constructed from (3.5) using

� the matrix AN given in (3.11), where elements of matrix A are uniformly dis-

tributed in the interval (−1, 1) in both real and imaginary parts and obey (3.9),

� the real-valued vector c with elements (c)qp ∼ N (0, 1), 0 ≤ p ≤ L− 1, |q| ≤ p,

� µ = 0,

is real-valued, zero-mean, anisotropic and Gaussian, with energy given by the source

signal and specified SNR.

3.1.2 Real bandlimited white Gaussian noise

For white noise, spectral covariance matrix is diagonal and is given by

Cz = σ2 I, (3.13)
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where σ2 is the white noise parameter which specifies energy of the white noise process,

normalized by L2, and is set by energy of the source signal and the specified SNR,

i.e.,

σ2 =
1

L2
〈z, z〉S2 =

1

L2
10−

SNR
10 〈s, s〉S2 , (3.14)

such that trace(Cz) = 〈z, z〉S2 . Spectral coefficients of the real-valued, bandlimited,

zero-mean and white Gaussian noise (z)qp are constructed as

(z)qp =


σ√
2

(
(c1)qp + i(c2)qp

)
, 1 ≤ q ≤ p,

σ(c1)qp, q = 0,

(z)−qp = (−1)q(z)qp, 1 ≤ q ≤ p,

(3.15)

where (c1)qp, (c2)qp are drawn from the standard normal distribution, i.e., (c1)qp, (c2)qp ∼

N (0, 1), 0 ≤ p ≤ L− 1, |q| ≤ p.

3.2 Window design for joint spatial-spectral do-

main filter

As discussed before, in the case of contamination from realizations of spherical non-

stationary, i.e., anisotropic, noise processes, it is desirable to perform spatially varying

filtering of noise-contaminated signals. The SLSHT distribution, defined in (2.90),

represents spatially varying spectral content of the signal and hence, presents an

opportunity to construct filters for signal estimation in the joint spatial-spectral do-

main. Such a framework for joint spatial-spectral domain filtering has been proposed

by Khalid et al. in [87]. In this section, we present the design of an azimuthally

symmetric optimal window signal to improve the performance of the joint spatial-

spectral domain filtering and signal estimation framework in [87]. Before presenting

the optimal window design, we briefly review the joint spatial-spectral domain filter-

ing framework.

54



3.2 Window design for joint spatial-spectral domain filter

3.2.1 Joint spatial-spectral domain filter

Denoting the bandlimit of the axisymmetric window signal h(θ) and noise-contaminated

observation f(x̂) as Lh and Lf respectively, the SLSHT distribution, given in (2.92),

for the noise-contaminated observation f(x̂) is repeated here for convenience

gf (x̂;u) =

L2
f−1∑
n=0

(f)nψu,n(x̂), ψu,n(x̂) =

Lh−1∑
p′,q′

√
4π

2p′ + 1
(h)0

p′ Y
q′

p′ (x̂)T (n; p′, q′;u),

(3.16)

where n = `(` + 1) + m, 0 ≤ ` ≤ Lf − 1, |m| ≤ `, u = v(v + 1) + w, 0 ≤ v ≤

Lg − 1, |w| ≤ v are the spectral indices, Lg = Lf +Lh − 1 is the bandlimit of SLSHT

distribution in u, and T (n; p′, q′;u) is the spherical harmonic triple product given

in (2.89). Spectral representation of gf (x̂;u) is given by the inner product between

gf (x̂;u) (at a particular u) and spherical harmonics, i.e.,

(gf (·;u))qp ,
〈
gf (·;u), Y q

p

〉
S2

=

L2
f−1∑
n=0

(f)n

Lh−1∑
p′,q′

(−1)q
′
√

4π

2p′ + 1
(h)0

p′ T (n; p′, q′;u)

∫
S2

Y −q
′

p′ (x̂)Y q
p (x̂)ds(x̂)

=

L2
f−1∑
n=0

(f)nH(n; p,−q;u), H(n; p, q;u) , (−1)q
√

4π

2p+ 1
(h)0

pT (n; p, q;u).

(3.17)

The joint spatial-spectral domain filter is defined as the following distribution

F(x̂) , [F(x̂; 0),F(x̂; 1), . . . ,F(x̂;L2
g − 1)]T, (3.18)

where each component F(x̂;u) is a bandlimited signal on S2, given by

F(x̂;u) =

LFu−1∑
p,q

(F(·;u))qp Y
q
p (x̂), (F(·;u))qp ,

〈
F(·;u), Y q

p

〉
S2 , u ∈ [0, L2

g − 1].

(3.19)
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The filtered spatial-spectral representation is given by

ν(x̂) = [ν(x̂; 0), ν(x̂; 1), . . . , ν(x̂;L2
g − 1)]T, (3.20)

in which each component is given by the convolution of spherical signals, defined in

(2.78), as

ν(x̂;u) =

min{Lh,LFu}−1∑
p,q

(gf (·;u))qp (F(·;u))qp Y
q
p (x̂) =

Lh−1∑
p,q

(gf (·;u))qp (F(·;u))qp Y
q
p (x̂),

(3.21)

where it has been assumed, without loss of generality, that each filter component

F(x̂;u) is bandlimited to the bandlimit of the window signal, i.e., LFu = Lh, u =

0, 1, . . . , L2
g − 1. By minimizing the joint spatial-spectral domain mean-square error,

defined as

Emse = E


L2
g−1∑
u=0

‖ν(x̂;u)− gs(x̂;u)‖2
S2

 , (3.22)

where gs(x̂;u) is the source signal SLSHT distribution, spectral coefficients of the

joint spatial-spectral domain filter are given by [87],

(F(·;u))qp =

L2
f−1∑
n=0

L2
f−1∑
n′=0

H(n; p,−q;u)H(n′; p,−q;u)Cs
nn′

L2
f−1∑
n=0

L2
f−1∑
n′=0

H(n; p,−q;u)H(n′; p,−q;u)(Cs
nn′ + Cz

nn′)

, (3.23)

for
L2
f−1∑
n=0

L2
f−1∑
n′=0

H(n; p,−q;u)H(n′; p,−q;u)(Cs
nn′+C

z
nn′) 6= 0, (F(·;u))qp is zero otherwise.

Filtered spatial-spectral representation may not be an admissible SLSHT distri-

bution, i.e., there may not exist a signal s̃ ∈ L2(S2) such that gs̃(x̂;u) = ν(x̂;u). As a

result, signal estimate, in general, cannot be obtained from the inverse SLSHT given

in (2.99). Therefore, a least square signal estimate has been proposed in [106] (that
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has also been used to estimate the signal in [87]), which is given by

(s̃)n = argmin
(s̃)n

E


L2
g−1∑
u=0

‖ν(x̂;u)− gs̃(x̂;u)‖2
S2


=

1

〈h, h〉S2

L2
g−1∑
u=0

∫
S2

ψu,n(x̂)ν(x̂;u)ds(x̂). (3.24)

3.2.2 Normalized axisymmetric optimal window design

As can be seen from (3.16), (3.21) and (3.24), the joint spatial-spectral domain fil-

tering framework and the underlying signal estimation depend on the choice of the

window signal used for spatial localization of the noise-contaminated observation.

We design a normalized azimuthally symmetric optimal window signal by minimizing

the mean-square error between the spectral coefficients of the source and estimated

signals as

Emse,AW = E


L2
f−1∑
n=0

|(s̃)n − (s)n|2
 . (3.25)

The results are presented in the following theorem.

Theorem 1. Let f(x̂) = s(x̂) + z(x̂) be a noise-contaminated observation on the

sphere, where s(x̂) is a realization of an anisotropic random process on the sphere

with known spectral covariance matrix Cs
nn′ = E

{
(s)n(s)n′

}
, and z(x̂) is a realiza-

tion of a zero-mean, uncorrelated and anisotropic noise process with known spectral

covariance matrix Cz
nn′ = E

{
(z)n(z)n′

}
. Using the joint spatial-spectral domain filter-

ing framework, the normalized azimuthally symmetric optimal window signal, which

minimizes the mean-square error formulated in (3.25), is given by

ĥ(x̂) =

Lh−1∑
p=0

√(
2p+ 1

4π

)
xp Y

0
p (x̂),

∣∣∣(ĥ)0
p

∣∣∣2 =

(
2p+ 1

4π

)
xp, (ĥ)0

p =
(h)0

p√
〈h, h〉S2

,

(3.26)

where xp, for p = 0, 1, . . . , Lh − 1, are elements of the column vector x which is
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solution to the following linear system

Gx = b. (3.27)

Elements of the matrix G and column vector b depend on the joint spatial-spectral

domain filter and are given by the following expressions

Gk,p =

L2
f−1∑
n=0

2 Re
{
E
{
F (n; p)F (n; k)

}}
,

bk =

L2
f−1∑
n=0

2 Re
{
E
{
F (n; k)(s)n

}}
,

0 ≤ k ≤ Lh − 1, (3.28)

where Re{·} represents the real part and

F (n; p) ,

L2
f−1∑
n′=0

(f)n′
p∑

q=−p

L2
g−1∑
u=0

(F(·;u))−qp T (n; p, q;u)T (n′; p, q;u). (3.29)

Proof. Using (3.16), (3.17) and (3.21), we can rewrite the spectral estimate of the

source signal in (3.24) as

(s̃)n =
1

〈h, h〉

L2
g−1∑
u=0

Lh−1∑
p′,q′

√
4π

2p′ + 1
(h)0

p′T (n; p′, q′;u)×

Lh−1∑
p,q

L2
f−1∑
n′=0

(f)n′(−1)−q
√

4π

2p+ 1
(h)0

pT (n′; p,−q;u) (F(·;u))qp

〈
Y q
p , Y

q′

p′

〉
S2

=
1

〈h, h〉

Lh−1∑
p′,q′

(
4π

2p′ + 1

) ∣∣(h)0
p′

∣∣2 L2
f−1∑
n′=0

(f)n′

L2
g−1∑
u=0

(F(·;u))−q
′

p′ ×

T (n; p′, q′;u)T (n′; p′, q′;u)

=

Lh−1∑
p=0

(
4π

2p+ 1

) ∣∣∣(ĥ)0
p

∣∣∣2 F (n; p), (ĥ)0
p =

(h)0
p√

〈h, h〉S2

, (3.30)

where we have normalized the spectral coefficients of the window signal by the norm

of the window signal and F (n; p) is given in (3.29). Using these formulations, mean-
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square error in (3.25) can be written as

Emse,AW =

L2
f−1∑
n=0

E
{(

(s̃)n − (s)n

)(
(s̃)n − (s)n

)}

=

L2
f−1∑
n=0

E

{(
Lh−1∑
p=0

(
4π

2p+ 1

) ∣∣∣(ĥ)0
p

∣∣∣2 F (n; p)− (s)n

)
×(

Lh−1∑
p′=0

(
4π

2p′ + 1

) ∣∣∣(ĥ)0
p′

∣∣∣2 F (n; p′)− (s)n

)}

=

L2
f−1∑
n=0

Lh−1∑
p=0

Lh−1∑
p′=0

[(
4π

2p+ 1

)(
4π

2p′ + 1

)
(ĥ)0

p(ĥ)0
p (ĥ)0

p′(ĥ)0
p′E
{
F (n; p)F (n; p′)

}]
−

L2
f−1∑
n=0

Lh−1∑
p=0

(
4π

2p+ 1

)
(ĥ)0

p(ĥ)0
p

[
E
{
F (n; p)(s)n

}
+E

{
F (n; p)(s)n

}]
+

L2
f−1∑
n=0

E
{

(s)n(s)n

}
.

(3.31)

Setting the derivative of Emse,AW with respect to (ĥ)0
k equal to zero, we get

L2
f−1∑
n=0

Lh−1∑
p=0

(
4π

2p+ 1

)
|(h)0

p|2
(
E
{
F (n; p)F (n; k)

}
+ E

{
F (n; k)F (n; p)

})
=

L2
f−1∑
n=0

(
E
{
F (n; k)(s)n

}
+ E

{
F (n; k)(s)n

})
, k = 0, 1, . . . , Lh − 1. (3.32)

Defining a matrix G and column vector b with elements given in (3.28), and a column

vector x with elements given by

xp =

(
4π

2p+ 1

)
|(ĥ)0

p|2, (3.33)

the expression in (3.32) can be written as

Lh−1∑
p=0

Gk,p xp = bk, k = 0, 1, . . . , Lh − 1, (3.34)

which can be cast in matrix form given in (3.27). Hence, normalized azimuthally
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symmetric optimal window signal with the following spectral coefficients is given by

(3.26)

(ĥ)0
p =

√
2p+ 1

4π

√
xp. (3.35)

It can be seen from (3.28) that matrix G is real-valued, symmetric, square and

therefore, invertible. The resulting window signal is called optimal because it mini-

mizes the mean-square error between the spectral representations of the source and

estimated signals. Combining (3.30) with (3.26), we get the spectral estimate as

(s̃)n =

Lh−1∑
p=0

xp F (n; p). (3.36)

Remark 1. Spectral coefficients of the normalized azimuthally symmetric optimal

window signal in (3.35) depend on the spectral covariance matrices (through the joint

spatial-spectral domain filter) and hence, are specified by statistics of both the source

and noise processes. Phase of the optimal window coefficients however, is completely

arbitrary due to the fact that neither the signal estimate in (3.30) nor the mean-square

error, defined in (3.25), is affected by it. For simplicity, we have chosen the phase to

be zero3.

Remark 2. We note that

〈
ĥ, ĥ
〉
S2

=

Lh−1∑
p=0

∣∣∣(ĥ)0
p

∣∣∣2 =
1

〈h, h〉S2

Lh−1∑
p=0

∣∣(h)0
p

∣∣2 = 1, (3.37)

hence, the elements xp obtained from the linear system in (3.27) have the following

constraint

Lh−1∑
p=0

(
2p+ 1

4π

)
xp = 1. (3.38)

3It is the “additional” phase that has been chosen to be zero, which has allowed us to get (3.35)
from (3.33), inherent phase of (h)0p can be 90◦ if xp is negative.
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3.2 Window design for joint spatial-spectral domain filter

3.2.3 Axisymmetric optimal window design – Alternative for-

mulation

We can rewrite the normalized axisymmetric optimal window design problem as

minimize
(ĥ)0

p

Emse,AW = E

{ L2
f−1∑
n=0

|(s̃)n − (s)n|2
}
,

subject to (s̃)n =

Lh−1∑
p=0

(
4π

2p+ 1

)
(ĥ)0

p(ĥ)0
pF (n; p),

(3.39)

which results in the solution given by (3.26), where F (n; p) is given in (3.29). This

formulation results in normalized spectral coefficients of the window signal. An al-

ternative formulation for the design of axisymmetric optimal window is given by

minimize
(h)0

p

Emse,AW = E

{ L2
f−1∑
n=0

|〈h, h〉S2 (s̃)n − (s)n|2
}
,

subject to (s̃)n =
1

〈h, h〉S2

Lh−1∑
p=0

(
4π

2p+ 1

)
(h)0

p(h)0
pF (n; p),

(3.40)

which gives the same form of the mean-square error as that obtained from the for-

mulation in (3.39) and hence, results in the same expression for (h)0
p, i.e.,

∣∣(h)0
p

∣∣2 =

(
2p+ 1

4π

)
xp, (h)0

p =

√
2p+ 1

4π

√
xp. (3.41)

Moreover, the formulation in (3.40) is equivalent to the formulation in (3.39), due to

the fact that

〈h, h〉S2 =

Lh−1∑
p=0

∣∣(h)0
p

∣∣2 =

Lh−1∑
p=0

(
2p+ 1

4π

)
xp = 1, (3.42)

where we have used (3.41) and (3.38) to get the final result. Hence, the alternative

formulation in (3.40) yields the true4 spectral coefficients of the axisymmetric optimal

4True in the sense that the spectral coefficients are not normalized. The “additional” phase (de-
scribed in Footnote 3 on page 60) however, is still arbitrary and chosen to be zero.
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window signal, which minimize the mean square error in (3.25), and are given by

h(x̂) =

Lh−1∑
p=0

√(
2p+ 1

4π

)
xp Y

0
p (x̂),

∣∣(h)0p
∣∣2 =

(
2p+ 1

4π

)
xp, 〈h, h〉S2 = 1, (3.43)

where xp, for p = 0, 1, . . . , Lh−1, is obtained by inverting the linear system in (3.27).

(a) (b) |h(θ)|

Figure 3-1: Azimuthally symmetric optimal window signal, bandlimited to degree
Lh = 16, is constructed for the Mars topography map (Lf = 32) and zero-mean,
uncorrelated, anisotropic Gaussian noise process at SNR = 0 dBs. (a) Magnitude
of the azimuthally symmetric optimal window signal plotted against the colatitude,
θ ∈ [0, π]. (b) Magnitude of the axisymmetric optimal window signal on the sphere.

3.2.4 Illustrations

We employ a Mars topography map5 (height above the geoid and normalized to have

unit norm), bandlimited to degree Lf = 32, as the underlying source signal s(x̂) to

illustrate the capability of the joint spatial-spectral domain filtering framework using

the azimuthally symmetric optimal window signal with bandlimit Lh = 16. Spectral

covariance matrix of the source signal is constructed as Cs
�m,pq = (s)m� (s)

q
p.

Figure 3-1 shows the magnitude of an optimal window signal constructed using

5Mars topography map was obtained from http://geoweb.princeton.edu/people/simons/

software.html
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3.2 Window design for joint spatial-spectral domain filter

(a) |s(x̂)| (b) |z(x̂)| (c) |f(x̂)| (d) |s̃(x̂)|

Figure 3-2: Joint spatial-spectral domain filtering using azimuthally symmetric opti-
mal window signal (Lh = 16), resulting in an SNR improvement of 13 dBs. Figure
shows magnitude plots of (a) the Mars topography map, s(x̂) (Lf = 32), (b) the
zero mean, uncorrelated and anisotropic Gaussian noise signal, z(x̂), (c) the noise-
contaminated observation, f(x̂) = s(x̂) + z(x̂), with SNRf = 0.32 dBs, and (d) the
source signal estimate, s̃(x̂), with SNRs̃ = 13.33 dBs.

(3.41) for zero mean, uncorrelated and anisotropic Gaussian noise process at SNR = 0

dBs. Contaminating the Mars topography map by one of the realizations of this noise

process at an actual SNRf = 0.32 dBs, the joint spatial-spectral domain filtering

framework using this optimal window signal results in SNRs̃ = 13.33 dBs, giving an

SNR improvement of 13 dBs. The results of this experiment are shown in Figure 3-2.

We also analyze the joint spatial-spectral domain filtering framework using the

axisymmetric optimal window signal by contaminating the bandlimited Mars topog-

raphy map at different noise levels, specified by different values of the input SNR. A

similar experiment is performed using the Slepian window signal, which is most well-

optimally concentrated (i.e., rank 1) in the north polar cap region of angle θ0 (defined

in (2.9)). Such a window signal is azimuthally symmetric6 and is given by

h1(x̂) =

Lh−1∑
p=0

(h1)
0
pY

0
p (x̂), (3.44)

where the spectral coefficients (h1)
0
p, 0 ≤ p ≤ Lh − 1, are solution to the eigen-

value problem in (2.60). Output SNR for the joint spatial-spectral domain filtering

6Please see[74] for details on Slepian functions for polar cap regions.
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Joint domain optimal filtering on the sphere

Figure 3-3: Joint spatial-spectral domain filtering of the bandlimited Mars topogra-
phy map using the axisymmetric optimal window signal and rank 1 Slepian window
signals for the north polar cap regions of angles θ0 = 2◦, 10◦, 20◦. Output SNR,
SNRs̃, averaged over 100 realizations of a zero-mean, uncorrelated and anisotropic
Gaussian noise process, is plotted against the average input SNR. Axisymmetric op-
timal window signal can be seen to perform better than the rank 1 axisymmetric
Slepian window signals, specially at high noise levels. Also shown in the bottom right
corner is the magnified plot at low noise levels.

framework, using the axisymmetric optimal window signal and rank 1 Slepian win-

dow signals for the north polar cap regions of angles θ0 = 2◦, 10◦, 20◦, is computed

for 100 different realizations of the zero-mean, uncorrelated and anisotropic Gaussian

noise process. The results are averaged over all realizations and plotted in Figure 3-3,
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3.3 Joint SO(3)-spectral domain filtering

which shows the mean output SNR against the mean input SNR. As can be seen, the

axisymmetric optimal window signal performs better, specially at high noise levels,

compared to the rank 1 axisymmetric Slepian window signals. However, the difference

in performance is not appreciable due to the fact that most of the spectral coefficients

of both types of axisymmetric window signals are zero, leaving not much room for

improvement.

3.3 Joint SO(3)-spectral domain filtering

The joint spatial-spectral domain filter processes the (non-directional) SLSHT distri-

bution of the noise-contaminated observation, which, as noted in Section 2.8, cannot

probe directional features of the signal due to the use of azimuthally symmetric win-

dow signal. Hence, the joint spatial-spectral domain filtering framework, even with

the optimal window signal, is not suitable for the recovery of directional, i.e., rotation-

ally asymmetric, features in the underlying source signal. In this section, we employ

directional window signal to formulate a novel filtering and estimation framework for

signals on the sphere, which is shown to be capable of recovering directional features

in the presence of zero-mean, uncorrelated and anisotropic noise.

3.3.1 Joint SO(3)-spectral domain filter design

Directional SLSHT distribution of a signal f(x̂), bandlimited to degree Lf , is given

by (2.87), which is repeated here for convenience as

gf (ρ;u) =

L2
f−1∑
n=0

(f)nψu,n(ρ), ψu,n(ρ) =

Lh−1∑
p,q,q′

Dp
q,q′(ρ)(h)q

′

p T (n; p, q;u), (3.45)

where again, n = `(` + 1) + m, 0 ≤ ` ≤ Lf − 1, |m| ≤ `, u = v(v + 1) + w, 0 ≤ v ≤

Lg − 1, |w| ≤ v are the spectral indices, directional window signal h(x̂) is assumed

bandlimited to degree Lh, Lg = Lf +Lh−1 is the bandlimit of the directional SLSHT

distribution in u, and T (n; p, q;u) is the spherical harmonic triple product given in
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Joint domain optimal filtering on the sphere

(2.89). Spectral representation of gf (ρ;u) is given by

(
gf (·;u)

)p
q,q′

=

(
2p+ 1

8π2

)〈
gf (·;u), Dp

q,q′

〉
SO(3)

=

(
2p+ 1

8π2

)Lf−1∑
n=0

(f)n

Lh−1∑
p′,q′′,q′′′

(h)q
′′′

p′ T (n; p′, q′′;u)

∫
SO(3)

Dp′

q′′,q′′′(ρ)Dp
q,q′(ρ)dρ

= (h)q
′

p

Lf−1∑
n=0

(f)nT (n; p, q;u), (3.46)

where orthogonality of Wigner-D functions has been used.

The joint SO(3)-spectral domain filter distribution is defined as

ζ(ρ) ,
[
ζ(ρ; 1), ζ(ρ; 2), . . . , ζ(ρ;L2

g − 1)
]T
, (3.47)

where each component ζ(ρ;u) is a bandlimited signal on SO(3), given by

ζ(ρ;u) =

Lζu−1∑
p,q,q′

(
ζ(·;u)

)p
q,q′
Dp
q,q′(ρ),

(
ζ(·;u)

)p
q,q′

,

(
2p+ 1

8π2

)〈
ζ(·;u), Dp

q,q′

〉
SO(3)

,

(3.48)

for u ∈ [0, L2
g− 1]. Action of the filter component on the directional SLSHT distribu-

tion is defined by the spectral representation of convolution of signals on the SO(3)

rotation group, given in (2.85), i.e.,

ν(ρ;u) =

Lh−1∑
p=0

(
8π2

2p+ 1

) p∑
q,q′=−p

p∑
k=−p

(
gf (·;u)

)p
k,q′

(
ζ(·;u)

)p
q,k
Dp
q,q′(ρ), (3.49)

to give the filtered SO(3)-spectral representation as

ν(ρ) ,
[
ν(ρ; 1), ν(ρ; 2), . . . , ν(ρ;L2

g − 1)
]T
, (3.50)

where ν(ρ;u) is called the filtered SO(3)-spectral representation component and we

have assumed, without loss of generality, that each filter component ζ(ρ;u) is ban-

dlimited to Lh, i.e., Lζu = Lh, u = 0, 1, . . . , L2
g − 1. Spectral components of the filter
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3.3 Joint SO(3)-spectral domain filtering

function in (3.48) are obtained by minimizing the following mean-square error in the

joint SO(3)-spectral domain

Emse = E


L2
g−1∑
u=0

‖ν(ρ;u)− gs(ρ;u)‖2
SO(3)

 , (3.51)

which makes them optimal in the mean-square sense. Here gs(ρ;u) is the source signal

directional SLSHT representation. We present a linear system for the solution of

spectral components of the joint SO(3)-spectral domain optimal filter in the following

theorem.

Theorem 2. Let f(x̂) = s(x̂) + z(x̂) be a noise-contaminated observation on the

sphere, where s(x̂) is a realization of an anisotropic random process of interest, called

the source signal, and z(x̂) is a realization of a zero-mean and anisotropic random

process, representing the noise signal. Assuming that the source and noise signals are

uncorrelated with known spectral covariance matrices, denoted by Cs and Cz respec-

tively, spectral components of the joint SO(3)-spectral domain filter, which minimize

the mean-square error defined in (3.51), are obtained by inverting the following linear

system

G(p, u) x(p, q, u) = b(p, q, u), (3.52)

for 0 ≤ p ≤ Lh − 1, |q| ≤ p, 0 ≤ u ≤ L2
g − 1, where x(p, q, u) is a column vector of

size (2p+ 1), with elements xk =
(
ζ(·;u)

)p
q,k
, |k| ≤ p. Elements of the matrix G and

column vector b are given by

Gk′,k =

(
8π2

2p+ 1

) L2
f−1∑
n=0

L2
f−1∑
n′=0

T (n; p, k;u)T (n′; p, k′;u)(Cs
nn′ + Cz

nn′),

bk′ =

L2
f−1∑
n=0

L2
f−1∑
n′=0

T (n; p, q;u)T (n′; p, k′;u)Cs
nn′ ,

|k′| ≤ p, (3.53)

where Cs
nn′ = E

{
(s)n(s)n′

}
and Cz

nn′ = E
{

(z)n(z)n′
}

are the elements of Cs and Cz
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respectively.

Proof. Using (3.49) and (3.46) (for the directional SLSHT distribution of the source

signal), mean-square error in (3.51) can be written as

Emse = E

{ L2
g−1∑
u=0

〈
Lh−1∑
p,q,q′

(
8π2

2p+ 1

p∑
k=−p

(
gf (·;u)

)p
k,q′

(
ζ(·;u)

)p
q,k
−
(
gs(·;u)

)p
q,q′

)
Dp
q,q′ ,

Lh−1∑
p′,q′′,q′′′

(
8π2

2p′ + 1

p′∑
k′=−p′

(
gf (·;u)

)p′
k′,q′′′

(
ζ(·;u)

)p′
q′′,k′
−
(
gs(·;u)

)p′
q′′,q′′′

)
Dp′

q′′,q′′′

〉
SO(3)

}

=

L2
g−1∑
u=0

Lh−1∑
p,q,q′

(
8π2

2p+ 1

)
×

E

{ 8π2

2p+ 1

p∑
k=−p

(h)q
′

p

L2
f−1∑
n=0

(f)nT (n; p, k;u)
(
ζ(·;u)

)p
q,k
− (h)q

′

p

L2
f−1∑
n=0

(s)nT (n; p, q;u)

×
 8π2

2p+ 1

p∑
k′=−p

(h)q
′
p

L2
f−1∑
n′=0

(f)n′T (n′; p, k′;u)
(
ζ(·;u)

)p
q,k′
− (h)q

′
p

L2
f−1∑
n′=0

(s)n′T (n′; p, q;u)

},
(3.54)

where orthogonality of Wigner-D functions has been used. Setting the derivative of

Emse with respect to
(
ζ(·;u)

)p
q,k′

equal to zero, we get

(
8π2

2p+ 1

) p∑
q′=−p

∣∣∣(h)q
′

p

∣∣∣2 p∑
k=−p

L2
f−1∑

n,n′=0

E
{

(f)n(f)n′
}
T (n; p, k;u)T (n′; p, k′;u)×

(
ζ(·;u)

)p
q,k

=

p∑
q′=−p

∣∣∣(h)q
′

p

∣∣∣2 L2
f−1∑

n,n′=0

E
{

(s)n(f)n′
}
T (n; p, q;u)T (n′; p, k′;u), (3.55)

for |q|, |k′| ≤ p. Noting the fact that signal and noise are uncorrelated, i.e.,

E
{

(f)n(f)n′
}

= E
{

(s)n(s)n′ + (s)n(z)n′ + (z)n(s)n′ + (z)n(z)n′
}

= Cs
nn′ + Cz

nn′ ,

E
{

(s)n(f)n′
}

= E
{

(s)n(s)n′ + (s)n(z)n′
}

= Cs
nn′ ,

(3.56)

the linear system of equations in (3.55) can be cast in matrix form in (3.52) using the
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3.3 Joint SO(3)-spectral domain filtering

definitions in (3.53)7.

3.3.2 Signal estimation

The filtered SO(3)-spectral representation ν(ρ;u) may not be an admissible direc-

tional SLSHT distribution, i.e., there may not exist a signal s̃ ∈ L2(S2) such that

gs̃(ρ;u) = ν(ρ;u). As a result, inverse directional SLSHT given in (2.97) cannot be

used, in general, to obtain the source signal estimate from ν(ρ;u). However, a least

square solution of the spectral estimate of the source signal can be obtained, as shown

in the following theorem.

Theorem 3. Let gf (ρ;u) be the directional SLSHT distribution of the noise contami-

nated random signal on the sphere, which is filtered in the joint SO(3)-spectral domain

using the filter coefficients obtained from (3.52), resulting in a filtered SO(3)-spectral

representation ν(ρ), whose components are given in (3.49). Then, a least square

spectral estimate of the source signal can be obtained from the filtered SO(3)-spectral

representation as

(s̃)n = argmin
(s̃)n


L2
g−1∑
u=0

‖ν(ρ;u)− gs̃(ρ;u)‖2
SO(3)

 =

L2
f−1∑
n′=0

Υn,n′(f)n′ , (3.57)

for 0 ≤ n ≤ L2
f − 1, where Lg = Lf + Lh − 1, (f)n is the spectral representation of

the noise-contaminated observation, indexed by single variable n, and

Υn,n′ =
32π3

〈h, h〉S2

L2
g−1∑
u=0

Lh−1∑
p,q,q′

1

(2p+ 1)2

∣∣∣(h)q
′

p

∣∣∣2 p∑
k=−p

(
ζ(·;u)

)p
q,k
T (n; p, q;u)T (n′; p, k;u).

(3.58)

Proof. Denoting the squared error in (3.57) by Ese, we rewrite it, using the expression

7We note that the linear system formulated in (3.52) becomes ill-conditioned for certain values
of p, q and u, in which case we use the Moore-Penrose pseudo-inverse to obtain the filter coefficients(
ζ(·;u)

)p
q,k

.
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for directional SLSHT distribution in (3.45), as

Ese =

L2
g−1∑
u=0

‖ν(ρ;u)− gs̃(ρ;u)‖2
SO(3) =

L2
g−1∑
u=0

∫
SO(3)

∣∣∣∣∣∣ν(ρ;u)−
L2
f−1∑
n=0

ψu,n(ρ)(s̃)n

∣∣∣∣∣∣
2

dρ

=

L2
g−1∑
u=0

∫
SO(3)

ν(ρ;u)−
L2
f−1∑
n=0

ψu,n(ρ)(s̃)n

ν(ρ;u)−
L2
f−1∑
n′=0

ψu,n′(ρ)(s̃)n′

dρ
=

L2
g−1∑
u=0

∫
SO(3)

(
ν(ρ;u)ν(ρ;u)− ν(ρ;u)

L2
f−1∑
n′=0

ψu,n′(ρ) (s̃)n′ −

L2
f−1∑
n=0

ψu,n(ρ)(s̃)n ν(ρ;u) +

L2
f−1∑
n=0

L2
f−1∑
n′=0

ψu,n(ρ)ψu,n′(ρ)(s̃)n(s̃)n′

)
. (3.59)

Differentiating Ese with respect to (s̃)n′ and setting the result equal to zero, we get

the following relation

L2
f−1∑
n=0

L2
g−1∑
u=0

∫
SO(3)

ψu,n(ρ)ψu,n′(ρ)dρ(s̃)n =

L2
g−1∑
u=0

∫
SO(3)

ν(ρ;u)ψu,n′(ρ)dρ, (3.60)

for n′ ∈ [0, L2
f − 1]. From the definition of ψu,n in (3.45), we can write

L2
g−1∑
u=0

∫
SO(3)

ψu,n′(ρ)ψu,n(ρ)dρ =

L2
g−1∑
u=0

Lh−1∑
p,q,q′

(
8π2

2p+ 1

) ∣∣∣(h)q
′

p

∣∣∣2 T (n′; p, q;u)T (n; p, q;u),

(3.61)

where orthogonality of Wigner-D functions has been used. Spherical harmonic triple

product can be written, using the conjugate symmetry property of spherical harmon-

ics, as

T (`,m; p, q; v, w) =

∫
S2

Y m
` (x̂)Y q

p (x̂)Y w
v (x̂)ds(x̂) = (−1)w

∫
S2

Y m
` (x̂)Y q

p (x̂)Y −wv (x̂)ds(x̂)

= (−1)w
√

(2`+ 1)(2p+ 1)(2v + 1)

4π

` p v

0 0 0

 ` p v

m q −w

 ,

(3.62)
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where

 ` p v

m q w

 is called the Wigner-3j symbol [64]. Using (3.62) and noting that

v∑
w=−v

p∑
q=−p

 ` p v

m q −w

 `′ p v

m′ q −w

 =
1

(2`+ 1)
δ`,`′δm,m′ , (3.63)

left hand side of (3.60) can be simplified through (3.61) as

L2
f−1∑
n=0

L2
g−1∑
u=0

∫
SO(3)

ψu,n(ρ)ψu,n′(ρ)dρ(s̃)n = 2π

Lh−1∑
p,q

∣∣∣(h)q
′

p

∣∣∣2 Lg−1∑
v=0

(2v + 1)

` p v

0 0 0

2

δn,n′

= 2π

Lh−1∑
p,q

∣∣∣(h)q
′

p

∣∣∣2 δn,n′ = 2π 〈h, h〉S2 δn,n′ , (3.64)

where we have used the following property of Wigner-3j symbols to get the penulti-

mate equality

Lg−1∑
v=0

(2v + 1)

` p v

0 0 0

2

= 1. (3.65)

Hence, (3.60) gives the spectral estimate as

(s̃)n =
1

2π 〈h, h〉S2

L2
g−1∑
u=0

∫
SO(3)

ν(ρ;u)ψu,n(ρ)dρ

1

2π 〈h, h〉S2

L2
g−1∑
u=0

Lh−1∑
p,q,q′

(
8π2

2p+ 1

) p∑
k=−p

(
gf (·;u)

)p
k,q′

(
ζ(·;u)

)p
q,k
×

Lh−1∑
p′,q′′,q′′′

(h)q
′′′

p′ T (n; p′, q′′;u)

∫
SO(3)

Dp
q,q′(ρ)Dp′

q′′,q′′′(ρ)dρ

=
32π3

〈h, h〉S2

L2
g−1∑
u=0

Lh−1∑
p,q,q′

1

(2p+ 1)2

∣∣∣(h)q
′

p

∣∣∣2 p∑
k=−p

Lf−1∑
n′=0

(f)n′T (n′; p, k;u)
(
ζ(·;u)

)p
q,k
T (n; p, q;u),

(3.66)

where we have used the definition of filtered SO(3)-spectral representation in (3.49),
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the expression for ψu,n(ρ) in (3.45), the expression in (3.46) and orthogonality of

Wigner-D functions to get the final result, which can be written as the linear system

given in (3.57) through (3.58).

(a) s(x̂) (b) h0(x̂) (c) h(x̂)

Figure 3-4: (a) Earth topography map, bandlimited to degree Lf = 64, used as
the source signal s(x̂), (b) most well-optimally concentrated azimuthally symmetric
Slepian window signal, bandlimited to degree Lh0 = 20, computed for the north polar
cap region R15◦ , and (c) most well-optimally concentrated directional Slepian window
signal, bandlimited to degree Lh = 20, computed for the spherical ellipse R(15◦,16◦).
Boundary of the north polar cap region and spherical ellipse is shown in black.

3.3.3 Analysis

To demonstrate the effectiveness of the joint SO(3)-spectral domain filtering frame-

work, we use an Earth topography map8, bandlimited to degree Lf = 64, as the

source signal s(x̂) and gauge the performance using SNR, defined in (3.4). As before,

spectral covariance matrix of the source signal is constructed as Cs
�m,pq = (s)m� (s)

q
p.

We employ the (directional) Slepian function, which is most well-optimally concen-

trated (i.e., has rank 1) in a spherical ellipse (defined in (2.11)) of focus colatitude

θ0 = 15◦ and semi-major axis a = 16◦, as the window signal h(x̂), bandlimited to

degree Lh = 20, for computing the source signal estimate s̃(x̂). For comparison, we

also employ the rank 1 Slepian function for a north polar cap region of angle θ0 = 15◦,

8Earth topography map was obtained from http://geoweb.princeton.edu/people/simons/

software.html
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3.3 Joint SO(3)-spectral domain filtering

as the azimuthally symmetric window signal h0(x̂), bandlimited to degree Lh0 = 20,

and obtain the signal estimate, through joint spatial-spectral domain filter (reviewed

in Section 3.2.1), as s̃0(x̂). Figure 3-4 shows the bandlimited Earth topography map

and the window signals used to obtain the joint SO(3)-spectral domain and the joint

spatial-spectral domain signal estimates.

As an illustration, we use a realization of a zero-mean, uncorrelated and anisotropic

Gaussian noise process, z(x̂), to obtain the noise-contaminated observation f(x̂) =

s(x̂)+z(x̂) such that SNRf = 0.001 dBs. Output SNR using the joint SO(3)-spectral

(a) z(x̂) (b) f(x̂) (c) s̃(x̂) (d) s̃0(x̂)

(e) |s(x̂)| (f) |s̃(x̂)| (g) |s̃0(x̂)|

Figure 3-5: (a) Zero-mean, uncorrelated and anisotropic Gaussian noise z(x̂), (b)
noise-contaminated observation f(x̂) with SNRf = 0.001 dBs, (c) signal estimate
obtained from the joint SO(3)-spectral domain filtering framework s̃(x̂), (d) signal
estimate obtained from the joint spatial-spectral domain filtering framework s̃0(x̂).
Figures (e)–(g) show the magnitude plots of s(x̂), s̃(x̂) and s̃0(x̂). Joint SO(3)-
spectral domain filtering, with SNRs̃ = 18.33 dBs, outperforms the joint spatial-
spectral domain filtering by 8 dBs. Moreover, magnitude plots show much better
reconstruction of the directional features, such as the dark blue contours marking the
boundary between land and water, using the joint SO(3)-spectral domain filter.
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Figure 3-6: Mean output SNR plotted against mean input SNR for 100 realizations
of a zero-mean, uncorrelated and anisotropic Gaussian noise process. Blue and black
curves show the results for the estimation of Earth topography map, bandlimited to
degree Lf = 64, using the joint SO(3)-spectral domain and the joint spatial-spectral
domain filtering frameworks respectively.

domain filter, i.e., SNRs̃, is measured to be 18.33 dBs, indicating a significant gain

in SNR, compared to the joint spatial-spectral domain filtered estimate which results

in SNRs̃0 = 10.36 dBs. As expected, the joint SO(3)-spectral domain filtering frame-

work outperforms the joint spatial-spectral domain filtering framework (by 8 dBs)

due to its ability to better detect the underlying directional features of the data. The

results are shown in Figure 3-5, where in addition to better reconstruction using the

proposed framework, better estimate of the directional features of the Earth topog-

raphy map can be observed, e.g., in the dark blue contours marking the boundary

between land and water, as depicted in the magnitude plots.

To test the robustness of the proposed framework, we contaminate the Earth

topography map with 100 realizations of zero-mean, uncorrelated and anisotropic

Gaussian noise process, at different noise levels, and compute the output SNR, i.e.,

SNRs̃. A similar experiment is conducted for the joint spatial-spectral domain filtering

framework and SNRs̃0 is computed. The results are averaged over all realizations and

plotted in Figure 3-6, which shows the mean output SNR against the mean input

SNR. As can be seen, the joint SO(3)-spectral domain filter performs much better
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compared to the joint spatial-spectral domain filter, even at high noise levels.

3.4 Optimal window design for joint SO(3)-spectral

domain filter

Signal estimation using the joint SO(3)-spectral domain filtering framework depends

on the choice of the directional window signal used for spatial localization of the

observation f(x̂). By minimizing the following mean-square error

Emse,DW = E


L2
f−1∑
n=0

|(s̃)n − (s)n|2
 , (3.67)

energy per degree of the normalized directional optimal (in the mean-square sense)

window signal can be obtained. We present such mathematical formulation in the

following theorem.

Theorem 4. Let s(x̂) be a realization of a random process on the sphere with known

spectral covariance matrix Cs
nn′ = E

{
(s)n(s)n′

}
, which is assumed to be contaminated

by a realization of a zero-mean, uncorrelated and anisotropic noise process z(x̂), with

known spectral covariance matrix Cz
nn′ = E

{
(z)n(z)n′

}
, to get the noise-contaminated

observation f(x̂) = s(x̂) + z(x̂) on the sphere. Using the joint SO(3)-spectral domain

filtering framework, presented in Section 3.3, energy per degree of the normalized di-

rectional optimal window signal, which minimizes the mean-square error formulated

in (3.67), is given by

p∑
q′=−p

∣∣∣(ĥ)q
′

p

∣∣∣2 =
(2p+ 1)2

32π3
xp, (ĥ)q

′

p =
(h)q

′
p√

〈h, h〉S2

, (3.68)

where xp, for p = 0, 1, . . . , Lh − 1, are elements of the column vector x which is

solution to the following linear system

Gx = b. (3.69)
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Elements of the matrix G and column vector b are given by

Gp′,p =

L2
f−1∑
n=0

2 Re
{
E
{
F (n; p′)F (n; p)

}}
,

bp′ =

L2
f−1∑
n=0

2 Re
{
E
{
F (n; p′)(s)n

}}
,

0 ≤ p, p′ ≤ Lh − 1, (3.70)

where

F (n; p) =

L2
g−1∑
u=0

p∑
q=−p

T (n; p, q;u)

p∑
k=−p

(ζ(·;u))pq,k

L2
f−1∑
n′=0

(f)n′T (n′; p, k;u), (3.71)

and Lg = Lf + Lh − 1.

Proof. Using (3.71), source spectral estimate in (3.66) can be rewritten as

(s̃)n = 32π3

Lh−1∑
p=0

1

(2p+ 1)2

p∑
q′=−p

(ĥ)q
′

p (ĥ)q
′
p F (n; p), (ĥ)q

′

p ,
(h)q

′
p√

〈h, h〉S2

, (3.72)

where we have normalized the spectral coefficients of the directional window signal

by the norm of the window signal. Using this formulation, the mean-square error in

(3.67) can be written as

Emse,DW =

L2
f−1∑
n=0

E

{(
Lh−1∑
p=0

32π3

(2p+ 1)2

p∑
q′=−p

(ĥ)q
′
p (ĥ)q

′

p F (n; p)− (s)n

)
×

(
Lh−1∑
p′=0

32π3

(2p′ + 1)2

p′∑
q′′=−p′

(ĥ)q
′′

p′ (ĥ)q
′′

p′ F (n; p′)− (s)n

)}

=

L2
f−1∑
n=0

Lh−1∑
p,p′=0

32π3

(2p+ 1)2

32π3

(2p′ + 1)2

p∑
q′=−p

(ĥ)q
′
p (ĥ)q

′

p

p′∑
q′′=−p′

(ĥ)q
′′

p′ (ĥ)q
′′

p′

(
E{F (n; p)F (n; p′)}

)
−

L2
f−1∑
n=0

Lh−1∑
p=0

32π3

(2p+ 1)2

p∑
q′=−p

(ĥ)q
′
p (ĥ)q

′

p

[
E{F (n; p)(s)n}+E{F (n; p)(s)n}

]
+

L2
f−1∑
n=0

E{(s)n(s)n}.

(3.73)

Setting the derivative of Emse,DW in (3.73) with respect to (ĥ)q1p1 equal to zero, we get
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the following expression

∂Emse,DW

∂(ĥ)q1p1

=

L2
f−1∑
n=0

32π3

(2p1 + 1)2
(ĥ)q1p1

Lh−1∑
p′=0

32π3

(2p′ + 1)2

p′∑
q′′=−p′

(ĥ)q
′′

p′ (ĥ)q
′′

p′

(
E{F (n; p1)F (n; p′)}

)

+

L2
f−1∑
n=0

32π3

(2p1 + 1)2
(ĥ)q1p1

Lh−1∑
p=0

32π3

(2p+ 1)2

p∑
q′=−p

(ĥ)q
′
p (ĥ)q

′

p

(
E{F (n; p)F (n; p1)}

)
−

L2
f−1∑
n=0

32π3

(2p1 + 1)2
(ĥ)q1p1

(
E{F (n; p1)(s)n}+ E{F (n; p1)(s)n}

)
+ 0 = 0,

L2
f−1∑
n=0

Lh−1∑
p=0

32π3

(2p+ 1)2

p∑
q′=−p

(ĥ)q
′
p (ĥ)q

′

p

[
E{F (n; p′)F (n; p)}+ E{F (n; p)F (n; p′)}

]

=

L2
f−1∑
n=0

[
E{F (n; p′)(s)n + F (n; p′)(s)n}

]
, 0 ≤ p′ ≤ Lh − 1.

(3.74)

By defining xp as

xp ,
32π3

(2p+ 1)2

p∑
q′=−p

∣∣∣(ĥ)q
′

p

∣∣∣2 , (3.75)

the set of equations in (3.74) can be cast in the matrix form given in (3.69) using the

definitions in (3.70). Therefore, inverting (3.75) results in the energy per degree of

the normalized directional optimal window signal given in (3.68).

Remark 3. Energy per degree (and hence, the spectral coefficients) of the normal-

ized directional optimal window signal in (3.68) is specified by the spectral covari-

ance (through the joint SO(3)-spectral domain filter) and hence, by statistics of both

the source and noise processes. The linear system in (3.68) is under-determined

and there are multiple solutions (avoiding those which result in azimuthally symmet-

ric window signal) for the spectral coefficients of the normalized directional optimal

window signal. However, every solution yields the same result, because the spectral

estimate in (3.72) and the mean-square error in (3.67) only depend on the energy per

degree of the window signal.
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3.4.1 Directional optimal window design – Alternative for-

mulation

We can rewrite the normalized directional optimal window design problem as

minimize
(ĥ)q

′
p

Emse,DW = E

{ L2
f−1∑
n=0

|(s̃)n − (s)n|2
}
,

subject to (s̃)n =

Lh−1∑
p=0

32π3

(2p+ 1)2

p∑
q′=−p

(ĥ)q
′

p (ĥ)q
′
p F (n; p),

(3.76)

which results in the solution given by (3.68), where F (n; p) is given in (3.71). This

formulation results in energy per degree of the normalized directional window signal.

An alternative formulation for the design of directional optimal window is given by

minimize
(h)q

′
p

Emse,DW = E

{ L2
f−1∑
n=0

|〈h, h〉S2 (s̃)n − (s)n|2
}
,

subject to (s̃)n =
1

〈h, h〉S2

Lh−1∑
p=0

32π3

(2p+ 1)2

p∑
q′=−p

(h)q
′

p (h)q
′
p F (n; p),

(3.77)

which gives the same form of the mean-square error as that obtained from (3.76) and

hence, results in the same expression for energy per degree of the window signal, i.e.,

p∑
q′=−p

∣∣∣(h)q
′

p

∣∣∣2 =
(2p+ 1)2

32π3
xp. (3.78)

Moreover, the formulation in (3.77) is equivalent to that in (3.76) because

〈
ĥ, ĥ
〉
S2

=

Lh−1∑
p,q′

∣∣(h)q
′
p

∣∣2
〈h, h〉S2

= 1⇒
Lh−1∑
p=0

(2p+ 1)2

32π3
xp = 1⇒

Lh−1∑
p,q′

∣∣∣(h)q
′

p

∣∣∣2 = 〈h, h〉S2 = 1,

(3.79)

where we have used (3.68) and (3.78) to get the final result. Hence, the formulation

in (3.77) (in which xp, 0 ≤ p ≤ Lh−1, is given by the solution of (3.69)) yields energy

per degree of the directional optimal window signal without any normalization.
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(a) (b) |h(x̂)|

Figure 3-7: (a) Energy per degree plot of the directional optimal window signal for the
Earth topography map, bandlimited to degree Lf = 32, constructed for a zero-mean,
uncorrelated and anisotropic Gaussian noise process at SNR = 0 dBs. (b) Magnitude
of the directional optimal window signal on the sphere. Directional optimal window
signal is bandlimited to degree Lh = 16.

3.4.2 Illustrations

We compute energy per degree of the directional optimal window signal, at bandlimit

Lh = 16 using (3.78), for the Earth topography map s(x̂), bandlimited to degree

Lf = 32, and zero-mean, uncorrelated, anisotropic Gaussian noise process at SNR = 0

dBs9. We choose the spectral coefficients of the directional optimal window signal to

satisfy (3.78) as

∣∣(h)qp
∣∣ = (h)qp =

√
(2p+ 1)xp

32π3
, 0 ≤ p ≤ Lh − 1, |q| ≤ p. (3.80)

Figure 3-7 shows the energy per degree plot and magnitude of the directional optimal

window signal on the sphere. Using this energy per degree for the directional optimal

window signal, we estimate the bandlimited Earth topography map contaminated by

9For the spectral covariance matrix of the Earth topography map, please see Section 3.3.3.
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Figure 3-8: Mean output SNR plotted against mean input SNR for 100 realizations
of zero-mean, uncorrelated and anisotropic Gaussian noise process. Blue and black
curves quantify the performance of the joint SO(3)-spectral domain filter using di-
rectional optimal window signal and rank 1 Slepian window signal (computed for the
spherical ellipse R(15◦,16◦)) respectively, on the Earth topography map, bandlimited
to degree Lf = 32.

100 realizations of zero-mean, uncorrelated and anisotropic Gaussian noise process at

different noise levels. For comparison, we use the most well-optimally concentrated

Slepian function within the elliptical region R(15◦,16◦), as another window signal at

bandlimit Lh = 16, to estimate the Earth topography map for the same realizations

of the noise process, and denote the signal estimate by s̃1(x̂). Output SNR of the joint

SO(3)-spectral domain filtering and signal estimation framework, for both directional

window signals, is averaged over all realizations and plotted against the mean input

SNR in Figure 3-8, which shows significant improvement in the performance of joint

SO(3)-spectral domain signal estimation using directional optimal window signal.

Reconstructed Earth topography map, for a realization of the zero-mean, uncor-

related and anisotropic Gaussian process at SNRf = −0.15 dBs, using the directional

optimal window signal, is shown in Figure 3-9. For comparison, we also show the

reconstructed map using the most well-optimally concentrated elliptical Slepian func-

tion within R(15◦,16◦), along with the original Earth topography map, noise realization

and noise-contaminated observation. Output SNR measured from the spectral esti-
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(a) s(x̂) (b) z(x̂) (c) f(x̂) (d) s̃(x̂) (e) s̃1(x̂)

Figure 3-9: Joint SO(3)-spectral domain filtering of the Earth topography map s(x̂),
bandlimited to degree Lf = 32, contaminated by a realization of a zero-mean, uncor-
related and anisotropic Gaussian noise process z(x̂) at SNRf = −0.15 dBs, resulting
in an SNR gain of 20.37 dBs for the signal estimate s̃(x̂), compared to an SNR gain
of 16.39 dBs for s̃1(x̂).

mates s̃(x̂) and s̃1(x̂) is 20.22 dBs and 16.24 dBs respectively. Higher output SNR is

reflected in better reconstruction of s̃(x̂) compared to s̃1(x̂).

3.5 Multiscale optimal filter

Wavelet transforms offer another joint domain representation by projecting the signal

content onto wavelet functions. In particular, scale-discretized wavelet transform,

reviewed in Section 2.9, projects the signal onto rotated wavelet functions, which in

turn form a tight frame on the sphere [85]. The transformed signal is represented

by wavelet coefficients, which are defined on the SO(3) rotation group (or the sphere

for axisymmetric wavelet functions) at different wavelet scales and hence, constitute

joint SO(3)-scale domain representation of signals on the sphere.

Following the philosophy of the framework of joint SO(3)-spectral domain filter,

presented in Section 3.3, we employ the scale-discretized wavelet transform to define

a joint SO(3)-scale domain (or multiscale) filter distribution as

Ξ(ρ) � [Ξ(ρ; 0),Ξ(ρ; 1), . . . ,Ξ(ρ; j2)]
T , (3.81)

where j2 is the largest wavelet scale, and each joint SO(3)-scale domain filter distri-
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bution component Ξ(ρ; j) is a bandlimited signal on the SO(3) rotation group, given

by

Ξ(ρ; j) =

LΞj
−1∑

`,m,m′

(
Ξ(·; j)

)`
m,m′

D`
m,m′(ρ),

(
Ξ(·; j)

)`
m,m′

,

(
2`+ 1

8π2

)〈
Ξ(·; j), D`

m,m′

〉
SO(3)

,

(3.82)

for the wavelet scale j ∈ [0, j2], where LΞj is the bandlimit of the filter component at

wavelet scale j. Action of the filter component on scale-discretized wavelet coefficients

of the noise-contaminated observation f(x̂) is defined by the spectral representation

of convolution of signals on the SO(3) rotation group, given in (2.85), i.e.,

wΨ(j)

s̃ (ρ) =

Lf−1∑
`=0

(
8π2

2`+ 1

) ∑̀
m,m′=−`

∑̀
k=−`

(f)k`
(
Ξ(·; j)

)`
m,k

(Ψ(j))
m′

` D`
m,m′(ρ), (3.83)

to define the filtered SO(3)-scale representation as

wΨ
s̃ (ρ) ,

[
wΨ(0)

s̃ (ρ), wΨ(1)

s̃ (ρ), . . . , wΨ(j2)

s̃ (ρ)
]T

, (3.84)

where wΨ(j)

s̃ (ρ) is the scale-discretized wavelet coefficient of the estimate of the source

signal s(x̂) and we have assumed, without loss of generality, that bandlimit of the

filter component at each wavelet scale is equal to the signal bandlimit, i.e., LΞj =

Lf , j ∈ [0, j2]. Spectral components of the filter function in (3.82) are obtained by

minimizing the following mean-square error in the joint SO(3)-scale domain

Emse = E

{
j2∑
j=0

∥∥∥wΨ(j)

s̃ (ρ)− wΨ(j)

s (ρ)
∥∥∥2

SO(3)

}
, (3.85)

which makes the multiscale filter optimal in the mean-square sense. Here wΨ(j)

s (ρ) is

the scale-discretized wavelet coefficient of source signal s(x̂) at wavelet scale j. We

present the mathematical formulation for the spectral components of the multiscale

optimal filter in the following theorem.
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Theorem 5. Let the source signal s(x̂) be a realization of an anisotropic random

process which is contaminated by a realization of a zero-mean and anisotropic noise

process z(x̂), to obtain the noise-contaminated observation f(x̂) = s(x̂) + z(x̂) on

the sphere, where the source and noise signals are uncorrelated with known spectral

covariance, defined by matrices Cs
`m,pq = E

{
(s)m` (s)qp

}
and Cz

`m,pq = E
{

(z)m` (z)qp
}

respectively. Then, spectral coefficients of the joint SO(3)-scale domain filter function

in (3.82), which minimize the joint SO(3)-scale domain mean-square error in (3.85),

are obtained by inverting the following linear system

G(`) x(j, `,m) = b(`,m), (3.86)

for 0 ≤ ` ≤ Lf − 1, |m| ≤ `, 0 ≤ j ≤ j2, where elements of the column vector

x(j, `,m) are given by xk =
(
Ξ(·; j)

)`
m,k
, |k| ≤ `, and elements of the matrix G and

column vector b are given by

Gk′,k =

(
8π2

2`+ 1

)(
Cs
`k,`k′ + Cz

`k,`k′

)
, bk′ = Cs

`m,`k′ , |k′| ≤ `. (3.87)

Proof. Using the expression for wavelet coefficients in (2.101) and (3.83), the joint

SO(3)-scale domain mean-square error in (3.85) can be written as

Emse = E

{
j2∑
j=0

〈
Lf−1∑
`,m,m′

(
8π2

2`+ 1

∑̀
k=−`

(f)k` (Ψ
(j))

m′

`

(
Ξ(·; j)

)`
m,k
− (s)m` (Ψ(j))

m′

`

)
×

D`
m,m′ ,

Lf−1∑
p,q,q′

(
8π2

2p+ 1

p∑
k′=−p

(f)k
′

p (Ψ(j))
q′

p

(
Ξ(·; j)

)p
q,k′
− (s)qp(Ψ

(j))
q′

p

)
Dp
q,q′

〉
SO(3)

}

=

j2∑
j=0

Lf−1∑
`,m,m′

(
8π2

2`+ 1

)
E

{(
8π2

2`+ 1

∑̀
k=−`

(f)k` (Ψ
(j))

m′

`

(
Ξ(·; j)

)`
m,k
− (s)m` (Ψ(j))

m′

`

)
×

(
8π2

2`+ 1

∑̀
k′=−`

(f)k
′
` (Ψ(j))

m′

` (Ξ(·; j))`m,k′ − (s)m` (Ψ(j))
m′

`

)}
,

(3.88)

where we have used orthogonality of Wigner-D functions on the SO(3) rotation group.
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Setting the derivative of Emse in (3.88) with respect to
(
Ξ(·; j)

)`
m,k′

equal to zero and

noting the fact that the source and noise signals are uncorrelated, i.e., (3.56), we get

the following linear system

∑̀
k=−`

(
8π2

2`+ 1

)(
Cs
`k,`k′ + Cz

`k,`k′

) (
Ξ(·; j)

)`
m,k

= Cs
`m,`k′ , |m|, |k′| ≤ `, (3.89)

which can be cast in the matrix form given in (3.86) using the expressions in (3.87)10.

Having found the spectral representation of the joint SO(3)-scale domain filter,

signal estimate s̃(x̂) is obtained from the wavelet coefficients in (3.83), using (2.104),

as

s̃(x̂) =

∫
S2

wΦ
f (ŷ) (D(ŷ)Φ)(x̂) ds(ŷ) +

j2∑
j=0

∫
SO(3)

wΨ(j)

s̃ (ρ)
(
D(ρ)Ψ(j)

)
(x̂) dρ

=

Lf−1∑
`,m

4π

2`+ 1

[∣∣(Φ)0
`

∣∣2 (f)m` + 2π
∑̀
m′=−`

j2∑
j=0

∣∣∣(Ψ(j)
)m′
`

∣∣∣2 ∑̀
k=−`

(f)k`
(
Ξ(·; j)

)`
m,k

]
Y m
` (x̂),

(3.90)

where we have used the scaling coefficient in (2.106) and the expression in (2.107) to

obtain the final result.

Remark 4. For wavelet functions which are axisymmetric, i.e.,
(
Ψ(j)

)m
`

=
(
Ψ(j)

)0

`
δm,0,

scale-discretized wavelet coefficients, given by (2.108), are functions defined on the

sphere. Hence, instead of the joint SO(3)-scale domain filter, we design a joint space-

scale domain filter as

Ξ(x̂; j) =

LΞj
−1∑

`,m

(
Ξ(·; j)

)m
`
Y m
` (x̂), LΞj = Lf , j ∈ [0, j2], (3.91)

whose action on the noise-contaminated observation f(x̂) is defined by the convolution

10It must be noted that the linear system formulated in (3.86) may become ill-conditioned at
severely low noise levels, in which case Moore-Penrose pseudo-inverse can be used to obtain the

filter coefficients
(
Ξ(·; j)

)`
m,k

.
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3.5 Multiscale optimal filter

of spherical signals, given by (2.78), i.e.,

wΨ(j)

s̃ (x̂) =

Lf−1∑
`,m

(√
4π

2`+ 1
(f)m` (Ψ(j))

0
`

)(
Ξ(·; j)

)m
`
Y m
` (x̂), (3.92)

which necessitates the minimization of the following joint space-scale domain mean-

square error for finding the spectral coefficients of the filter function in (3.91)

Emse = E

{
j2∑
j=0

∥∥∥wΨ(j)

s̃ (x̂)− wΨ(j)

s (x̂)
∥∥∥2

S2

}
. (3.93)

From the relation between Wigner-D functions and spherical harmonics in (2.49), it

can be seen that (3.92) can be obtained from (3.83) by setting m′ = 0 and
(
Ξ(·; j)

)`
m,k

=(
2`+1
8π2

) (
Ξ(·; j)

)m
`
δm,k. Hence, by setting k = k′ = m in (3.87), spectral coefficients of

the filter in (3.91) can be directly obtained from (3.86) and (3.87) as

(Ξ(·; j))m` =
Cs
`m,`m

(Cs
`m,`m + Cz

`m,`m)
. (3.94)

Solving (2.109) using (2.106), (2.111) and (3.92), signal estimate is obtained as

s̃(x̂) =

Lf−1∑
`,m

(
4π

2`+ 1

)[∣∣(Φ)0
`

∣∣2 +

j2∑
j=0

∣∣∣(Ψ(j)
)0

`

∣∣∣2 (Ξ(·; j)
)m
`

]
(f)m` Y

m
` (x̂). (3.95)

3.5.1 Analysis

Performance of the multiscale optimal filter is analyzed by using the Earth topogra-

phy, bandlimited to degree Lf = 64, as the source signal s(x̂), for which the spectral

covariance matrix is given by Cs
`m,pq = (s)m` (s)qp. We use azimuthally symmetric

wavelet and scaling functions for filtering and estimation of the Earth topography

map, by setting the dilation parameter ε to 2. Largest wavelet scale is set to J ,

which from (2.119) becomes 6 at bandlimit Lf = 64, resulting in a total of 7 wavelet

scales. Figure 3-10 shows an illustration of the multiscale optimal filtering framework

in which the Earth topography map is contaminated by zero-mean, uncorrelated and
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Joint domain optimal filtering on the sphere

(a) s(x̂) (b) z(x̂) (c) f(x̂) (d) s̃(x̂)

Figure 3-10: Multiscale optimal filtering of the Earth topography map s(x̂), bandlim-
ited to degree Lf = 64, which is contaminated by zero-mean, uncorrelated and white
Gaussian noise z(x̂) at SNRf = −0.057 dBs. Output SNR obtained from the source
signal estimate s̃(x̂) is 9.68 dBs, resulting in SNR improvement of 9.7 dBs.

white Gaussian noise11 at SNRf = −0.057 dBs. The output SNR is measured to be

9.68 dBs, giving an SNR gain of 9.7 dBs.

Comparison with hard thresholding and weighted-SPHARM methods

Performance of the multiscale optimal filtering framework is compared with the hard

thresholding method for signal denoising [84], in which the filtered wavelet coefficient,

at wavelet scale j, is given by the following hard thresholding scheme

wΨ(j)

s̃ (x̂) =



0,

∣∣∣wΨ(j)

f (x̂)
∣∣∣ < 3σj,

wΨ(j)

f (x̂), otherwise,

(3.96)

where 3σj is the threshold and σ2
j is the noise variance in the wavelet domain, i.e., [84]

σ2
j � E

{∣∣∣wΨ(j)

z (x̂)
∣∣∣
2
}

=

Lf−1∑
�,m

√
4π

2�+ 1
(Ψ(j))

0
�Y

m
� (x̂)

Lf−1∑
p,q

√
4π

2p+ 1

(
Ψ(j)

)0
p
Y q
p (x̂)×

E
{
(z)m� (z)

q
p

}
= σ2

Lf−1∑
�=0

(
4π

2�+ 1

) ∣∣∣(Ψ(j)
)0
�

∣∣∣
2
(
2�+ 1

4π

)
P�(x̂.x̂) = σ2

Lf−1∑
�=0

∣∣∣(Ψ(j)
)0
�

∣∣∣
2

,

(3.97)

11White noise parameter σ2 in (3.14) is specified by SNR = 0 dBs for this illustration.
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3.5 Multiscale optimal filter

where we have used the expression for wavelet coefficients in (2.108), the definition of

white noise spectral covariance matrix in (3.13), spherical harmonic addition theorem

in (2.34), and the fact that P`(1) = 1, to get the final result.

Multiscale optimal filter is also compared with the weighted spherical harmonic

(weighted-SPHARM) framework presented in [110], which uses Gauss-Weierstrass

kernel smoothing (GWKS) to obtain the signal estimate by minimizing the following

weighted squared error12

EKS ,
∫
S2

∫
S2

KGW(x̂, ŷ) |f(ŷ)− s̃GW(x̂)|2 ds(ŷ)ds(x̂)

=

∫
S2

∫
S2

KGW(x̂, ŷ)

f(ŷ)−
Lf−1∑
`,m

(s̃GW)m` Y
m
` (x̂)


f(ŷ)−

Lf−1∑
p,q

(s̃GW)qpY
q
p (x̂)

ds(ŷ)ds(x̂), (3.98)

where s̃GW(x̂) denotes the estimate of the source signal s(x̂), obtained from Gauss-

Weierstrass kernel smoothing, and KGW(x̂, ŷ) is the self-adjoint Gauss-Weierstrass

(GW) kernel given by [111]

KGW(x̂, ŷ) =

Lf−1∑
`,m

e−`(`+1)κY m
` (x̂)Y m

` (ŷ), κ ∈ [0, 1], (3.99)

which satisfies the following

∫
S2

KGW(x̂, ŷ)ds(ŷ) =

Lf−1∑
`,m

e−`(`+1)κY m
` (x̂)

∫
S2

Y m
` (ŷ)ds(ŷ) = 1, (3.100)

where we have used the expressions in (2.95) and (2.96) to solve the integral.

Differentiating EKS with respect to (s̃GW)m` and putting the result equal to zero

12Signal estimate obtained from weighted-SPHARM method will remain unchanged if Gauss-
Weierstrass kernel KGW is used without complex conjugation in (3.98) and the error is optimized

with respect to (s̃GW)qp. We use complex conjugate of KGW to reproduce the results of weighted-
SPHARM using complex spherical harmonics in exactly the same manner as in [110], i.e., optimizing
with respect to (s̃GW)m` (and not with its complex conjugate).

87



Joint domain optimal filtering on the sphere

gives the spectral estimate of the source signal as

(s̃GW)m` =

∫
S2

Y m
` (x̂)

∫
S2

f(ŷ)K(x̂, ŷ)ds(ŷ)ds(x̂)

=

∫
S2

Y m
` (x̂)

∫
S2

f(ŷ)

Lf−1∑
p,q

e−p(p+1)κY q
p (x̂)Y q

p (ŷ)ds(ŷ)ds(x̂)

=

Lf−1∑
p,q

(f)qpe
−p(p+1)κ

∫
S2

Y q
p (x̂)Y m

` (x̂)ds(x̂) = (f)m` e
−`(`+1)κ, (3.101)

where we have used (3.100) and orthonormality of spherical harmonics to get the final

result13. Hence, signal estimate using weighted-SPHARM framework is given by

s̃GW(x̂) =

Lf−1∑
`,m

e−`(`+1)κ(f)m` Y
m
` (x̂). (3.102)

For κ = 0, GW kernel becomes bandlimited Dirac delta kernel, i.e.,

KGW(x̂, ŷ) =

Lf−1∑
`,m

Y m
` (x̂)Y m

` (ŷ) , δ(x̂− ŷ), (3.103)

which reduces the weighted-SPHARM framework to traditional SPHARM, resulting

in the following signal estimate

s̃GW0(x̂) =

Lf−1∑
`,m

(f)m` Y
m
` (x̂). (3.104)

We contaminate the Earth topography map, bandlimited to degree Lf = 64,

with 100 realizations of a zero-mean, uncorrelated and white Gaussian noise process

at different values of SNRf , and compute the output SNR for multiscale optimal

filter, hard thresholding method and weighted-SPHARM based GWKS. Figure 3-11

shows the output SNR versus input SNR, averaged over all realizations14, in which

13Spectral estimate in (3.101) justifies our assumption about the bandlimit of KGW and s̃GW

being equal to Lf in (3.99) and (3.98) respectively.
14Average output SNR becomes negative in Figure 3-11 (and hence, is not shown on the logarith-

mic scale) at some values of the average input SNR for hard thresholding and weighted-SPHARM
methods.
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Figure 3-11: Output SNR, averaged over 100 realizations of a zero-mean, uncorrelated
and white Gaussian noise process, is plotted versus average input SNR for the esti-
mation of Earth topography map, bandlimited to degree Lf = 64, through multiscale
optimal filtering framework (blue curve), hard thresholding method (black curve),
and weighted-SPHARM based GWKS at different values of κ.

multiscale optimal filter can be seen to perform better than the hard thresholding

method, particularly in the low SNR regime. Since there is no systematic way of

choosing the GW kernel parameter κ for weighted-SPHARM framework, we estimate

the Earth topography map at various values of κ in the interval [0, 1] and show in

Figure 3-11 that multiscale optimal filter outperforms the weighted-SPHARM based

GWKS at all values of κ.

3.6 Performance comparison of joint domain opti-

mal filters

The filtering methods presented in Section 3.3, Section 3.5 and the optimal window

designs presented in Section 3.2, Section 3.4 optimize the mean-square error criterion

for joint domain filtering and estimation of signals on the sphere. In this section,

we compare the performance of the proposed filtering frameworks and their variants

employing optimal window signals, using the Earth topography map, bandlimited to
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Joint domain optimal filtering on the sphere

Figure 3-12: Output SNR, averaged over 100 realizations of a zero-mean, uncorre-
lated and anisotropic Gaussian noise process, is plotted against average input SNR
for filtering and estimation of the Earth topography map, bandlimited to degree
Lf = 32. Signal estimate is computed using joint spatial-spectral domain filter with
axisymmetric optimal window signal, joint SO(3)-spectral domain filter with rank 1
Slepian window signal for the spherical ellipse R(15◦,16◦), joint SO(3)-spectral domain
filter with directional optimal window signal and multiscale optimal filter employing
directional wavelet functions with dilation parameter ε = 2 and largest wavelet scale
set to J = 5. All the window signals are bandlimited to degree Lh = 16.

degree Lf = 32. We contaminate the map with 100 different realizations of a zero-

mean, uncorrelated and anisotropic Gaussian noise process, and obtain the spectral

estimate using joint spatial-spectral domain filter with axisymmetric optimal window

signal (bandlimited to degree Lh = 16), joint SO(3)-spectral domain filter with rank

1 (i.e., most well-optimally concentrated) Slepian window signal for the spherical el-

lipse R(15◦,16◦) (bandlimited to degree Lh = 16), joint SO(3)-spectral domain filter

with directional optimal window signal (bandlimited to degree Lh = 16) and multi-

scale optimal filter employing directional wavelet functions with dilation parameter

ε = 2 and largest wavelet scale set to J = 515. Output SNR obtained from the signal

estimates using each of these methods is averaged over all realizations. The results

15Directional wavelet functions are constructed for an azimuthal bandlimit of Lφ = 5. As before,
we refer the reader to [83, 85] for details on the construction of directionality component of wavelet
functions.
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are shown in Figure 3-12, which plots the average output SNR against average input

SNR.

Due to its ability to better reconstruct the directional features of the underlying

signal, along with the performance boost provided by the directional optimal window

signal, it is not unexpected for the joint SO(3)-spectral domain filter with directional

optimal window signal to outperform the other methods. Although directional wavelet

functions have the ability to record scale-dependent directional features of the signal,

the resulting multiscale optimal filter is independent of the wavelet scale due to the

scale-independent statistics of the signal and noise, which makes it low-performance

in comparison to the joint SO(3)-spectral domain filter.
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Chapter 4

Localized analysis over spherical

polygons

Analysis of spherical signals is aimed at extracting useful information from the un-

derlying data distributed over the sphere, and drawing inferences on the physical

variable/process represented by the data. Signal analysis can be performed globally

(over S2) or locally (over a region R ⊂ S2). Localized signal analysis finds applica-

tions in fields like astronomy, cosmology, geodesy and planetary sciences, where the

data is either unreliable or unavailable over some region on the sphere. For example,

measurements for the Earth gravitational or magnetic field are either unavailable or

are unreliable around the North/South pole. In cosmology, CMB, which contains in-

formation about the early stage of the universe, is obscured over considerable portion

of the sky by galactic emissions in the foreground. To support signal analysis in these

application areas, there is a need to perform localized analysis such as determining the

average value of a signal over some spatial region on the sphere, or finding localized

basis functions for accurate representation of spatially limited signals. As discussed

in Section 2.5, a localized basis set can be obtained by solving Slepian spatial-spectral

concentration problem on the sphere [73, 36, 74, 75, 38, 76, 77]. However, computa-

tion of Slepian basis functions requires evaluation of an integral over the given spatial

region on the sphere. Since integration over a spatially limited spherical region de-

pends on its boundary, localized signal analysis is often complicated by the shape
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of the underlying spatial region due to which, Slepian spatial-spectral concentration

problem has been studied for regions given by mathematically simple boundaries. For

instance, axisymmetric polar cap region, a pair of axisymmetric antipodal polar cap

regions with the same radius and a latitudinal belt region about the equator have

been considered in the formulation of Slepian problem in [36, 74, 75, 38]. In [76],

Slepian basis functions have been obtained over regions bounded by rings of constant

colatitude and longitude. Arbitrary-shaped regions have been considered in [77], but

the integrals are computed numerically.

In this chapter, a framework for the analytic evaluation of the integral of spheri-

cal signals, and for the analytic solution of the Slepian spatial-spectral concentration

problem, over simple spherical polygons is developed to support localized signal anal-

ysis on the sphere. A polygon right-angled triangulation method for the division of a

simple spherical polygon into spherical right-angled triangles is proposed, which al-

lows to decompose the problem of integrating signals, or solving the spatial-spectral

concentration problem, over polygon region into sub-problems that require evaluation

of an integral of complex exponential functions over spherical right-angled triangles

of arbitrary orientation and position. We derive closed-form expressions for the eval-

uation of such integrals by finding appropriate rotation angles and using Wigner-D

functions. We also present convergence criterion for the infinite series expansions in-

volved in the evaluation of the integral of complex exponential functions, and establish

the validity of the proposed developments by evaluating the integral and computing

the Slepian basis functions over the geographical region of Australia and the volcanic

plateau of Tharsis, using the Earth and Mars topography maps respectively.

4.1 Spherical polygon

We consider a non-self-intersecting, and in general non-convex, polygon on the surface

of sphere, denoted by RP ⊂ S2, such that

int{RP} ∪ bd{RP} = RP , (4.1)
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i.e., without any holes in it (int{RP} and bd{RP} denote the interior and boundary

of the polygon respectively). We refer to such simple spherical polygon as spherical

polygon (or just polygon) for short. An n-sided spherical polygon is specified by n

points on the surface of the sphere, called vertices, and n great circle arcs between

pairs of adjacent vertices, which define the boundary of the polygon and are referred

to as boundary edges1. We define diagonals as permissible edges, i.e., non-intersecting

edges between non-adjacent vertices which lie completely inside the polygon. Due to

the bounded nature of the spherical domain, there is ambiguity about the interior of

the polygon. To resolve this ambiguity, definition of the polygon is augmented with

the information of its centroid (mean of the vertices) as either being inside or outside

the polygon.

4.1.1 Polygon right-angled triangulation

Polygon triangulation problem has been studied for decades in the field of compu-

tational geometry. Over the years, many different schemes have been proposed for

triangulating polygons (e.g. [112, 113, 114, 115, 116, 117, 118]). However, most of

the triangulation schemes are applicable to planar polygons. An important trian-

gulation scheme which can triangulate polygons in k-dimensions (where k ≥ 2) is

Delaunay triangulation [112], which triangulates the convex hull of a given set of

points, P , in such a way that the interior of the circumscribed circles (or circum-

scribed spheres for higher dimensions) does not contain any point from P . There

exist extensions of Delaunay triangulation for a set of points distributed on the sur-

face of the sphere (e.g. [119, 120]) but these extensions also triangulate the convex

hull of the set of points and hence, are not applicable to non-convex spherical poly-

gons. To the best of our knowledge, there exists no triangulation scheme which uses

great circle arcs to triangulate simple non-convex polygons on the sphere.

We propose a triangulation scheme which seeks to find all possible diagonals for

an n-sided simple, non-convex spherical polygon. Once the polygon has been trian-

gulated, it is divided into spherical right-angled triangles by dividing each non-right-

1An edge is defined as the great circle arc between any two vertices of the spherical polygon.
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angled triangle into two right-angled triangles. Due to the periodic nature of the

spherical domain, polygon triangulation is performed quadrant-wise along the longi-

tude, i.e., the whole spherical domain is divided into sub-domains, called quadrants,

where the k-th quadrant is specified by φ = [(k−1)π/2, kπ/2], θ = [0, π], k = 1, 2, 3, 4.

A summary of the polygon right-angled triangulation method is given below.

1. If the north pole (θ = 0) and/or the south pole (θ = π) are inside the polygon

and do not represent vertex of the polygon, then place vertex at their respective

positions.

2. Bisect the boundary edges (by placing a vertex midway between the vertices of

the respective edges) which have arc-length greater than π/2. This ensures that

maximum great circle arc-length of a spherical right-angled triangle is either less

than or equal to π/2.

3. Limit the edges to within their respective quadrants by placing vertices at the

intersection of the quadrant boundaries and those edges which cross them. Con-

struct edges along the quadrant boundaries, between the newly created vertices,

only if these edges lie inside the polygon.

4. Identify those vertices which lie within the quadrant under consideration and

construct all possible non-intersecting edges among them. Identify diagonals as

those non-intersecting edges which lie completely inside the polygon.

5. Bisect the diagonals (by placing a vertex midway between the vertices of the

respective diagonals) which have arc-length greater than π/2.

6. Finding the diagonals results in the triangulation of the region of the polygon

within the quadrant under consideration. Repeat steps 3 to 5 for all longitudinal

quadrants to triangulate the whole polygon.

7. Traverse through all triangles and identify those which are not right-angled (by

finding the interior angles). For each non-right-angled triangle, find the vertex

with the maximum interior angle. By constructing a perpendicular great circle
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4.1 Spherical polygon

Procedure 1 Point-in-Spherical Polygon Algorithm

Require: pinside

1: procedure Point-in-Spherical Polygon(B, û, ĉ)

2: e← great circle arc between points û and ĉ

3: Find number of intersections between e and boundary edges ∈ B
4: if ĉ ∈ interior of Polygon then

5: if number of intersections is even then
6: pinside = 1
7: else
8: pinside = 0
9: end if

10: else
11: if number of intersections is odd then
12: pinside = 1
13: else
14: pinside = 0
15: end if
16: end if
17: return pinside

18: end procedure

arc from this vertex to the great circle arc formed by the other two vertices,

divide each non-right-angled triangle into two right-angled triangles.

Following these steps, a spherical polygon region RP can be divided into disjoint

spherical right-angled triangles as

RP =

N∆⋃
t=1

R̃t, (4.2)

where R̃t is the region bounded by the t-th spherical right-angled triangle and N∆ is

the number of spherical right-angled triangles. We further elaborate on the proposed

triangulation method by presenting algorithms to carry out steps 1, 3 and 4.

Step 1: North/south pole in spherical polygon

Finding whether north/south pole lies inside a spherical polygon is essentially a point-

in-polygon problem for which the ray casting algorithm is employed, using centroid
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Procedure 2 Finding Diagonals Algorithm

Require: D
1: procedure Finding Diagonals(B, vD, ĉ)

2: for v̂k ∈ vD do
3: for v̂p ∈ vD, v̂p 6= v̂k do

4: e← great circle arc between vertices v̂k and v̂p

5: n← Number of intersections between e and boundary edges ∈ B
and diagonals ∈ D

6: if n = 0 then
7: m̂← GreatCircleMidPoint(e)

8: pinside = Point-in-Spherical Polygon (B, m̂, ĉ)
9: if pinside = 1 then

10: D ← e
11: end if
12: end if
13: end for
14: end for
15: return D
16: end procedure

of the polygon as the emanating point and north/south pole as the ending point of

the ray2. In the algorithm presented in Procedure 1, the point to be tested (e.g.,

north/south pole in this case) is denoted by û, ĉ is the centroid, B represents the set

of boundary edges of the polygon and pinside is a flag which is either 0 or 1, indicating

that the point under test is either outside or inside the polygon respectively.

Step 3: Identifying permissible edges along quadrant boundaries

Edges along the quadrant boundaries lie either completely inside or completely outside

the polygon. Hence, the point-in-spherical polygon algorithm, in Procedure 1, can be

used again by setting û equal to the mid-point of the edge under consideration.

Step 4: Finding diagonals

Let vD denote the subset of vertices v which participate in the creation of diagonals

and D be the set of diagonals, then the algorithm to identify diagonals is given in

2A ray on the sphere is a great circle arc.
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Figure 4-1: Right-angled triangulation of a spherical polygon which is located in the
longitudinal quadrants 2 and 3. Vertices shown in yellow are created as a result of
either limiting the edges to respective quadrants or dividing the spherical triangles into
spherical right-angled triangles. Thick black dot marks the centroid of the polygon.

Procedure 2. Please note that GreatCircleMidPoint(e) returns the mid-point of the

edge e.

As an illustration of the polygon right-angled triangulation algorithm, an arbitrary-

shaped spherical polygon and its right-angled triangulation are shown in Figure 4-1.

4.2 Localized signal analysis over simple polygons

on the sphere

Polygon right-angled triangulation method, presented in Section 4.1.1, facilitates the

problem of localized signal analysis by reducing the computational framework to

spherical right-angled triangles. In this section, we present formulations for:

i. analytical evaluation of the integral of a signal,
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Figure 4-2: Spherical right-angled triangle in standard orientation with vertices
â(π/2, 0), b̂(θb,t, 0) and ĉ(π/2, φc,t), where θb,t = 5π/18 and φc,t = 2π/9.

ii. analytical solution of Slepian spatial-spectral concentration problem of finding

bandlimited signals with optimal spatial energy concentration,

over spherical right-angled triangles. By finding appropriate rotation angles and

employing Wigner-D functions, the results for spherical right-angled triangles are

mapped to simple polygons on the sphere.

4.2.1 Integration of signals over a spherical polygon

We consider the integral of a signal f ∈ L2(S2) over a simple spherical polygon region

RP as

IRP
=

∫

RP

f(x̂)ds(x̂) =

N∆∑
t=1

∫

R̃t

f(x̂)ds(x̂), (4.3)

where the expression in (4.2) has been used to obtain the second equality. To eval-

uate the integral of the signal f(x̂) over the t-th spherical right-angled triangular

region R̃t, we rotate the t-th spherical right-angled triangle, using the rotation ma-
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4.2 Localized signal analysis over simple polygons on the sphere

trix Rzyz(ϕt, ϑt, ωt) defined in (2.12), such that

Rzyz(ϕt, ϑt, ωt)û ∈ R(θb,t, φc,t), ∀ û ∈ R̃t, (4.4)

where the Euler angles (ϕt, ϑt, ωt) depend on the position and orientation of the

t-th spherical right-angled triangle R̃t and R(θb,t, φc,t) ≡ Rt is the spherical right-

angled triangle with vertices â(π/2, 0), b̂(θb,t, 0) and ĉ(π/2, φc,t) for 0 < φc,t ≤ π/2,

0 ≤ θb,t < π/2, for instance, as shown in Figure 4-2. We refer to the spherical right-

angled triangle Rt, having sides aligned with θ = π/2 and φ = 0 great circles, as the

spherical right-angled triangle in “standard” orientation.

Integral of the signal f(x̂) over the t-th arbitrarily oriented spherical right-angled

triangular region R̃t can then be determined by rotating the signal through the ro-

tation operator D(ϕt, ϑt, ωt), which corresponds to the rotation matrix in (4.4), and

evaluating the integral of the rotated signal (D(ϕt, ϑt, ωt)f)(x̂) over the spherical

right-angled triangular region Rt, i.e.,

∫
R̃t

f(x̂)ds(x̂) =

∫
Rt

(D(ϕt, ϑt, ωt)f)(x̂)ds(x̂)

=
∞∑
`,m

(f)m`

∫
Rt

(D(ϕt, ϑt, ωt)Y
m
` )(x̂)ds(x̂), (4.5)

where Fourier expansion of signals in (2.23) has been used. Using the spectral

representation of rotated signals in (2.46) along with orthonormality of spherical

harmonics on the sphere, we can evaluate the rotated spherical harmonic function

(D(ϕt, ϑt, ωt)Y
m
` )(x̂) as

(D(ϕt, ϑt, ωt)Y
m
` )(x̂) =

∞∑
p,q

〈
D(ϕt, ϑt, ωt)Y

m
` , Y

q
p

〉
S2 Y

q
p (x̂)

=
∞∑
p,q

(
p∑

q′=−p

Dp
q,q′(ϕt, ϑt, ωt)

〈
Y m
` , Y

q′

p

〉
S2

)
Y q
p (x̂)

=
∑̀
q=−`

D`
q,m(ϕt, ϑt, ωt)Y

q
` (x̂), (4.6)
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which enables us to write the integral in (4.3) as

IRP =
∞∑
`,m

(f)m`

N∆∑
t=1

∑̀
q=−`

D`
q,m(ϕt, ϑt, ωt)

∫
Rt

Y q
` (x̂)ds(x̂)

=
∞∑
`,m

(f)m`

N∆∑
t=1

∑̀
q=−`

D`
q,m(ϕt, ϑt, ωt)

∑̀
m′=−`

F `
m′,q

2i
×

(
I(q,m′ + 1, θb,t, φc,t)− I(q,m′ − 1, θb,t, φc,t)

)
, (4.7)

where

F `
m′,q = (−i)q

√
2`+ 1

4π
∆`
m′,q ∆`

m′,0, ∆`
m′,q , d`m′,q(π/2), (4.8)

and (2.53) has been used to get the final result. Here,

I(q,m, θb,t, φc,t) =

∫
Rt

eiqφeimθ dθ dφ (4.9)

represents the integral of product of complex exponential functions over the spherical

right-angled triangle in standard orientation. An analytical expression to evaluate

I(q,m, θb,t, φc,t) is given in Section 4.2.3.

4.2.2 Slepian functions over a spherical polygon

Bandlimited and spatially optimally concentrated Slepian functions are obtained as

solution to the eigenvalue problem given in (2.60), which is repeated here for ease of

reference

K gα = λα gα, α = 1, 2, . . . , L2
g, (4.10)

where Lg is the bandlimit of the Slepian function gα(x̂), gα is a column vector repre-

senting the spectral components of gα(x̂) according to the indexing scheme introduced

in (2.30), and λα is the fractional energy concentration of gα(x̂) within the spatial

region under consideration. Slepian functions for the spherical polygon RP can be
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4.2 Localized signal analysis over simple polygons on the sphere

computed by constructing the matrix K from its elements K`m,pq as

K`m,pq =

∫
RP

Y m
` (x̂)Y q

p (x̂)ds(x̂)

=

N∆∑
t=1

∫
R̃t

Y m
` (x̂)Y q

p (x̂)ds(x̂)

=

N∆∑
t=1

∫
Rt

(
D(ϕt, ϑt, ωt)Y m

` Y q
p

)
(x̂)ds(x̂)

=

N∆∑
t=1

∑̀
m′=−`

p∑
q′=−p

D`
m′,m(ϕt, ϑt, ωt)D

p
q′,q(ϕt, ϑt, ωt)

∫
Rt

Y m′
` (x̂)Y q′

p (x̂)ds(x̂)

=

N∆∑
t=1

∑̀
m′=−`

p∑
q′=−p

D`
m′,m(ϕt, ϑt, ωt)D

p
q′,q(ϕt, ϑt, ωt)×

∑̀
m′′=−`

F `
m′′,m′

p∑
q′′=−p

F p
q′′,q′Gm′q′,m′′q′′ , (4.11)

where F `
m′′,m′ is given in (4.8),

Gmq,m′q′ =

∫
Rt

ei(q−m)φei(m
′+q′)θ sin θdθdφ

=
1

2i

(
I(q −m,m′ + q′ + 1, θb,t, φc,t)− I(q −m,m′ + q′ − 1, θb,t, φc,t)

)
,

(4.12)

I represents the integral of product of complex exponential functions given in (4.9),

and we have used (4.6) and (2.53) to obtain the penultimate and final expressions

respectively.

4.2.3 Evaluation of the integral of complex exponential func-

tions

Evaluation of the integral of spherical signals and computation of Slepian functions,

over polygon region RP , depends on the integral I(q,m, θb,t, φc,t) given in (4.9). We

first define the spatial region bounded by the t-th spherical right-angled triangle Rt (in

standard orientation), which in turn requires the parameterization of great circles.
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Localized analysis over spherical polygons

Parameterization of great circles

A great circle on the sphere can be parameterized with a unit outward normal vector,

denoted by n̂(Θ,Ω), having colatitude Θ ∈ [0, π] and longitude Ω ∈ [0, 2π)3, such

that

Rzyz(0,−Θ,−Ω) n̂ = (0, 0, 1)T, (4.13)

where Rzyz(0,−Θ,−Ω) is the rotation matrix defined in (2.12) and (0, 0, 1)T ≡ η̂

represent the north pole on the sphere. Denoting a point on the great circle by

x̂(θ, φ), we note that rotating the great circle by −Ω around z-axis transforms x̂(θ, φ)

to x̂(θ, φ−Ω). Second rotation by −Θ around y-axis transforms x̂(θ, φ−Ω) to a point

on the equator, given by x̂(π/2, φ−Ω+4φ), where4φ is the change in longitude due

to the rotation around y-axis. Third rotation around z-axis should bring φ−Ω +4φ

to some reference longitude. We choose the reference longitude to be 0, which gives

the third angle as

Λ(θ, φ) = Ω− φ−4φ. (4.14)

Hence, we can express the rotation of great circle in the following compact form

Rzyz(Λ,−Θ,−Ω) x̂ = (1, 0, 0)T, (4.15)

which results in the following set of equations

sin θ
[

sin(Λ) sin(Ω− φ) + cos Θ cos(Λ) cos(Ω− φ)
]
− cos θ sin Θ cos(Λ) = 1,

sin θ
[

cos Θ sin(Λ) cos(Ω− φ)− cos(Λ) sin(Ω− φ)
]
− sin Θ cos θ sin(Λ) = 0,

sin θ sin Θ cos(Ω− φ) + cos Θ cos θ = 0,

(4.16)

3Since outward normal vector to the great circle passes through the center of the spherical coor-
dinate system, it can equivalently be parameterized by n̂(π − Θ, π + Ω), which is antipodal to the
point n̂(Θ,Ω) on the sphere.

104



4.2 Localized signal analysis over simple polygons on the sphere

where we have dropped the dependence of Λ on (θ, φ) for convenience and have used

the definition of x̂(θ, φ) in (2.5). From the second expression in (4.16), we find Λ as

Λ(θ, φ) = atan2

(
sin θ sin(Ω− φ)

cos Θ sin θ cos(φ− Ω)− sin Θ cos θ

)
, (4.17)

where atan2(·) is the four-quadrant inverse tangent function. Equation of the great

circle parameterized by the unit outward normal vector n̂(Θ,Ω) is obtained, by solving

the third expression in (4.16), as

tan θ = − cot Θ

cos(Ω− φ)
. (4.18)

Now referring to Figure 4-2, let the side of the spherical right-angled triangle joining

the vertices b̂ and ĉ be a part of the great circle with unit outward normal vector

given by n̂(Θo,Ωo). Solving (4.18) for vertices b̂ and ĉ, we get

Ωo = φc,t +
π

2
, Θo = cot−1

(
tan θb,t sinφc,t

)
. (4.19)

Since 0 < φc,t ≤ π/2 and 0 ≤ θb,t < π/2, unit outward normal vector n̂(Θo,Ωo)

is a point in the (−,+,+) octant on the sphere which implies Ωo ∈ (π/2, π] and

Θo ∈ (0, π/2]. Using (4.19), the great circle arc between vertices b̂ and ĉ is given by

the following equation

tan θ =
kt(θb,t, φc,t)

sin(φc,t − φ)
, kt(θb,t, φc,t) = tan θb,t sinφc,t. (4.20)

For notational convenience, the dependence of kt on θb,t and φc,t is dropped, i.e., kt ≡

kt(θb,t, φc,t) for the remainder of this work. Having parameterized the great circle arc

between vertices b̂ and ĉ of the spherical right-angled triangle in standard orientation,

we present analytical expressions for the evaluation of the integral I(q,m, θb,t, φc,t) in

the following theorem.

Theorem 6. Integral of the form given in (4.9), where Rt ≡ R(θb,t, φc,t) represents the

spatial region bounded by the spherical right-angled triangle in standard orientation,
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is given by

I(q,m, θb,t, φc,t) =



I(0, 0, θb,t, φc,t), q = 0, m = 0,

imφc,t
im
− 1

im
S(0,m, θb,t, φc,t), q = 0, m 6= 0,

π(eiqφc,t−1)
2iq

−Q(q, θb,t, φc,t), q 6= 0, m = 0,

−im(eiqφc,t−1)
mφ

− 1
im
S(q,m, θb,t, φc,t), q 6= 0, m 6= 0,

(4.21)

where

I(0, 0, θb,t, φc,t) =



π
2
φ1 +

∞∑
n1=0

kt(−1)n1

(2n1+1)
W1(θb,t, φc,t, φ1, n1)+

∞∑
n2=0

kt(−1)n2

(2n2+1)
W2(θb,t, φc,t, φc,t − φ1, n2), 0 ≤ θb,t <

π
4
,

∞∑
n3=0

kt(−1)n3

(2n3+1)
W2(θb,t, φc,t, φc,t, n3), π

4
≤ θb,t <

π
2
,

(4.22)

Q(q, θb,t, φc,t) = −e
iqφc,t

iq

(
e−iqφc,t tan−1

(
kt

sinφc,t

)
− π

2

)
−

eiqφc,tkt
iq

|q|∑
n0=0

(
|q|
n0

)
A(q, n0)W3(n0, q, θb,t, φc,t), (4.23)

S(q,m, θb,t, φc,t) = eiqφc,t
|q|∑

n0=0

(
|q|
n0

)
A(q, n0)

|m|∑
r=0

(−1)r
(
|m|
r

)
×

A(m, r) k
|m|−r
t W4(n0, r, q,m, θb,t, φc,t), (4.24)

φ1 = φc,t − sin−1(kt), (4.25)

A(q, n0) =

i
|q|−n0 , q ≥ 0,

(−i)|q|−n0 , q < 0,

(4.26)
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W1(θb,t, φc,t, φ1, n1) =
∞∑

J1=0

(
−1/2

J1

)
(−1)J1 ×


[

(kt/ sinφ)2n1 sin2J1 φ
(2n1−2J1)

∣∣∣φc,t
φc,t−φ1

, n1 6= J1,

[
k2J1
t log(1/ sinφ)

∣∣φc,t
φc,t−φ1

, n1 = J1,

(4.27)

W2(θb,t, φc,t, φu, n2) =
∞∑

J2=0

(
−1/2

J2

)
(−1)J2 ×

[
(sinφ/kt)

2n2+2 sin2J2 φ

(2n2 + 2 + 2J2)

∣∣∣∣φu
0

, (4.28)

W3(n0, q, θb,t, φc,t) =
(− sinφc,t)

(1+|q|−n0)

k2
t (n0 − |q| − 1)

×

F1

(
(1 + |q| − n0)

2
,
−n0

2
, 1,

(3 + |q| − n0)

2
, sin2 φc,t,−

sin2 φc,t
k2
t

)
, (4.29)

W4(n0, r, q,m, θb,t, φc,t) =
(− sinφc,t)

1+|q|−n0+r

k
|m|
t (n0 − r − |q| − 1)

×

F1

(
(1 + |q| − n0 + r)

2
,
1− n0

2
,
|m|
2
,
(3 + |q| − n0 + r)

2
, sin2 φc,t,−

sin2 φc,t
k2
t

)
.

(4.30)

F1 is the AppellF1 hypergeometric function.

Proof. See Appendix A for the proof of Theorem 6 and Section 4.2.5 for the conver-

gence criteria of infinite series expansions.

4.2.4 Rotation of spherical right-angled triangles

It remains to determine the rotation angles in (4.4) for the rotation of a spheri-

cal right-angled triangle in arbitrary orientation such that the rotated triangle is in

standard orientation. A t-th arbitrarily oriented spherical right-angled triangle, with

vertices v̂1,t(θv1 , φv1), v̂2,t(θv2 , φv2), v̂3,t(θv3 , φv3), bounding spatial region R̃t, can be

transformed into standard orientation through a sequential rotation by ω around z-
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Figure 4-3: Possible orientations of a randomly oriented spherical right-angled triangle
after first pass of zyz rotation by angles ϕ1 ϑ1 ω1 (in the order from right to left in
zyz-convention).

axis, ϑ around y-axis and ϕ around z-axis in the zyz convention. Assuming v̂1,t to be

the “right” vertex (which has an interior angle of 90◦), angles ϕ, ϑ, ω can be found

by rotating one of the arcs out of v̂1,t − v̂2,t and v̂1,t − v̂3,t onto the equator, which

brings the arbitrarily oriented spherical right-angled triangle into one of four possible

orientations shown in Figure 4-3. Hence, rotation of an arbitrarily oriented spherical

right-angled triangle into the standard orientation is a two phase process.

In the first rotation phase, we choose to rotate the longer of the two arcs (v̂1,t−v̂2,t,

v̂1,t− v̂3,t) onto the equator if this choice results in the rotation of arbitrarily oriented

spherical right-angled triangle into the orientation 0 or 2, we choose to rotate the

shorter arc onto the equator otherwise. Angles obtained in this way for the first

rotation phase are given by

ω1 = −Ω, ϑ1 = −Θ, ϕ1 =



Λ(θv1 , φv1)− Ω, θv1 = 0, π,

Λ(θv1 , φv1), otherwise,

(4.31)
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where n̂(Θ,Ω) is the unit outward normal vector of the great circle containing the

chosen arc (out of v̂1,t− v̂2,t and v̂1,t− v̂3,t) for rotation onto the equator, and Λ(θ, φ)

is given in (4.17). Note that ω1 = ϑ1 = ϕ1 = 0 if the arbitrarily oriented spherical

right-angled triangle is already in one of the orientations 0− 3. Angles for the second

rotation phase are given by

orientation 0 : ω2 = ϑ2 = ϕ2 = 0, (4.32)

orientation 1 : ω2 = −π
2
, ϑ2 =

π

2
, ϕ2 =

π

2
, (4.33)

orientation 2 : ω2 = π, ϑ2 = π, ϕ2 = 0, (4.34)

orientation 3 : ω2 = −π
2
, ϑ2 = −π

2
, ϕ2 =

π

2
. (4.35)

Hence, a t-th arbitrarily oriented spherical right-angled triangle can be rotated into

standard orientation using (4.4), in which

Rzyz(ϕt, ϑt, ωt) =

Rzyz(ϕ1, ϑ1, ω1), single phase rotation,

Rzyz(ϕ2, ϑ2, ω2)Rzyz(ϕ1, ϑ1, ω1), two phase rotation.

(4.36)

4.2.5 Computational considerations

For evaluation of the integral I(q,m, θb,t, φc,t) using the results presented in Theorem 6,

Wigner-d functions ∆`
m,n must be known and infinite series expansions in equations

(4.22), (4.27) and (4.28) must be truncated in such a way that the truncation error

is insignificant. ∆`
m,n are computed using the recursions in [99, 100], as commented

at the end of Section 2.4, and the infinite series expansions are truncated according

to the criteria given below.

Taylor series expansion of tangent inverse

Taylor series expansion of tan−1(·) in (A.6) results in an alternating series4. If SN

denotes the partial sum of N + 1 terms in the series and S denotes the limit point of

4An alternating series is given by
∞∑
k=0

(−1)kak, ak > 0∀ k.
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the series, then from the alternating series estimation theorem [121],

|SN − S| ≤ aN+1, (4.37)

where aN+1 is the (N + 2)th term in the alternating series and marks the residual

error. Hence, the two alternating series, indexed by n1 and n2 in (A.6) and (A.7),

can be truncated at N1 and N2 respectively, if

aN1+1 =
1

2(N1 + 1) + 1

(
kt

sin(φc,t − (φ1 − δN1))

)2(N1+1)+1

≤ tol, (4.38)

aN2+1 =
1

2(N2 + 1) + 1

(
sin(φc,t − (φ1 + δN2))

kt

)2(N2+1)+1

≤ tol, (4.39)

where tol is the preset tolerance. To ensure that the residual error of the partial

sum of the series in (A.6) is below a certain threshold for all values of φ ∈ [0, φ1],

aN1+1 in (4.38) must be evaluated at φ = φ1, because the residual error will be

smaller at all other values of φ (for fixed N1). However, this proposed choice requires

an unnecessarily large number of terms to reduce aN1+1 as kt/ sin(φc,t − φ1) = 1.

Consequently, the residual error is minimized at φ = φ1 − δN1, where δN1 is a small

deviation from φ1. Similarly, for the residual error of the partial sum of the series in

(A.7) to be below a certain threshold for all values of φ ∈ [φ1, φc,t], aN2+1 should be

minimized at φ = φ1 but since sin(φc,t−φ1)/kt = 1, it will take an unnecessarily large

number of terms to reduce aN2+1. Hence, aN2+1 is minimized instead at φ = φ1 + δN2,

where δN2 is a small deviation from φ1.

Following a similar argument, the alternating series indexed by n3 in (4.22) can

be truncated at N3 if

aN3+1 =
1

2(N3 + 1) + 1

(
sin(φc,t − δN3)

kt

)2(N3+1)+1

≤ tol, (4.40)

where δN3 is a small increment if θb,t = π/4 and is zero otherwise.
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Generalized binomial expansion

We propose to truncate the generalized binomial expansion in (A.9) and (A.10) at

J1 = TJ1 and J2 = TJ2 respectively, such that∣∣∣∣∣∣secφc,t −
TJ1∑
J1=0

(
−1/2

J1

)
(−1)J1 sin2J1 φc,t

∣∣∣∣∣∣ ≤ tol, (4.41)

∣∣∣∣∣∣sec(φc,t − φ1)−
TJ2∑
J2=0

(
−1/2

J2

)
(−1)J2 sin2J2(φc,t − φ1)

∣∣∣∣∣∣ ≤ tol, (4.42)

where tol denotes the preset tolerance and slowest rate of convergence has been con-

sidered in the truncation criterion.

4.3 Numerical validation and illustrations

We establish the validity of the integrals formulated in Section 4.2.1 and Section 4.2.2

using the Earth and Mars topography maps5. The geographical region of Australia is

used for illustration on the Earth topography map. The Australian coastlines data is

extracted from the worldmap data, available in MATLAB, to obtain a spherical polygon

with 299 vertices. To speed up computation, the Australian polygon is manually

down-sampled to 124 vertices and triangulated to obtain 244 spherical right-angled

triangles. Geographical region of Australia and its down-sampled version are shown

in Figure 4-4, from which it can be seen that the down-sampled Australian polygon

is not much different from the original Australian polygon. We evaluate the integral

of the Earth topography map and compute bandlimited Slepian functions over the

down-sampled Australian region, which from now on is referred to as Australia, and

is denoted by RA.

For illustration on the Mars topography map, which is processed to have zero

5Please refer to Footnote 5 (on page 62) and Footnote 8 (on page 72) for the source of Earth and
Mars topography maps respectively.
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Figure 4-4: Geographical region of Australia (shown in blue) and its down-sampled
version (shown in black), excluding Tasmania and neighboring islands.

Figure 4-5: Simple polygon, which encloses the volcanic plateau of Tharsis on the
Mars topography map, and its right-angled triangulation. Boundary of the polygon
is shown in black. Thick black dot marks the centroid of the polygon.

average value and unit norm, a simple polygon is constructed on the sphere with 6

vertices at positions (θ, φ) = (45◦, 54◦), (63◦, 94◦), (87◦, 102◦), (114◦, 80◦), (110◦, 42◦),
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(a) (b)

Figure 4-6: (a) Earth topography map, bandlimited to degree L = 32, (b) Earth
topography map reconstructed over Australia at bandlimit L = 32, using NRA

≈ 15
Slepian functions. Boundary of Australia is shown in black.

(79◦, 18◦), such that the polygon encloses the volcanic plateau of Tharsis on Mars.

For simplicity, we refer to the region of the Mars topography map enclosed by the

polygon as Tharsis and denote it by RT . The polygon is triangulated to obtain 12

spherical right-angled triangles, which are shown in Figure 4-5.

Preset tolerance in (4.38), (4.39), (4.40), (4.41) and (4.42), for both illustrations,

is set to 10−16 (double floating point numerical precision).

Integrating Earth and Mars topography maps over Australia and Tharsis

respectively

We consider the Earth and Mars topography maps as the test signals, bandlimited to

degree L = 32 and shown in Figure 4-6 and Figure 4-7, for integration over Australia

and Tharsis respectively. We verify the integration using the Gauss-Legendre (GL)

quadrature rule [58] applied to the samples within the polygons enclosing Australia

and Tharsis respectively. GL sampling scheme, parameterized by L1, places L1 iso-
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(a) (b)

Figure 4-7: (a) Mars topography map, bandlimited to degree L = 32, (b) Mars
topography map reconstructed over Tharsis at bandlimit L = 32, using NRT

≈ 93
Slepian functions. Boundary of Tharsis is shown in black.

latitude rings (rings of constant colatitude) of samples on the sphere at locations given

by the roots of the Legendre polynomial of degree L1, with each ring having 2L1 − 1

uniformly placed samples along longitude. For the test signal f(x̂), GL quadrature

on the sphere, utilizing these samples, is computed as

IGL,L1,S2 =

∫

S2
f(θ, φ) sin θdθdφ =

2π

2L1 − 1

L1−1∑
j=0

2L1−1∑
k=0

wj(θj)f(θj, φk), (4.43)

where wj(θj) is the GL quadrature weight for the iso-latitude ring located at θ =

θj [58]. We use the GL quadrature in (4.43) (which is exact for bandlimit L ≤ L1) to

approximate the integration of the test signal f(x̂) over a spherical polygon bounding

spatial region RP , as

IGL,L1,RP
=

∫

RP

f(θ, φ) sin θdθdφ ≈ 2π

2L1 − 1

L1−1∑
j=0

2L1−1∑
k=0

wj(θj)f(θj, φk)m(θj, φk),

(4.44)
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4.3 Numerical validation and illustrations

Figure 4-8: Fractional error between the integral of the Earth (Mars) topography
map (bandlimited to degree L = 32), evaluated over Australia (Tharsis) using the
formulation in (4.7) and GL quadrature rule in (4.44), for L ≤ L1 ≤ 2048.

where

m(θj, φk) =



1, (θj, φk) ∈ RP ,

0, otherwise

(4.45)

limits the spatial extent of the bandlimited test signal f(x̂) to within the polygon and

hence, essentially makes f(x̂) a band-unlimited signal. As a result, approximation in

(4.44) approaches equality as L1 → ∞.

We evaluate IRP
using the proposed analytic formulation in (4.7), compute IGL,L1,RP
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Localized analysis over spherical polygons

for different values of L1, and obtain the fractional error, given by

eRP
(L1) =

IRP
− IGL,L1,RP

IRP

. (4.46)

Figure 4-8 shows the fractional error curves eRA
and eRT

, for the Australian and

Tharsis regions on the Earth and Mars topography maps respectively, versus the GL

sampling scheme parameter L1. It is evident that the integral of the Earth and Mars

topography maps, over the spherical polygons representing the regions of Australia

and Tharsis respectively, obtained using GL quadrature rule approaches the analytical

expression given in (4.7) as the number of GL samples are increased.

(a) λ = 0.9985 (b) λ = 0.9976 (c) λ = 0.9927 (d) λ = 0.985

(e) λ = 0.9676 (f) λ = 0.9542 (g) λ = 0.933 (h) λ = 0.8949

Figure 4-9: Magnitude of the first 8 Slepian functions computed for Australia at
bandlimit L = 32. Boundary of Australia is shown in black.

Computation of Slepian functions over Australia and Tharsis

For the computation of Slepian functions over the regions of Australia, i.e., RA,

and Tharsis, i.e., RT , the respective matrices in (4.10), for bandlimit L = 32, are
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4.3 Numerical validation and illustrations

(a) λ ≈ 1 (b) λ ≈ 1 (c) λ ≈ 1 (d) λ ≈ 1

(e) λ ≈ 1 (f) λ ≈ 1 (g) λ ≈ 1 (h) λ ≈ 1

Figure 4-10: Magnitude of the first 8 Slepian functions computed for Tharsis at
bandlimit L = 32. Boundary of Tharsis is shown in black.

constructed by computing the elements in (4.11) and eigenvalue decomposition is

performed to obtain the Slepian functions in the spectral domain. Using the spherical

Shannon number defined in (2.66), which is rounded to the nearest integer, number

of well-optimally concentrated Slepian functions for Australia and Tharsis is given by

NRA
≈ 15 and NRT

≈ 93 respectively. The magnitude of the first 8 Slepian functions

for Australia is shown in Figure 4-9, whereas Figure 4-10 shows the magnitude of the

first 8 Slepian functions for Tharsis. By projecting the respective maps onto the NRA

and NRT
well-optimally concentrated Slepian functions, the Earth topography map is

reconstructed over Australia and shown in Figure 4-6, whereas the Mars topography

map is reconstructed over Tharsis and shown in Figure 4-7.
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Chapter 5

Spatial-Slepian transform on the

sphere

Motivated by the idea of wavelet transform, where the signal content is essentially

spread out in the joint space-scale domain, we seek to find a representation of sig-

nals to analyze their local characteristics in an effort to detect localized hidden fea-

tures. Naturally, we revert to Slepian spatial-spectral concentration problem on the

sphere, which results in optimally localized Slepian basis functions that can be used

for accurate representation and reconstruction of signals in a given region on the

sphere. Using well-optimally localized Slepian functions, with varying fractional en-

ergy concentration within a region on the sphere, we propose a transform, referred

to as spatial-Slepian transform (SST), which is similar in mathematical formulation

to the scale-discretized wavelet transform but uses bandlimited and spatially well-

optimally concentrated Slepian functions, instead of wavelet functions. The proposed

transform records “Slepian scale”-dependent information of the underlying signal in

spatial-Slepian coefficients, which constitute a novel joint spatial-Slepian domain rep-

resentation for signals on the sphere. We also propose an inverse transform to recover

the spectral representation of the signal from its spatial-Slepian coefficients, and for-

mulate an algorithm for efficient numerical computation of SST.

Depending on the shape of the underlying region for Slepian functions, spatial-

Slepian coefficients are either spherical signals or signals defined on the SO(3) rotation
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Spatial-Slepian transform on the sphere

group. The number of spatial-Slepian coefficients is shown to be determined by the

fractional area of the region chosen to solve the Slepian spatial-spectral concentration

problem. By analyzing spatial variance of spatial-Slepian coefficients, we show them

to exhibit much better spatial localization than scale-discretized wavelet coefficients,

thus highlighting their ability to probe local contents of the signal.

To demonstrate the utility of spatial-Slepian transform, we formulate a framework

for detecting the presence of hidden (weak) localized variations in the signal, by

statistically analyzing the spatial-Slepian coefficients. Furthermore, we present a

novel framework for generalized linear transformations in the joint spatial-Slepian

domain and exemplify through particular forms of the underlying spatial-Slepian

transformation kernel.

5.1 Spatial-Slepian transform (SST)

We consider a region R on the sphere and solve the eigenvalue problem in (2.60)

to obtain the Slepian functions gα(x̂), bandlimited to degree Lg and having spectral

representations given by the eigenvectors gα, where α = 1, 2, . . . , L2
g enables index-

ing of the Slepian functions according to (2.61). The framework of spatial-Slepian

transform is formulated by using the well-optimally concentrated Slepian functions,

i.e., gα(x̂), α ∈ [1, NR], where NR is the spherical Shannon number, defined in (2.66),

rounded to the nearest integer.

5.1.1 SST formulation

For a signal f ∈ HLf , spatial-Slepian transform is defined as

Fgα(ρ) , 〈f,D(ρ)gα〉S2 =

∫
S2

f(x̂)(D(ρ)gα)(x̂) ds(x̂), (5.1)

where D(ρ) ≡ D(ϕ, ϑ, ω) is the rotation operator, which rotates the Slepian function

gα(x̂) around z, y, z axes by angles ω, ϑ, ϕ respectively, Fgα ∈ L2(SO(3)) is called

the αth spatial-Slepian coefficient of the signal f(x̂), and we have used the definition
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5.1 Spatial-Slepian transform (SST)

of convolution of spherical signals given in (2.74). Spatial-Slepian transform in (5.1)

probes the signal content by projecting it onto all possible rotated orientations of the

well-optimally concentrated Slepian functions on the sphere, essentially spreading out

the signal in the so called joint spatial-Slepian domain. The extent of the spread of

the signal in the joint spatial-Slepian domain, which is quantified by the number of

spatial-Slepian coefficients, is specified by the rounded spherical Shannon number,

and therefore, depends on the fractional surface area of the region R on the sphere

and the bandlimit Lg of Slepian functions. In this context, we refer to α as the Slepian

scale and Fgα(ρ) as the spatial-Slepian coefficient at the Slepian scale α.

Using the expansion of signals in (2.23) and (2.47), we can rewrite (5.1) as

Fgα(ρ) =

Lf−1∑
`,m

(f)m`

Lg−1∑
p,q,m′

(gα)m′p Dp
q,m′(ρ)

∫
S2

Y m
` (x̂)Y q

p (x̂)ds(x̂)

=

min{Lf ,Lg}−1∑
`,m,m′

(f)m` (gα)m
′

` D`
m,m′(ρ), (5.2)

where we have used orthonormality of spherical harmonics on the sphere to obtain

the final expression, which expands the spatial-Slepian coefficient in terms of complex

conjugate of Wigner-D functions. As a result, we define the spectral representation

of spatial-Slepian coefficients as

(Fgα)`m,m′ ,

(
2`+ 1

8π2

)〈
Fgα , D

`
m,m′

〉
SO(3)

= (f)m` (gα)m
′

` , (5.3)

for 0 ≤ ` ≤ min{Lf , Lg} − 1, |m|, |m′| ≤ `.

Remark 5. Spatial-Slepian transform, formulated in (5.1), employs the definition of

spherical convolution given in (2.74), which has also been adopted to define the scale-

discretized wavelet transform on the sphere (reviewed in Section 2.9). Hence, spatial-

Slepian transform in (5.1) appears similar in its mathematical formulation to the

scale-discretized wavelet transform. However, the proposed transform uses bandlimited

and spatially well-optimally localized Slepian functions rather than wavelet functions

and results in a joint spatial-Slepian domain representation, which is not only different
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Spatial-Slepian transform on the sphere

from the multiscale wavelet representation, but serves as an important tool for probing

contents of any signal, which is localized within a region on the sphere.

5.1.2 Inverse SST

From the spectral representation of spatial-Slepian coefficients in (5.3), we can recover

the spectral coefficients of the original signal f(x̂) as

(f)m` =

(
2`+ 1

8π2

) 〈Fgα , D`
m,m′

〉
SO(3)

(gα)m
′

`

=

(
2`+ 1

8π2

) ∫
SO(3)

Fgα(ρ)D`
m,m′(ρ) dρ

(gα)m
′

`

, (5.4)

provided the spherical harmonic coefficients of the Slepian functions, i.e., (gα)m
′

` , are

non-zero for all degrees 0 ≤ ` ≤ min{Lf , Lg} − 1 and at least one order |m′| ≤ `.

Remark 6. For the case where Lf > Lg, inverse SST cannot recover all of the

spectral coefficients of the signal f(x̂). On the other hand if Lf < Lg, then Slepian

functions are under-utilized in obtaining the spatial-Slepian coefficients for the signal

f(x̂). Hence, we assume that Lf = Lg, so that not only the Slepian functions are fully

utilized, signal f(x̂) is also perfectly recovered from its spatial-Slepian coefficients.

5.1.3 Fast computation of spatial-Slepian transform

Since we define the spatial-Slepian transform through the definition of convolution

given in (2.74), and originally presented in [61], we adopt the framework for fast

computation of convolution of spherical signals, developed in [61], to efficiently com-

pute the spatial-Slepian coefficients. This fast algorithm has become a standard tool

for efficient computation of transforms, which are defined through the inner product

between signals on the sphere, such as the directional spatially localized spherical har-

monic transform [98] and the scale-discretized wavelet transform on the sphere [122].

From the definition of Wigner-D functions in (2.38), we note that the spatial-
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5.1 Spatial-Slepian transform (SST)

Slepian coefficient in (5.2) can be written as

Fgα(ϕ, ϑ, ω) =

Lf−1∑
`,m,m′

(f)m` (gα)m
′

` eimϕ d`m,m′(ϑ) eim
′ω

=

Lf−1∑
`,m

(f)m` e
imϕ

∑̀
m′=−`

(gα)m
′

` i
m′−meim

′ω
∑̀

m′′=−`

∆`
m′′,m ∆`

m′′,m′e
im′′ϑ, (5.5)

where ∆`
m,m′ , d`m,m′(π/2) and we have used the expansion for Wigner-d functions in

(2.52). By rearranging the summations in (5.5), we can rewrite the spatial-Slepian

coefficient as

Fgα(ρ) =

Lf−1∑
m,m′,m′′=−(Lf−1)

Cαm,m′,m′′ei(mϕ+m′′ϑ+m′ω), (5.6)

where

Cαm,m′,m′′ = im
′−m

Lf−1∑
`=max{|m|,|m′|,|m′′|}

(f)m` (gα)m
′

` ∆`
m′′,m∆`

m′′,m′ . (5.7)

The expression in (5.6) is a simple rearrangement of the initial expression in (5.2) and

hence, is not more efficient. However, the presence of complex exponential functions

in (5.6) facilitates the use of the fast Fourier transform (FFT) algorithm to compute

the spatial-Slepian coefficients efficiently.

5.1.4 SST using zonal Slepian functions

Slepian spatial-spectral concentration problem for polar cap regions has been ana-

lytically solved in [74]. In this section, we employ the zero-order Slepian functions,

optimally localized in the north polar cap region of angle θ0, to compute the spatial-

Slepian transform. Such Slepian functions are axisymmetric by definition and are

called zonal Slepian functions, for which the spherical Shannon number is given by [36]

Nθ0,0 = L
θ0

π
. (5.8)
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Spatial-Slepian transform on the sphere

(a) f(x̂) (b) Fg1(x̂) (c) Fg2(x̂) (d) Fg3(x̂) (e) Fg4(x̂) (f) Fg5(x̂)

(g) Fg6(x̂) (h) Fg7(x̂) (i) Fg8(x̂) (j) Fg9(x̂) (k) Fg10(x̂) (l) Fg11(x̂)

Figure 5-1: Earth topography map and Nθ0,0 ≈ 11 spatial-Slepian coefficients for
the Earth topography map at bandlimit Lf = 128, using the zonal Slepian functions
computed for the axisymmetric north polar cap region of angle θ0 = 15◦.

Using the following spectral representation for zonal Slepian functions

(gα)
m
� = (gα)

0
�δm,0, (5.9)

we can write the rotated signal (D(ρ)gα) in (5.1) as

(D(ρ)gα)(x̂) =
L−1∑
�,m

(
�∑

m′=−�

D�
m,m′(ρ)(gα)

m′

�

)
Y m
� (x̂) =

L−1∑
�,m

D�
m,0(ϕ, ϑ, ω)(gα)

0
�Y

m
� (x̂)

=
L−1∑
�,m

√
4π

2�+ 1
Y m
� (ϑ, ϕ)(gα)

0
�Y

m
� (x̂), (5.10)

where we have used the relation between Wigner-D functions and spherical harmonics

in (2.49) to obtain the final result. Therefore, spatial-Slepian coefficients in (5.1), for

zonal Slepian functions, can be written as

Fgα(ρ) = 〈f,D(ρ)gα〉S2 =
L−1∑
�,m

√
4π

2�+ 1
(f)m� (gα)

0
� Y

m
� (ϑ, ϕ)

= Fgα(x̂), x̂ ≡ x̂(ϑ, ϕ), α ∈ [1, Nθ0,0], (5.11)
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where orthonormality of spherical harmonics has been used. We note that spatial-

Slepian coefficients, in this case, are signals on the sphere with spherical harmonic

coefficients given by

(Fgα)m` = 〈Fgα , Y m
` 〉S2 =

√
4π

2`+ 1
(f)m` (gα)0

` . (5.12)

As a result, signal f(x̂) can be reconstructed perfectly from its spatial-Slepian coef-

ficients as

f(x̂) =
L−1∑
`,m

[√
2`+ 1

4π

〈Fgα , Y m
` 〉S2

(gα)0
`

]
Y m
` (x̂), (gα)0

` 6= 0, 0 ≤ ` ≤ Lf − 1. (5.13)

We use the Earth topography map1, bandlimited to degree Lf = 128, for the compu-

tation of spatial-Slepian transform using zonal Slepian functions for the north polar

cap region of angle θ0 = 15◦. Figure 5-1 shows the spatial-Slepian coefficients for the

first Nθ0,0 ≈ 11 Slepian scales, along with the Earth topography map.

5.2 Analysis

In this section, we validate the inverse spatial-Slepian transform in (5.4) using different

realizations of a random test signal at various bandlimits and perform computational

complexity analysis of the fast algorithm presented in Section 5.1.3. Furthermore, we

quantify spatial variance of spatial-Slepian coefficients and conduct different experi-

ments to show that spatial-Slepian coefficients have better spatial localization than

scale-discretized wavelet coefficients.

5.2.1 Inverse SST validation

We analyze the accuracy of the inverse SST using different realizations of a complex-

valued and random test signal fT (x̂), whose spectral coefficients are uniformly dis-

tributed in the interval (−1, 1) in both real and imaginary parts. We compute

1Please refer to Footnote 8 (on page 72) for the source of Earth topography map.
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the spectral components of the spatial-Slepian coefficients of the test signal, i.e.,(
F T
gα

)`
m,m′

, from (5.3) using Slepian functions that are well-optimally concentrated

in the north polar cap region of angle θ0 = 15◦. Spectral components of the recon-

structed signal, denoted by (fR)m` , are computed from the inverse SST in (5.4) using

the Slepian function at Slepian scale α = 1, i.e.,

(fR)m` =

(
F T
g1

)`
m,m′

(g1)m
′

`

, 0 ≤ ` ≤ Lf − 1, |m| ≤ `, (5.14)

where Lf is the bandlimit of the test signal. Numerical accuracy of the inverse SST

is evaluated by defining the absolute mean error as

Emean =
1

L2
f

Lf−1∑
`,m

∣∣(fT )m` − (fR)m`
∣∣ , (5.15)

which is averaged over 100 realizations of the test signal. The results of this exper-

iment are shown in Figure 5-2 at different values of the bandlimit Lf . As expected,

average absolute mean error is on the order of numerical precision, which establishes

the numerical stability of the inverse SST.

5.2.2 Computational complexity analysis

Spatial-Slepian coefficients in (5.6) require computation of coefficients Cαm,m′,m′′ over

the three dimensional space of orders m, m′ and m′′. Coefficients Cαm,m′,m′′ in turn

require a single summation over the degree ` for each m, m′, m′′. As a result, the

complexity of computing Cαm,m′,m′′ scales as O(L4
f ) with bandlimit Lf . We note that

Wigner-d functions ∆`
m,m′ do not depend on either the signal or Slepian functions

and hence, can be independently computed, in time which scales as O(L3
f ), using

the recursion in [100]. However, we compute ∆`
m,m′ on-the-fly to minimize storage

requirements and note that this does not change the computational complexity of

O(L4
f ) for the coefficients Cαm,m′,m′′ . Computational complexity of the three dimen-

sional fast Fourier transform scales as O(L3
f log2 Lf ) with bandlimit Lf . Hence, the
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5.2 Analysis

Figure 5-2: Absolute mean error Emean, computed from the spectral coefficients of a
complex-valued and random test signal fT (x̂), and the reconstructed signal fR(x̂),
is averaged over 100 realizations of the test signal and plotted against the bandlimit
Lf = 8, 16, 32, 48, 64, 80, 96, 112, 128. Figure shows that the error is on the order of
numerical precision, which verifies the numerical stability of the inverse SST.

overall complexity for computing the spatial-Slepian coefficient in (5.6) is governed

by the coefficients Cα
m,m′,m′′ , and is given by O(L4

f ) for a fixed Slepian scale α, and

O(NRL
4
f ) for all Slepian scales, i.e., α = 1, 2, . . . , NR.

We validate the computational complexity of the spatial-Slepian transform using

one of the Slepian functions (at Slepian scale α = 1), computed for a spherical

ellipse, defined in (2.11), having focus colatitude θ0 = 15◦ and semi-major axis a =

20◦. Spatial-Slepian coefficient is computed for a test signal, which is generated

in the spectral domain such that the spectral coefficients are complex, with real

and imaginary parts uniformly distributed in the interval (0, 1). The experiment

is performed in MATLAB, running on a 2.2 GHz Intel Core i7 processor with 16 GB

RAM, for 10 realizations of the test signal. We record the mean time (averaged over
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Spatial-Slepian transform on the sphere

Figure 5-3: Computational complexity analysis of the spatial-Slepian transform for
a complex-valued and random test signal using Slepian function at α = 1, which is
computed for a spherical ellipse R(15◦,20◦). Computational time (shown in blue), which
is averaged over 10 realizations of the test signal, is in agreement with the theoretical
bound of O(L4

f ) (shown in black).

10 realizations) at different values of the bandlimit Lf and plot it in Figure 5-3, where

we also show the theoretical bound which scales as O(L4
f ). As expected, the results

in Figure 5-3 corroborate the theoretically established bound on the computational

complexity of the spatial-Slepian transform.

5.2.3 Localization of spatial-Slepian coefficients

We adopt the mathematical formulation, used to evaluate the spatial variance of

wavelet coefficients, presented in [123], to quantify the localization of spatial-Slepian

coefficients on the SO(3) rotation group as

varFgα (ρ) = µ|Fgα (ρ)|2 −
∣∣µFgα (ρ)

∣∣2 , (5.16)
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where µf(ρ) is the spatial mean of a signal f ∈ L2(SO(3)) over all Euler angles, and

is defined as

µf(ρ) ,
1

8π2

∫
SO(3)

f(ρ)dρ. (5.17)

Hence, spatial mean of the spatial-Slepian coefficients is obtained as

µFgα (ρ) =

Lf−1∑
`,m,m′

(f)m` (gα)m
′

` µD`
m,m′ (ρ)

=

Lf−1∑
`,m,m′

(f)m` (gα)m
′

`

1

8π2

∫
SO(3)

D`
m,m′(ρ)dρ

=

Lf−1∑
`,m,m′

(f)m` (gα)m
′

`

1

8π2

∫ 2π

ϕ=0

eimϕdϕ

∫ π

ϑ=0

sinϑ d`m,m′(ϑ)dϑ

∫ 2π

ω=0

eim
′ωdω

=

Lf−1∑
`,m,m′

(f)m` (gα)m
′

`

1

8π2
(4π2)δm,0 δm′,0 (2)δ`,0 = (f)0

0(gα)0
0, (5.18)

where we have used the expression for Wigner-D functions in (2.38), the relation

between Wigner-d functions and Legendre polynomials in (2.50) and the results in

(2.95), (2.96) to obtain the final expression. The result in (5.18) is then used to

compute spatial variance of the spatial-Slepian coefficient, at Slepian scale α, as

varFgα (ρ) = µ|Fgα (ρ)|2 −
∣∣(f)0

0

∣∣2 ∣∣(gα)0
0

∣∣2
=

Lf−1∑
`,m,m′

(f)m` (gα)m
′

`

Lf−1∑
p,q,q′

(f)qp(gα)q
′

p

1

8π2

(
8π2

2`+ 1

)
δ`,p δm,q δm′,q′ −

∣∣(f)0
0

∣∣2 ∣∣(gα)0
0

∣∣2
=

Lf−1∑
`,m,m′

(
1

2`+ 1

)
|(f)m` |

2
∣∣∣(gα)m

′

`

∣∣∣2 − ∣∣(f)0
0

∣∣2 ∣∣(gα)0
0

∣∣2 , (5.19)

where we have used orthogonality of Wigner-D functions over SO(3) rotation group

to get the final result. As is evident from the expression in (5.19), spatial variance of

the spatial-Slepian coefficient depends on the signal under consideration in addition

to Slepian function.

We compute spatial variance of spatial-Slepian coefficients for the Earth topog-

raphy map, bandlimited to degree Lf = 64, using Slepian functions which are well-

optimally concentrated in the north polar cap region. For comparison, we also evalu-
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ate spatial variance of scale-discretized wavelet coefficients of the bandlimited Earth

topography map, which is given by [123]

var
wΨ(j)

f (ρ)
=

Lf−1∑
`,m,m′

(
1

2`+ 1

)
|(f)m` |

2
∣∣∣(Ψ(j)

)m′
`

∣∣∣2 , (5.20)

where Ψ(j) ∈ L2(S2) is the wavelet function at wavelet scale j, wΨ(j)

f (ρ) is the scale-

discretized wavelet coefficient defined in (2.100), and we have used the fact that(
Ψ(j)

)0

0
= 0, which can be seen from the harmonic tiling functions in Figure 2-4. We

relate the angle of the north polar cap region, i.e., θ0 to the dilation parameter ε in

such a way that the number of wavelet scales is equal to the number of Slepian scales,

i.e.,

NRθ0
=

2π(1− cos θ0)

4π
L2
f = J + 1 = dlogε Lfe+ 1, (5.21)

where we have chosen the largest wavelet scale to be J (the smallest wavelet scale is

0)2. By setting the dilation parameter ε to 2, maximum wavelet scale J becomes 6

and NRθ0
= 7, from which the polar cap angle θ0 is found to be 4.7◦. Spatial vari-

ance of spatial-Slepian and scale-discretized wavelet coefficients, for the bandlimited

Earth topography map, is computed at each Slepian and wavelet scale, and plotted

in Figure 5-4. Spatial-Slepian coefficients can be seen to exhibit smaller spatial vari-

ance compared to scale-discretized wavelet coefficients at most of the scales, which is

evidence of better spatial localization of spatial-Slepian coefficients compared to the

scale-discretized wavelet coefficients.

We also vary the dilation parameter ε while keeping bandlimit the same, i.e.,

Lf = 64, to obtain different number of wavelet scales for the scale-discretized wavelet

transform of the Earth topography map. We compute spatial-Slepian coefficients of

the Earth topography map using Slepian functions, which are well-optimally con-

centrated in the north polar cap regions of different polar cap angles, such that the

2We use directional wavelet functions and compute the directionality component (ξ)m` for az-
imuthal bandlimit Lφ = 5. As mentioned at the end of Section 2.9, we refer the reader to [83, 85]
for details on the construction of (ξ)m` .

130



5.2 Analysis

Figure 5-4: Spatial variance of spatial-Slepian and scale-discretized wavelet coeffi-
cients, evaluated for the Earth topography map, bandlimited to degree Lf = 64.
Spatial-Slepian coefficients can be seen to be better localized than the scale-discretized
wavelet coefficients at most of the scales.

number of Slepian scales equals the number of wavelet scales, according to (5.21).

The fractional ratio of the number of spatial-Slepian coefficients (at each polar cap

angle θ0) having smaller spatial variance than scale-discretized wavelet coefficients (at

each dilation parameter ε corresponding to θ0), denoted by r, is quantified as

r(θ0) �
#

{
varFgα (ρ) ≤ var

wΨ(j)

f (ρ)

}

NRθ0

, (5.22)

where # {·} computes the number of elements satisfying the logical condition inside

the braces. For dilation parameter ε = 1.5, 1.8, 2, 2.5, 3, 4, we obtain polar cap angles,

from (5.21), as θ0 = 6.2◦, 5.4◦, 4.7◦, 4.4◦, 4◦, 3.6◦, such that the number of correspond-

ing Slepian (or wavelet) scales are 12, 9, 7, 6, 5, 4. The resulting fractional ratio r is

plotted against the number of Slepian (wavelet) scales in Figure 5-5, which shows a
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Spatial-Slepian transform on the sphere

Figure 5-5: Fractional ratio r, for the Earth topography map, bandlimited to degree
Lf = 64, is plotted against different number of Slepian (wavelet) scales, which are
obtained by varying the polar cap angle θ0 and the dilation parameter ε in such a
way that the number of Slepian scales equals the number of wavelet scales. The
curve shows that more number of spatial-Slepian coefficients have smaller spatial
variance (and hence, better spatial localization) than scale-discretized wavelet coeffi-
cients, at every value of polar cap angle (or dilation parameter).

higher percentage of spatial-Slepian coefficients having smaller spatial variance than

scale-discretized wavelet coefficients.

5.3 Localized variation analysis

As discussed in Section 2.5, bandlimited Slepian functions form an alternative basis

for the representation of bandlimited signals on the sphere, and the well-optimally

concentrated bandlimited Slepian functions form a (reduced) localized basis set for

the accurate representation and reconstruction of bandlimited signals over a region

on the sphere. Hence, this reduced basis can prove to be a useful tool for probing

contents of any signal which is localized within a region on the sphere. In this con-
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5.3 Localized variation analysis

text, we present localized variation analysis as an application of the spatial-Slepian

transform. The objective is to use spatial-Slepian coefficients of a signal to detect the

presence of extremely weak localized spatial variations, hidden in the signal, along

with an estimate of the underlying region that the spatial variations are localized

within. In the following, we elaborate on the need for localized variation analysis to

establish sufficient motivation, formulate its mathematical framework using spatial-

Slepian transform, and use synthetic data to provide illustrations. Furthermore, we

compare the results obtained from the spatial-Slepian transform with those obtained

from the scale-discretized wavelet transform, and show that spatial-Slepian transform

performs better by achieving a better estimate of the underlying region of localized

variations.

5.3.1 Motivation

The problem of localized variation analysis is motivated by an application in the field

of medical imaging, in which images of a human organ, e.g. the brain, are analyzed

across different patients to diagnose the growth of a hidden anomaly, e.g., a tumor,

which is not readily apparent in the images. The tumor can be effectively modeled as a

localized variation which is hidden in the spherical image of the brain. We refer to the

scan of the healthy brain, i.e., without the anomaly, as the source signal s(x̂), which

is unknown. The anomaly is modeled as an extremely weak localized variation c(x̂),

which is hidden in the source signal s(x̂) to give the scan of the brain as the spherical

observation f(x̂) = s(x̂)+c(x̂), ‖c‖S2 � ‖s‖S2 . We assume that Nc different patients

take part in this medical study, resulting in Nc different instances (realizations) of

such a localized variation, which gives us an ensemble of observations on the sphere

as

fk(x̂) = s(x̂) + ck(x̂),
∥∥ck∥∥S2 � ‖s‖S2 , ∀ k ∈ [1, Nc]. (5.23)

The objective of localized variation analysis is to statistically identify the portion of

the brain which has been affected by the tumor.
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5.3.2 Mathematical framework

We compute spatial-Slepian coefficients of the observations using Slepian functions,

which are well-optimally concentrated in a region R on the sphere. From linearity

of the spatial-Slepian transform, we can write the spatial-Slepian coefficient of kth

observation as

F k
gα(ρ) = Sgα(ρ) + Ck

gα(ρ), α ∈ [1, NR], k = 1, 2, . . . , Nc, (5.24)

with statistical mean and variance given by

E {Fgα(ρ)} = Sgα(ρ) + E {Cgα(ρ)} , α ∈ [1, NR] (5.25)

and

σ2
Fgα

(ρ) = E
{
|Fgα(ρ)− E {Fgα(ρ)}|2

}
= E

{
|Cgα(ρ)|2

}
− |E {Cgα(ρ)}|2 = σ2

Cgα
(ρ), α ∈ [1, NR] (5.26)

respectively. We observe that spatial-Slepian coefficients of the observation have same

variance as the spatial-Slepian coefficients of the localized variations, which enables

us to use sample variance across different instances, denoted by Σ2
Fgα

and given by,

Σ2
Fgα

(ρ) =
1

Nc

Nc∑
k=1

∣∣∣∣∣F k
gα(ρ)− 1

Nc

Nc∑
k=1

F k
gα(ρ)

∣∣∣∣∣
2

, α ∈ [1, NR], (5.27)

as a statistical measure for detecting the presence of hidden localized variations in

the signal at different Slepian scales α.

5.3.3 Illustration

As an illustration, we consider a realization of a zero-mean and anisotropic Gaussian

process as the source signal s(x̂), with bandlimit Ls = 32. We generate localized

variations within the region R̃ = Rzyz(60◦, 90◦, 45◦)R(20◦,25◦), which defines a spherical
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(a) |s(x̂)| (b)
∣∣f1(x̂)

∣∣

Figure 5-6: Magnitude of (a) the source signal, which is a realization of a zero-mean
and anisotropic Gaussian process, and (b) the first observation that contains localized
variation hidden in the source signal within the elliptical region. Both signals are
bandlimited to degree 32. Boundary of the elliptical region is shown in black.

ellipse R(20◦,25◦), given in (2.11), that is rotated by the Euler angles ρ = (60◦, 90◦, 45◦).

The localized variations are given by

ck(x̂) =
30∑
β=1

akβ g̃β(x̂), k = 1, 2, . . . , Nc, (5.28)

where g̃β(x̂) are the well-optimally concentrated Slepian functions for the elliptical

region R̃, bandlimited to degree Lg̃ = 32, akβ are random scalars drawn from the

standard normal distribution, i.e., akβ ∼ N (0, 1), and NR̃ ≈ 30 is the spherical Shan-

non number (rounded to the nearest integer) for the region R̃. The strength of these

variations is specified by signal to variation ratio (SVR), defined for the kth instance

as

SVRk = 10 log
‖s(x̂)‖2S2
‖ck(x̂)‖2S2

. (5.29)
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We generate Nc = 10 instances of the localized variation such that SVR is 20 dBs for

each variation, yielding Nc = 10 different observations on the sphere as

fk(x̂) = s(x̂) +
30∑
β=1

akβ g̃β(x̂), k = 1, 2, . . . , Nc = 10, (5.30)

where each observation is bandlimited to degree Lf = 32. Magnitude of the source

signal s(x̂) and the observation, which contains the first instance of the localized

variation, i.e., f 1(x̂), are shown in Figure 5-6. As can be seen, the localized variation

in the highlighted elliptical region is hidden in the source signal. It must be noted

that the source signal, localized variations and the spherical elliptical region R̃ are

unbeknownst to the framework of spatial-Slepian transform.

The presence of hidden variations is detected by obtaining spatial-Slepian coef-

ficients of the observations using the zonal Slepian functions for a north polar cap

region R of angle θ0 = 15◦, bandlimited to degree Lg = 32, and finding the sam-

ple variance across Nc = 10 instances at each Slepian scale α = 1, . . . Nθ0,0 ≈ 3.

The results are shown in Figure 5-7, in which the unknown spherical elliptical region

R̃ is drawn for reference only. For comparison, we also plot the sample variance

of scale-discretized wavelet coefficients, which are obtained from the axisymmetric

wavelet functions through (2.108) (bandlimited to degree 32) by setting the dilation

parameter ε to 2 and largest wavelet scale to J = 5, for a total of 6 wavelet scales.

However, we choose to show the sample variance for the first 4 wavelet scales as there

is negligibly small sample variance at wavelet scales j = 4, 5.

As can be seen from Figure 5-7, sample variance computed using the spatial-

Slepian transform yields much more accurate detection of the hidden localized vari-

ations, specially at the first two Slepian scales, compared to the scale-discretized

wavelet transform, which yields an over-estimate of the underlying region of localized

variations. Superior performance of the spatial-Slepian transform is due to the fact

that well-optimally concentrated Slepian functions are better suited to probe local

content of the signal than wavelet functions. Although, wavelet functions have been

shown to exhibit good spatial localization [85], unlike Slepian functions, their char-
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(a)
∣∣c1(x̂)∣∣ (b) Σ2

Fg1
(x̂) (c) Σ2

Fg2
(x̂) (d) Σ2

Fg3
(x̂)

(e) Σ2

wΨ(0)

f

(x̂) (f) Σ2

wΨ(1)

f

(x̂) (g) Σ2

wΨ(2)

f

(x̂) (h) Σ2

wΨ(3)

f

(x̂)

Figure 5-7: (a) Magnitude of the first instance of localized variation, (b)–(d) sample
variance of spatial-Slepian coefficients, (e)–(h) sample variance of scale-discretized
wavelet coefficients. As can be seen, sample variance of spatial-Slepian coefficients
quite accurately detects the region of localized hidden variations, specially at the first
two Slepian scales, whereas sample variance of scale-discretized wavelet coefficients
yields an over-estimate of the region of localized variations. Spherical elliptical region
of localized hidden variations is unbeknownst to the framework of spatial-Slepian and
scale-discretized wavelet transforms, and is drawn for reference only.

acteristics are not defined by the shape of the underlying region, which makes them

ill-suited for localized signal analysis on the sphere.

5.4 Generalized linear transformations in the joint

spatial-Slepian domain

We define a general linear transformation of the spatial-Slepian coefficient of a signal

f ∈ HLf
, at Slepian scale α, as

νgα(ρ) =

NR∑
β=1

(SFgβ)(ρ) �
NR∑
β=1

∫

SO(3)

ζα,β(ρ, ρ1)Fgβ(ρ1) dρ1, (5.31)
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where ζα,β(ρ, ρ1) is the spatial-Slepian transformation kernel, gβ(x̂) are the bandlim-

ited Slepian functions computed for the spherical region R, NR is the spherical Shan-

non number and S is the spatial-Slepian transformation operator, which results in the

modified spatial-Slepain representation, νgα ∈ L2(SO(3)), of the signal f(x̂). From

the definition of spatial-Slepian coefficients in (5.2), we note that

(SFgβ)(ρ) = S

 Lf−1∑
`,m,m′

(
Fgβ
)`
m,m′

D`
m,m′(ρ)

 =

Lf−1∑
`,m,m′

(Fgβ)`m,m′(SD
`
m,m′)(ρ)

=

Lf−1∑
`,m,m′

(
Fgβ
)`
m,m′

(
Lv−1∑
p,q,q′

(
2p+ 1

8π2

)〈
SD`

m,m′ , D
p
q,q′

〉
SO(3)

Dp
q,q′(ρ)

)

=

Lf−1∑
`,m,m′

(
Fgβ
)`
m,m′

(
Lv−1∑
p,q,q′

(
2p+ 1

8π2

)
spqq

′,`mm′

α,β Dp
q,q′(ρ)

)
, (5.32)

where Lv is the bandlimit of the modified representation νgα(ρ) (see (5.36)) and

spqq
′,`mm′

α,β ,
〈
SD`

m,m′ , D
p
q,q′

〉
SO(3)

=

∫
SO(3)

∫
SO(3)

ζα,β(ρ, ρ1)D`
m,m′(ρ1)dρ1D

p
q,q′(ρ)dρ (5.33)

are called the spatial-Slepian transformation operator matrix elements, which quantify

the projection of D`
m,m′(ρ) onto Dp

q,q′(ρ)3. Using the definition of spectral representa-

tion of spatial-Slepian coefficients in (5.3), we can rewrite (5.32) as

(SFgβ)(ρ) =

Lf−1∑
`,m,m′

(
2`+ 1

8π2

) ∫
SO(3)

Fgβ(ρ1)D`
m,m′(ρ1)dρ1

Lv−1∑
p,q,q′

(
2p+ 1

8π2

)
spqq

′,`mm′

α,β Dp
q,q′(ρ)

=

∫
SO(3)

Lv−1∑
p,q,q′

Lf−1∑
`,m,m′

(
2p+ 1

8π2

)(
2`+ 1

8π2

)
spqq

′,`mm′

α,β Dp
q,q′(ρ)D`

m,m′(ρ1)

Fgβ(ρ1)dρ1. (5.34)

Comparing (5.34) with (5.31) yields an expression for the spatial-Slepain transforma-

tion kernel in terms of Wigner-D functions as

ζα,β(ρ, ρ1) =
Lv−1∑
p,q,q′

Lf−1∑
`,m,m′

(
2`+ 1

8π2

)(
2p+ 1

8π2

)
spqq

′,`mm′

α,β Dp
q,q′(ρ)D`

m,m′(ρ1). (5.35)

3We have used Fourier expansion of signals in terms of complex conjugate of Wigner-D functions.

138



5.4 Generalized linear transformations in the joint spatial-Slepian domain

Putting it back in (5.31), using (5.3) and employing orthogonality of Wigner-D func-

tions on the SO(3) rotation group, we can write the modified spatial-Slepian repre-

sentation as the following Fourier expansion

νgα(ρ) =
Lv−1∑
p,q,q′

(
2p+ 1

8π2

) NR∑
β=1

Lf−1∑
`,m,m′

spqq
′,`mm′

α,β (f)m` (gβ)m
′

`

Dp
q,q′(ρ), (5.36)

which shows that the modified spatial-Slepian representation is bandlimited to degree

Lv, as mentioned above, and gives the spectral coefficients as

(νgα)pq,q′ =

(
2p+ 1

8π2

) NR∑
β=1

Lf−1∑
`,m,m′

spqq
′,`mm′

α,β (f)m` (gβ)m
′

`

 . (5.37)

5.4.1 Admissibility condition

For νgα(ρ) to be an admissible spatial-Slepian representation, there must exist a signal

v ∈ L2(S2), bandlimited to degree Lv, such that

νgα(ρ) =
Lv−1∑
p,q

ψα,pq(ρ)(v)qp, ψα,pq(ρ) =

p∑
q′=−p

(gα)q
′
p D

p
q,q′(ρ), (5.38)

where

(v)qp =

(
νgβ
)p
q,q′

(gβ)q
′
p

=

(
2p+ 1

8π2

)
1

(gβ)q
′
p

∫
SO(3)

νgβ(ρ)Dp
q,q′(ρ)dρ. (5.39)

Combining (5.38) with (5.39), we get the following condition for νgα(ρ) to be an

admissible spatial-Slepian representation

(gβ)q
′
p νgα(ρ) =

Lv−1∑
p,q

(
2p+ 1

8π2

)
ψα,pq(ρ)

∫
SO(3)

νgβ(ρ)Dp
q,q′(ρ)dρ

=
Lv−1∑
p,q

(
2p+ 1

8π2

)
ψα,pq(ρ)

 NR∑
β′=1

Lf−1∑
`,m,m′

spqq
′,`mm′

β,β′ (f)m` (gβ′)m
′

`

 , (5.40)

where we have used (5.37) to get the second equality.
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5.4.2 Least square signal estimation

The modified spatial-Slepian representation νgα(ρ) can be inverted, using (5.4), to

obtain the spectral coefficients of the corresponding modified spherical signal v ∈

L2(S2) (assumed bandlimited to degree Lv), only if νgα(ρ) is an admissible represen-

tation. If νgα(ρ) does not satisfy the admissibility condition in (5.40), then a least

square estimate for the modified spherical signal v(x̂) is obtained by minimizing the

following squared error in the joint spatial-Slepian domain

Ese =

NR∑
α=1

∥∥∥∥∥νgα(ρ)−
Lv−1∑
p,q

ψα,pq(ρ)(v)qp

∥∥∥∥∥
2

SO(3)

. (5.41)

We present the least square estimate in the following theorem.

Theorem 7. Let a spatial-Slepian transformation kernel ζα,β(ρ, ρ1) modify the spatial-

Slepian coefficient of a signal f ∈ HLf according to the linear transformation defined

in (5.31), to give νgα(ρ) as an inadmissible modified spatial-Slepian representation.

Then, a spectral estimate of the modified spherical signal, which minimizes the joint

spatial-Slepian domain squared error, defined in (5.41), is given by the following linear

system

(v)qp =

Lf−1∑
`,m

Υpq,`m(f)m` , 0 ≤ p ≤ Lv − 1, |q| ≤ p, (5.42)

where Lv is the bandlimit of the estimated signal v(x̂) and the coefficients Υpq,`m are

given by the following expression

Υpq,`m =
1(

8π2

2p+1

) NR∑
α=1

p∑
q′=p

∣∣∣(gα)q
′
p

∣∣∣2
NR∑
α,β=1

p∑
q′=−p

(gα)q
′

p

∑̀
m′=−`

(gβ)m
′

` ×

∫
SO(3)

Dp
q,q′(ρ)

∫
SO(3)

ζα,β(ρ, ρ1)D`
m,m′(ρ1)dρ1dρ. (5.43)

Proof. Expanding the joint spatial-Slepian domain squared error in (5.41) using (5.38)
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and setting its derivative with respect to (v)qp equal to zero, we get

∂Ese

∂(v)qp
=

NR∑
α=1

∫
SO(3)

∂

∂(v)qp

(
νgα(ρ)−

Lv−1∑
p,q

ψα,pq(ρ)(v)qp

)(
νgα(ρ)−

Lv−1∑
p′,q′

ψα,p′q′(ρ)(v)q
′

p′

)
dρ

=

NR∑
α=1

∫
SO(3)

∂

∂(v)qp

[
νgα(ρ)νgα(ρ)− νgα(ρ)

Lv−1∑
p′,q′

ψα,p′q′(ρ) (v)q
′

p′−

Lv−1∑
p,q

ψα,pq(ρ)(v)qpνgα(ρ) +
Lv−1∑
p,q

ψα,pq(ρ)(v)qp

Lv−1∑
p′,q′

ψα,p′q′(ρ) (v)q
′

p′

]
dρ = 0,

NR∑
α=1

Lv−1∑
p′,q′

∫
SO(3)

ψα,pq(ρ)ψα,p′q′(ρ) (v)q
′

p′dρ =

NR∑
α=1

∫
SO(3)

ψα,pq(ρ)νgα(ρ)dρ,

NR∑
α=1

Lv−1∑
p′,q′

∫
SO(3)

ψα,pq(ρ)ψα,p′q′(ρ)dρ(v)q
′

p′ =

NR∑
α=1

∫
SO(3)

ψα,pq(ρ)νgα(ρ)dρ, (5.44)

for 0 ≤ p ≤ Lv − 1, |q| ≤ p, where, using orthogonality of Wigner-D functions, we

can write

∫
SO(3)

ψα,pq(ρ)ψα,p′q′(ρ)dρ =

∫
SO(3)

p∑
q′′=−p

(gα)q
′′

p D
p
q,q′′(ρ)

p∑
q′′′=−p

(gα)q
′′′

p′ D
p′

q′,q′′′(ρ)dρ

=

(
8π2

2p+ 1

) p∑
q′′=−p

∣∣∣(gα)q
′′

p

∣∣∣2 δp,p′ δq,q′ , (5.45)

which results in spectral coefficients of the signal v(x̂) as

(v)qp =
1(

8π2

2p+1

) NR∑
α=1

p∑
q′=−p

∣∣∣(gα)q
′
p

∣∣∣2
NR∑
α=1

∫
SO(3)

ψα,pq(ρ)νgα(ρ)dρ

=
1(

8π2

2p+1

) NR∑
α=1

p∑
q′=−p

∣∣∣(gα)q
′
p

∣∣∣2
NR∑
α=1

p∑
q′=−p

(gα)q
′

p

NR∑
β=1

Lf−1∑
`,m,m′

(f)m` (gβ)m
′

` ×

∫
SO(3)

Dp
q,q′(ρ)

∫
SO(3)

ζα,β(ρ, ρ1)D`
m,m′(ρ1)dρ1dρ, 0 ≤ p ≤ Lv − 1, |q| ≤ p.

(5.46)

The above expression can be compactly written as (5.42) using (5.43).
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Admissible Transformation

The simplest linear transformation, resulting in an admissible spatial-Slepian repre-

sentation, is obtained by choosing the spatial-Slepian transformation kernel as4

ζα,β(ρ, ρ1) = C1 δα,β δ(ρ− ρ1), (5.47)

where C1 is some complex number, δα,β is the Kronecker delta function and

δ(ρ− ρ1) , (sinϑ)−1δ(ϕ− ϕ1)δ(ϑ− ϑ1)δ(ω − ω1), (5.48)

is the SO(3) Dirac delta function. The estimated signal in this case simply becomes

(v)qp =

L−1∑
`,m

Υpq,`m(f)m` =

Lf−1∑
`,m

δ`,pδm,q(f)m` = (f)qp. (5.49)

Inadmissible Transformations

Let the transformation kernel be defined as

ζM
α,β(ρ, ρ1) , ζM

α (ρ)δα,β δ(ρ− ρ1), (5.50)

then the modified spatial-Slepian representation, given by

νM
gα(ρ) = ζM

α (ρ)Fgα(ρ), (5.51)

is called multiplicative transformation, for which the signal estimate is given by (5.42)

through the following Υpq,`m

Υpq,`m =

NR∑
α=1

p∑
q′=−p

(gα)q
′
p

∑̀
m′=−`

(gα)m
′

`

∫
SO(3)

ζM
α (ρ)Dp

q,q′(ρ)D`
m,m′(ρ)dρ(

8π2

2p+1

) NR∑
α=1

p∑
q′=−p

∣∣∣(gα)q
′
p

∣∣∣2 . (5.52)

4It is trivial to show that modified spatial-Slepian representation corresponding to the spatial-
Slepian transformation kernel in (5.47) satisfies the admissibility condition in (5.40).
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5.4 Generalized linear transformations in the joint spatial-Slepian domain

Alternatively, defining the spatial-Slepian transformation kernel as

ζ~α,β(ρ, ρ1) , ζ~α (ρρ−1
1 )δα,β, (5.53)

we get the following convolutive transformation in the joint spatial-Slepian domain

ν~gα(ρ) =

∫
SO(3)

ζ~α (ρρ−1
1 )Fgα(ρ1)dρ1 = (ζ~α ~ Fgα)(ρ), (5.54)

where we have used the definition of convolution of signals defined on the SO(3)

rotation group, given in (2.79). Using the spectral representation of convolution of

SO(3) signals in (2.85), i.e.,5

(
ν~gα
)p
q,q′

=
〈
ν~gα , D

p
q,q′

〉
SO(3)

=

(
8π2

2p+ 1

) p∑
k=−p

(ζ~α )
p
q,k (Fgα)pk,q′ , (5.55)

in which (ζ~α )pq,k denotes the spectral representation of the convolutive transforma-

tion kernel, and employing orthogonality of Wigner-D functions, modified signal is

obtained from the linear system in (5.42) as

(v)qp =
1(

8π2

2p+1

) NR∑
α=1

p∑
q′=−p

∣∣∣(gα)q
′
p

∣∣∣2
Lf−1∑
`,m

(f)m`

NR∑
α=1

p∑
q′=−p

(gα)q
′

p

∑̀
m′=−`

(gα)m
′

` ×

∫
SO(3)

Dp
q,q′(ρ)

∫
SO(3)

ζ~α (ρρ−1
1 )D`

m,m′(ρ1)dρ1dρ

=
1(

8π2

2p+1

) NR∑
α=1

p∑
q′=−p

∣∣∣(gα)q
′
p

∣∣∣2
Lf−1∑
`,m

(f)m`

NR∑
α=1

p∑
q′=−p

(gα)q
′

p

∑̀
m′=−`

(gα)m
′

`

(
8π2

2p+ 1

)
×

(∫
SO(3)

ζ~α (ρρ−1
1 )D`

m,m′(ρ1)dρ1

)p
q,q′

=

(
8π2

2p+1

)
NR∑
α=1

p∑
q′=−p

∣∣∣(gα)q
′
p

∣∣∣2
NR∑
α=1

p∑
q′=−p

∣∣∣(gα)q
′

p

∣∣∣2 p∑
m=−p

(ζ~α )
p
q,m (f)mp , 0 ≤ |q| ≤ p ≤ Lv − 1.

(5.56)

5(2.85) remains same for signals represented in terms of complex conjugate of Wigner-D functions.
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Spatial-Slepian transform on the sphere

It can be observed that modified representations in (5.51) and (5.54) do not satisfy

(5.40) in general and hence, may not be admissible spatial-Slepian representations.

5.4.3 Filters in the joint spatial-Slepian domain

The convolutive transformation in (5.54) represents filtering of the spatial-Slepian

coefficient Fgα(ρ) with the joint spatial-Slepian domain filter function ζ~α (ρ), which,

from (5.55), can be assumed bandlimited to degree Lf . This, in turn, makes the mod-

ified spatial-Slepian representation ν~gα(ρ), and the resulting signal estimate in (5.56),

bandlimited to degree Lf . In this context, as a simple application of the framework

of generalized linear transformations in the joint spatial-Slepian domain, we con-

sider f(x̂) to be a noise-contaminated observation of a source signal s ∈ L2(S2), i.e.,

f(x̂) = s(x̂) + z(x̂), where z ∈ L2(S2) is a realization of a zero-mean and anisotropic

noise process on the sphere. The source and noise signals are assumed to be uncor-

related, i.e., E
{

(s)m` (z)m
′

`′

}
= 0, ∀ `, `′, |m| ≤ `, |m′| ≤ `′. We further assume that

spectral covariance of the source and noise signals is known and is given by matrices

Cs and Cz with elements Cs
`m,`′m′ = E

{
(s)m` (s)m

′
`′

}
and Cz

`m,`′m′ = E
{

(z)m` (z)m
′

`′

}
respectively. Then, we use the convolutive transformation kernel in (5.53) to obtain

(v)qp in (5.56) as the spectral estimate of the source signal s(x̂), and gauge the quality

of signal estimation through the signal to noise ratio (SNR), defined in (3.4).

Gaussian spectral smoothing

We compute the signal estimate by smoothing the noise-contaminated observation

f(x̂) in the spectral domain through a Gaussian kernel at each Slepian scale, i.e., we

define the convolutive transformation kernel as

(ζ~α )pq,m ,

(
2p+ 1

8π2

)
(ζ~α )qpδq,m, (ζ~α )qp = e

−[p(p+1)+q]2α2

L4
f , (5.57)

to obtain the spectral estimate, denoted by (vG)qp, as

(vG)qp =

(
NR∑
α=1

p∑
q′=−p

∣∣∣(gα)q
′

p

∣∣∣2)−1 NR∑
α=1

p∑
q′=−p

∣∣∣(gα)q
′

p

∣∣∣2 (ζ~α )qp(f)qp. (5.58)
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5.4 Generalized linear transformations in the joint spatial-Slepian domain

Figure 5-8: Spherical harmonic spectrum of the Gaussian spectral smoothing con-
volutive kernel at all Slepian scales for the north polar cap region of angle θ0 = 5◦,
which gives NR5◦ ≈ 8.

We use the north polar cap region of angle θ0 = 5◦, for which the number of Slepian

scales is given by NR5◦ ≈ 8. Figure 5-8 shows the spherical harmonic spectrum of the

Gaussian spectral smoothing convolutive kernel at all Slepian scales, for bandlimit

Lf = 64.

Optimal filter in the joint spatial-Slepian domain

Alternatively, a more sophisticated convolutive transformation kernel can be defined

by minimizing the following mean-square error

Emse =

Lf−1∑
p,q

E
{∣∣(v)qp − (s)qp

∣∣2}

=

Lf−1∑
p,q

E

{

(

NR∑
α=1

Ep,α

)−1 (
8π2

2p+ 1

) NR∑
α=1

Ep,α

p∑
m=−p

(ζ�α )
p
q,m(f)

m
p − (s)qp


×



(

NR∑
α=1

Ep,α

)−1 (
8π2

2p+ 1

) NR∑
α′=1

Ep,α′

p∑
m′=−p

(ζ�α′)
p
q,m′(f)m

′
p − (s)qp



}
,

(5.59)
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Spatial-Slepian transform on the sphere

where we have used (5.56) in which energy per degree of the Slepian function gα(x̂)

has been denoted by Ep,α, i.e.,

Ep,α ,
p∑

q′=−p

∣∣∣(gα)q
′

p

∣∣∣2 . (5.60)

Noting the fact that source and noise signals are uncorrelated, i.e., equation (3.56),

mean-square error in (5.59) can be simplified to get the following expression

Emse =

Lf−1∑
p,q

[(
8π2

2p+ 1

)2
1

NR∑
α=1

Ep,α

1
NR∑
α=1

Ep,α

NR∑
α=1

Ep,α

NR∑
α′=1

Ep,α′×

p∑
m=−p

p∑
m′=−p

(ζ~α )pq,m(ζ~α′)
p
q,m′

(
Cs
pm,pm′ + Cz

pm,pm′

)
−
(

8π2

2p+ 1

)
×

(
NR∑
α=1

Ep,α

)−1 NR∑
α=1

Ep,α

p∑
m=−p

[
(ζ~α )pq,mC

s
pm,pq + (ζ~α )pq,mC

s
pq,pm

]
+ Cs

pq,pq

]
, (5.61)

which, when differentiated with respect to (ζ~α1
)p1
q1,m1 and put equal to 0, results in the

following linear system

G(p) x(p, q) = b(p, q), |q| ≤ p, 0 ≤ p ≤ Lf − 1, α ∈ [1, NR], (5.62)

where elements of the matrix G and column vectors b, x are given by

Gm′,m =

(
8π2

2p+ 1

)
(Cs

pm,pm′ + Cz
pm,pm′), bm′ = Cs

pq,pm′ , |m′| ≤ p,

xm =

(
NR∑
α=1

Ep,α

)−1 NR∑
α=1

Ep,α(ζ~α )pq,m, |m| ≤ p.

(5.63)

The expression for xm in (5.63) represents an under-determined system which re-

sults in infinitely many solutions for (ζ~α )pq,m (for α > 1). We choose (ζ~α )pq,m to be

independent of the Slepian scale as

(ζ~α )pq,m = xm ≡ (ζ~)pq,m, ∀α ∈ [1, NR], (5.64)
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5.4 Generalized linear transformations in the joint spatial-Slepian domain

which can be seen to satisfy the under-determined system in (5.63) and is directly

given by the solution of (5.62), i.e.,

G(p) ζ~(p, q) = b(p, q), |q| ≤ p, 0 ≤ p ≤ Lf − 1, (5.65)

where ζ~(p, q) represents a column vector with elements (ζ~)pq,m, |m| ≤ p. The spec-

tral representation of the resulting signal estimate, which is denoted by vO(x̂), is

obtained from (5.56) as

(vO)qp =

(
8π2

2p+ 1

) p∑
m=−p

(ζ~)pq,m(f)mp , 0 ≤ |q| ≤ p ≤ Lf − 1. (5.66)

We refer to ζ~(p, q) in (5.65) as an optimal filter because it optimizes the mean-square

error in (5.59).

Remark 7. As there is a close similarity in the mathematical formulation of the

spatial-Slepian transform and the scale discretized wavelet transform (SDWT), a sim-

ilar framework of linear transformations can be formulated for SDWT as well. We

further note that the optimal filter in (5.65) has the same formulation as the multiscale

optimal filter designed in Section 3.5.

5.4.4 Illustrations

We consider a Mars topography map6 (processed to have zero average value and unit

norm), bandlimited to degree Lf = 64, as the source signal s(x̂) and contaminate it

with different realizations of zero-mean, uncorrelated and anisotropic Gaussian noise

process to get the noise-contaminated observation f(x̂). We compute the spectral

estimate in (5.58) using the Gaussian spectral smoothing convolutive kernel in (5.57)

for α ∈ [1, NR5◦ ], where NR5◦ ≈ 8 represents the spherical Shannon number (rounded

to the nearest integer) for a north polar cap region of angle θ0 = 5◦. We generate 100

realizations of the zero-mean, uncorrelated and anisotropic Gaussian noise process

6Please refer to Footnote 5 (on page 62) for the source of Mars topography map.
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Spatial-Slepian transform on the sphere

Figure 5-9: Output SNR plotted against input SNR, averaged over 100 realizations
of a zero-mean, uncorrelated and anisotropic Gaussian noise process, for Gaussian
spectral smoothing convolutive kernel and the optimal filter. Slepian scale is set by
the Shannon number for a north polar cap region of angle θ0 = 5◦.

(a) s(x̂) (b) z(x̂) (c) f(x̂) (d) vG(x̂) (e) vO(x̂)

Figure 5-10: (a) Mars topography map , (b) zero-mean, uncorrelated and anisotropic
Gaussian noise at SNRf = 4.9 dBs, (c) noise-contaminated observation, (d) Mars to-
pography map obtained from weighted Gaussian spectral smoothing, having SNRvG =
11.3 dBs, and (e) Mars topography map reconstructed through optimal filtering, hav-
ing SNRvO = 24.7 dBs.

at different values of SNRf and compute SNRvG . Figure 5-9 shows the output SNR

against input SNR, averaged over all realizations. Also, shown is the SNR curve ob-
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5.4 Generalized linear transformations in the joint spatial-Slepian domain

tained for the signal estimate in (5.66) using the optimal filter in (5.65)7. As expected,

optimal filtering performs better than weighted Gaussian spectral smoothing.

Figure 5-10 shows an illustration, for a realization of zero-mean, uncorrelated and

anisotropic Gaussian noise process, at SNRf = 4.9 dBs. Output SNRs for the signal

estimates obtained from weighted Gaussian spectral smoothing and optimal filtering

are SNRvG = 11.3 dBs and SNRvO = 24.7 dBs respectively.

7As before, Cs`m,`′m′ = (s)m` (s)m
′

`′ and we refer the reader to Section 3.1.1 for the spectral covari-
ance of a zero-mean and anisotropic Gaussian noise process.
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Chapter 6

Sampling on the sphere

Sampling schemes determine the number and position of samples for bandlimited

signals defined on the sphere in such a way that the resulting samples completely

characterize the underlying signal. Referring to (2.23) and (2.24), both of which are

repeated here for convenience as

f(θ, φ) =
L−1∑
`,m

(f)m` Y
m
` (θ, φ),

(f)m` = 〈f, Y m
` 〉S2 =

∫
S2

f(θ, φ)Y m
` (θ, φ) sin θdθdφ,

(6.1)

the signal f ∈ HL is completely characterized by its spherical harmonic (spectral)

coefficients (f)m` and hence, can be reconstructed at any point on the sphere, provided

the spectral coefficients are known. The chief objective of any sampling scheme is the

exact computation of the spherical harmonic transform (SHT) in (6.1) from samples

of the bandlimited signal on the sphere.

Number of samples required to compute the SHT of a bandlimited signal is a

fundamental property of a sampling scheme and depends on the bandlimit of the

signal. Different sampling schemes, using different number of samples, have been

proposed for the computation of SHT in (6.1). We restrict ourselves to iso-latitude

sampling schemes, which place samples on rings of constant colatitude, called iso-

latitude rings. Such schemes facilitate separation of variables in (6.1), by allowing
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independent processing of the samples in a given iso-latitude ring, as

(f)m` =

∫ π

θ=0

∫ 2π

φ=0

f(θk, φ)Nm
` P

m
` (cos θ)e−imφ sin θdθdφ

= Nm
`

∫ 1

z=−1

∫ 2π

φ=0

f(θk, φ)Pm
` (z)e−imφdz dφ, z = cos θ

= Nm
`

∫ 1

z=−1

Pm
` (z)Gm(θk)dz, (6.2)

where f(θk, φ) is the signal f(θ, φ) evaluated at the iso-latitude ring θ = θk, Gm(θk)

is the Fourier transform of f(θk, φ), i.e.,

Gm(θk) ,
∫ 2π

φ=0

f(θk, φ)e−imφdφ, (6.3)

and (f)m` in (6.2) is evaluated as the associated Legendre transform of Gm(θk). Fourier

transform Gm(θk) can be efficiently computed using FFT algorithm. As a result,

computational complexity of SHT in (6.2) is dominated by the associated Legendre

transform, which still results in a low computational cost compared to the evalua-

tion of SHT in (6.1). Iso-latitude sampling schemes can further be classified into

Equiangular and Equal Area sampling schemes.

6.1 Equiangular sampling

Equiangular sampling schemes enable exact computation of SHT in (6.2) by plac-

ing samples on rings of constant colatitude (iso-latitude rings) and constant longi-

tude (called iso-longitude rings). For a signal bandlimited to degree L, an exact

computation of the integral in (6.2) is possible through the Gauss-Legendre (GL)

quadrature using NGL = L(2L− 1) ∼ 2L2 samples, where sample locations along the

colatitude are chosen as roots of the Legendre polynomial of degree L and 2L − 1

equiangular samples are placed in each iso-latitude ring. GL quadrature has also

been used by Shukowsky to develop an equiangular sampling theorem, which uti-

lizes (2L − 1)2 samples on the sphere for exact numerical evaluation of the SHT

in (6.2) [124]. Gauss-LEgendre Sky Pixelization (GLESP) [58] is another sampling
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scheme which is constructed using GL quadrature, however, it uses twice as many

samples along colatitude for a total of ∼ 4L2 samples on the sphere to compute the

SHT of the signal.

Driscoll and Healy presented a sampling theorem on the sphere which employs

equiangular samples placed on 2L iso-latitude and 2L iso-longitude rings, for a total

of 4L2 samples on the sphere, to exactly compute the SHT of a signal with bandlimit

L [56]. More recently, a sampling theorem for the exact computation of SHT of a

bandlimited signal has been developed by McEwen and Wiaux, which requires 2L−1

samples in each of the L− 1 iso-latitude rings and one sample on the south pole, for

a total of (L− 1)(2L− 1) + 1 ∼ 2L2 equiangular samples on the sphere [59].

Although equiangular sampling schemes enable exact computation of SHT of a

bandlimited signal, they suffer from massive oversampling of the signal near the poles,

which renders them sub-optimal for certain applications. In Figure 6-1, we plot the

sample positions on the sphere for Gauss-Legendre sampling, Driscoll-Healy sampling

theorem and McEwen-Wiaux sampling theorem, which shows a clear increase in the

density of samples near the poles.

6.2 Equal area and hierarchical sampling

Equal area sampling schemes partition the sphere into equal area regions and place

samples within these regions. Equal area schemes with samples placed on iso-latitude

rings are desirable because not only do they avoid the problem of oversampling near

the poles, they enable separation of variables and hence, support faster computation of

SHT. Furthermore, the quadrature rule associated with equal area sampling schemes

applies the same statistical weight (area of the partitioned region) to all the samples

on the sphere.

Hierarchical sampling schemes partition the sphere into different regions in a

nested fashion, i.e., these schemes facilitate the partitioning of each region into mul-

tiple sub-regions. One such scheme that has found considerable application in cos-

mology, particularly in the analysis of CMB, is HEALPix.
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Figure 6-1: Sample positions on the sphere obtained from Gauss-Legendre sam-
pling (red dots), Driscoll-Healy sampling theorem (green dots) and McEwen-Wiaux
sampling theorem (blue dots), for bandlimit L = 12.

6.2.1 HEALPix

Hierarchical Equal Area iso-Latitude Pixelization (HEALPix) facilitates hierarchical

partitioning of the sphere into equal area regions, called pixels [57]. In addition

to having quaternary tree structure, it supports hierarchical tree structure for the

database of samples, which facilitates various topological methods of analysis and

enables fast computation through fast look-up of neighboring data elements.

HEALPix places three iso-latitude rings of samples, with four samples in each

ring, dividing the sphere into 12 equal area pixels at the base-resolution. Sampling

grid density is parameterized by Nside = 2k, k = 0, 1, 2 . . ., which is defined as the

number of divisions along the side of a base-resolution pixel needed to reach a desired
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high-resolution pixelization. An increase in resolution level by one step divides each of

the equal area pixels on the sphere into four sub-pixels. Total number of pixels on the

HEALPix grid is given by Npix = 12N2
side = 12(22k) and are placed into three zones:

Equatorial (−2/3 < z < 2/3), North polar (z ≥ 2/3) and South polar (z ≤ −2/3),

where z = cos(θ). Total number of iso-latitude rings on the sampling grid is 4Nside−1

out of which 2Nside − 1 are located in the equatorial zone and Nside are located in

each polar zone. All equatorial rings contain maximum number of samples per ring,

equal to 4Nside, whereas rings in the polar zone contain varying number of samples.

Figure 6-2 shows the partitioning of the sphere using HEALPix for different values of

the resolution parameter Nside.

HEALPix supports ring as well as nested indexing scheme. Ring scheme numbers

pixels in anticlockwise direction along longitude (starting at φ = 0) and from north to

south along colatitude, whereas nested scheme follows the indexing of the associated

hierarchical tree structure [57]. Defining kθ and kφ as the iso-latitude ring and pixel-

in-iso-latitude-ring indices, pixel centers (θkθ , φkφ), which also represent the sample

positions, are given by the following set of equations [57]

North polar :

cos θkθ = 1− k2
θ

3N2
side

, φkφ =
π

2kθ

(
kφ −

1

2

)
,

1 ≤ kθ =


√√√√(p + 1

2

)
−

√⌊(
p + 1

2

)⌋+ 1 < Nside,

1 ≤ kφ = p + 1− 2kθ(kθ − 1) ≤ 4kθ,

(6.4)

Northern equatorial :

cos θkθ =
4

3
− 2kθ

3Nside

,

φkφ =
π

2Nside

(
kφ −

(kθ −Nside + 1) mod 2

2

)
,

Nside ≤ kθ =

⌊
p− 2Nside(Nside − 1)

4Nside

⌋
+Nside ≤ 2Nside,

1 ≤ kφ = (p− 2Nside(Nside − 1) mod 4Nside) + 1 ≤ 4Nside,

(6.5)
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(a) Nside = 1 (b) Nside = 2

(c) Nside = 4 (d) Nside = 8

Figure 6-2: Partitioning of the sphere into different equal area pixels using HEALPix.
Boundaries of the pixels in equatorial zone are shown in blue and black. Boundaries
of the pixels in polar zones are shown in green and red. Pixel centers are shown as
black dots.

where p is the ring-scheme index of the pixel. Sample positions for the equatorial

pixels in the southern hemisphere and south polar pixels are obtained by mirroring

the samples in the northern hemisphere about the equator.

HEALPix quadrature

There is no quadrature rule for the exact computation of spherical harmonic transform

of a bandlimited signal from its samples on the HEALPix grid. For a signal f(θ, φ),
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SHT is computed through the following approximate quadrature rule1

(f̂)m` =
4π

Npix

Npix−1∑
p=0

f(θkθ , φkφ)Y m
` (θkθ , φkφ), (6.6)

where (θkθ , φkφ) denote the position of HEALPix samples on the sphere. Since the

approximate quadrature in (6.6) is a zero-order estimate, following Jacobi iterative

method is applied on it to improve its accuracy

f (k) = f (k−1) + S.
(
fs − I.f (k−1)

)
, (6.7)

in which f (k) is the column vector (indexed according to (2.30)) containing the esti-

mate of the spectral coefficients at iteration k, fs is the column vector containing signal

samples on the sphere, S is the operator that computes SHT using (6.6) and I is the

inverse SHT operator, which evaluates the signal from its spectral coefficients through

(6.1). The iterative method in (6.7) is terminated when the error between current

and previous iteration becomes sufficiently small. Although HEALPix quadrature in

(6.6) is approximate, it is accurate enough for all practical purposes.

6.3 Optimal dimensionality sampling scheme

This sampling scheme is neither exact, nor equiangular nor equal area nor hierarchical,

but it has one other important feature: it achieves theoretically minimum possible

number of samples on the sphere to accurately compute the SHT of a bandlimited

signal, i.e., for a signal bandlimited to degree L, it employs NOD = L2 samples to

accurately compute its SHT [60]. The samples are placed on iso-latitude rings at

colatitude θk, k = 0, 1, . . . , L − 1, such that there are 2k + 1 equally spaced samples

along longitude, on the iso-latitude ring at θ = θk, with positions given by

φk = [0,∆k, 2∆k, . . . , 2k∆k]
T, ∆k =

2π

2k + 1
. (6.8)

1http://healpix.sourceforge.net/documentation.php
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Table 6.1: Comparison of Gauss-Legendre, Driscoll-Healy, McEwen-Wiaux and opti-
mal dimensionality sampling methods for the number of samples required to compute
SHT of a signal bandlimited to degree L = 12.

Sampling method Computation of SHT Number of samples
Gauss-Legendre Exact 276
Driscoll-Healy Exact 576

McEwen-Wiaux Exact 254
Optimal dimensionality Approximate (accurate) 144

The iso-latitude rings are equiangular and their positions are defined by the following

set

θk ∈
{
π(2t+ 1)

2L− 1
, t = 0, 1, . . . , L− 1

}
, k = 0, 1, . . . , L− 1. (6.9)

The actual positions of iso-latitude rings is determined by the formulation of the

proposed spherical harmonic transform [60]. Figure 6-3 shows the placement of L2

samples using the optimal dimensionality sampling scheme for bandlimit L = 12. For

comparison, samples obtained from Gauss-Legendre sampling, Driscoll-Healy sam-

pling theorem and McEwen-Wiaux sampling theorem are also shown. Table 6.1 lists

the number of samples required to compute the SHT of a signal bandlimited to degree

L = 12 for Gauss-Legendre, Driscoll-Healy, McEwen-Wiaux and optimal dimension-

ality sampling schemes.

6.4 Efficient sampling on HEALPix grid

HEALPix quadrature requires all samples on the grid to evaluate the spherical har-

monic transform of a signal. Although HEALPix supports accurate computation of

SHT, it is a high-resolution sampling grid which renders the quadrature rule in (6.7)

computationally expensive, specially at large bandlimits. In this section, we pro-

pose a method to reduce the number of HEALPix samples for accurate computation

of spherical harmonic transform of a signal, bandlimited to degree L, by adopting

the formulation of spherical harmonic transform, presented in optimal dimensionality

sampling scheme [60], which is reviewed next.
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6.4 Efficient sampling on HEALPix grid

Figure 6-3: Sample positions on the sphere obtained from optimal dimensionality
sampling scheme (black dots), Gauss-Legendre sampling (red dots), Driscoll-Healy
sampling theorem (green dots) and McEwen-Wiaux sampling theorem (blue dots),
for bandlimit L = 12.

6.4.1 Spherical harmonic transform for optimal dimension-

ality sampling scheme – A quick review

Since HEALPix, like the optimal dimensionality sampling, is an iso-latitude sampling

scheme, we can adopt the formulation presented in [60] to compute the spherical

harmonic transform of a bandlimited signal using HEALPix samples. For a signal

f ∈ HL, the orderm spherical harmonic coefficients can be expressed, through Fourier
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transform in (6.3), as

Gm(θk) ,
∫ 2π

φ=0

f(θk, φ)e−imφdφ = 2π
L−1∑
`=|m|

(f)m` P̃
m
` (θk), |m| ≤ L− 1, (6.10)

where

P̃m
` (θk) , Y m

` (θk, 0) = Nm
` P

m
` (cos θk) (6.11)

is the scaled associated Legendre polynomial and we have used the Fourier expansion

of signals in (6.1) along with (2.95). By defining a column vector gm as a vector of

Fourier transform of the signal at L− |m| different iso-latitude rings, given by

gm ,
[
Gm(θ|m|), Gm(θ|m|+1), . . . , Gm(θL−1)

]T
, (6.12)

and a column vector fm containing spherical harmonic coefficients of order m as

fm ≡
[
fm|m|, f

m
|m|+1, . . . , f

m
|L−1|

]T
, (6.13)

we can compactly express L− |m| equations of the form given in (6.10) as

gm = 2πPmfm, |m| ≤ L− 1, (6.14)

where

Pm ,


P̃m
|m|(θ|m|) P̃m

|m|+1(θ|m|) · · · P̃m
L−1(θ|m|)

P̃m
|m|(θ|m|+1) P̃m

|m|+1(θ|m|+1) · · · P̃m
L−1(θ|m|+1)

...
...

. . .
...

P̃m
|m|(θL−1) P̃m

|m|+1(θL−1) · · · P̃m
L−1(θL−1)

 . (6.15)

It becomes clear from (6.15) that in order for P0 to be invertible, Fourier transform

in (6.10) must be evaluated along φ for at least L different iso-latitude rings. By

computingGm(θk) at different iso-latitude rings placed at θk, k = |m|, |m|+1, . . . , L−1
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6.4 Efficient sampling on HEALPix grid

and inverting Pm in (6.15), we can use (6.14) to compute the spherical harmonic

coefficients of order m and degrees |m| ≤ ` ≤ L− 1.

Accurate computation of spherical harmonic coefficients of order m, contained in

the vector fm, through (6.14) is only possible if gm is computed correctly and Pm

is well-conditioned to be invertible. Consequently, accuracy of the formulated SHT

is dictated by the computation of Gm(θk) and condition number of Pm. Accurate

computation of Gm(θk) depends on the number of samples along longitude in the

iso-latitude ring at θ = θk, and condition number of Pm depends on the locations

θ|m|, θ|m|+1, . . . , θL−1 of the iso-latitude rings.

Avoiding aliasing in Gm(θk)

Using (6.10) and changing the order of summation in (6.1), a signal f(θ, φ), bandlim-

ited to degree L and evaluated at samples in an iso-latitude ring at θ = θk, can be

written as

f(θk, φ) =
1

2π

L−1∑
m=−(L−1)

Gm(θk)e
imφ, (6.16)

which can be observed to have contributions from 2L− 1 complex exponential func-

tions eimφ, |m| ≤ L − 1. Therefore, to avoid the effects of aliasing on Gm(θk), signal

f(θk, φ) should have samples on at least 2L − 1 positions along the longitude, re-

gardless of the choice of the iso-latitude ring. However, if the spherical harmonic

coefficients of orders |m| ≤ m′ ≤ L−1 are known, the contribution of these 2L−2|m|

spectral coefficients can be subtracted from the signal samples in the iso-latitude ring

placed at θ|m|−1, if this ring does not have 2L−1 samples. The modified signal is then

left with contribution from 2L − 1 − (2L− 2|m|) = 2|m| − 1 = 2(|m| − 1) + 1 com-

plex exponential functions and hence, is required to have only at least 2(|m| − 1) + 1

samples for G|m|−1(θ|m|−1) to be free of any aliasing errors. We further elaborate on

this concept.

Equation (6.14) can be used to solve for (f)L−1
L−1 by computing GL−1(θL−1) at a

ring placed at θL−1, which is required to have at least 2L − 1 samples. If the next
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ring at θ = θL−2 has at least 2L − 1 samples, we can compute GL−2(θL−2) without

aliasing. However, if the number of samples is less than 2L− 1, but at least 2L− 3,

then we have to subtract the contribution of (f)L−1
L−1 and (f)

−(L−1)
L−1 from the samples

f(θL−2, φ) and update it as

f(θL−2, φ)← f(θL−2, φ)− f̃L−1(θL−2, φ), (6.17)

where

f̃|m|(θk, φ) =
L−1∑
`=|m|

{(f)m` P̃
m
` (θk)e

imφ + (f)−m` P̃−m` (θk)e
−imφ}

=
1

2π

(
Gm(θk)e

imφ +G−m(θk)e
−imφ) , 0 < m < L− 1 (6.18)

is the contribution of spectral coefficients of order ±m, for all degrees |m| ≤ ` ≤ L−1.

Hence, the iso-latitude ring at θ = θL−1 is required to have at least 2L − 1 samples,

the iso-latitude ring at θ = θL−2 is required to have at least 2L − 3 samples and so

on, for (aliasing-free) accurate computation of Gm(θk).

6.4.2 Proposed sampling scheme – Requirements

Using the formulation in (6.14), SHT of a signal, bandlimited to degree L, can

be accurately computed by sampling it on L iso-latitude rings, located at θk, k =

0, 1, . . . , L− 1, provided the following requirements are fulfilled:

(R1) The iso-latitude ring at θ = θk has at least 2k + 1 samples along longitude.

(R2) Ring locations, θk, k = 0, 1, . . . , L − 1, are chosen such that the matrix Pm,

given in (6.15), is well-conditioned for each m = 0, 1, . . . , L− 12.

SHT can be computed accurately if the sampling scheme design takes into account

these requirements as (R1) and (R2) ensure accurate computation of gm and accurate

inversion of (6.15) (for each |m| ≤ L− 1) respectively.

2We only need to ensure that Pm is well-conditioned for non-negative orders as P−m = (−1)mPm,
which follows from the conjugate symmetry of spherical harmonics in (2.22).
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6.4 Efficient sampling on HEALPix grid

6.4.3 Proposed sampling scheme – Design

We devise an algorithm to design a sampling scheme which is comprised of a subset

of HEALPix samples. Before we present an algorithm that selects the iso-latitude

rings of samples from the HEALPix grid, taking into account the sampling require-

ments given in Section 6.4.2, we establish a relation between the HEALPix resolution

parameter Nside and signal bandlimit L.

Since the number of samples required in the first ring, i.e., at colatitude θL−1, is

2L− 1, and all the rings in equatorial zone on the HEALPix grid contain maximum

number of samples per ring, i.e., 4Nside, first ring must be chosen from the equatorial

zone. This puts an upper bound on the bandlimit of the signal as,

2L− 1 ≤ 4Nside ⇒ L ≤ 2Nside. (6.19)

Hence, for a sampling grid with resolution parameter Nside, we can compute the

spherical harmonic transform of a signal for a maximum bandlimit of 2Nside.

To select iso-latitude rings of samples from the HEALPix grid with resolution

parameter Nside, we propose the following iso-latitude ring selection algorithm, tak-

ing into account (R1) and (R2). We use θkθ and nkθ to denote the location of

an iso-latitude ring and the number of samples along longitude in it, where kθ =

1, 2, . . . , 4Nside − 1.

Procedure 3 Ring Selection Algorithm

Require: θk, k = 0, 1, . . . , L− 1
1: procedure Ring Selection(θkθ , Nside)

2: Θ = {θkθ}
4Nside−1
kθ=1

3: θL−1 = π/2 (first ring)

4: for m = L− 2, L− 3, . . . , 0 do

5: Θm = {θkθ ∈ Θ : nkθ ≥ 2m+ 1}
6: Choose θm ∈ Θm which minimizes the condition number of Pm

7: end for

8: return θk, k = 0, 1, . . . , L− 1.
9: end procedure
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The proposed algorithm identifies the iso-latitude rings from the HEALPix grid in

such a way that each Pm matrix is well-conditioned and the ring located at θk has at

least 2k+ 1 samples along longitude, thus serving both sampling design requirements

and ensuring accurate computation of SHT.

6.4.4 Multipass SHT

Like the HEALPix quadrature rule in (6.7), we also employ a similar iterative method

to further improve the accuracy of spherical harmonic transform. After computing

the spectral coefficients in the first pass, we reconstruct the signal in spatial domain

using (6.1). Spherical harmonic coefficients of the difference between original and

reconstructed spatial signals are computed and added to the previously computed

spectral coefficients, obtaining the spectral coefficients for the second pass. This

process is repeated until the quantity
√

eHe either exceeds its value obtained in the

previous pass or drops below a preset threshold of 10−16, where e is the difference

between the original and reconstructed spatial signal column vectors.

6.4.5 Evaluation

We compare the accuracy of the formulated SHT with the SHT computed from

the HEALPix quadrature in (6.7) and evaluate the reduction in number of sam-

ples achieved by the proposed sampling scheme. The formulated SHT is efficient,

compared to the one associated with HEALPix, in the sense that it requires lesser

number of samples.

Reduction in number of samples

Since our ring selection algorithm chooses iso-latitude rings from the HEALPix grid by

minimizing the condition number of the matrix Pm, we cannot analytically determine

the exact reduction in the number of samples achieved by the proposed sampling

scheme. However, we can work out the minimum guaranteed decrease in the number

of samples which is presented in the following Lemma.
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6.4 Efficient sampling on HEALPix grid

Figure 6-4: Number of samples used by HEALPix and the proposed sampling scheme,
along with the theoretical bound established in Lemma1, for the accurate computa-
tion of spherical harmonic transform of a signal bandlimited to degree 2 ≤ L ≤ 512.
Also shown is the magnified plot, in logarithmic scale, for bandlimits L ≤ 64.

Lemma 1 (Lower-bound on the reduction in number of samples). The proposed

sampling scheme requires at least 3/2 times less number of samples than HEALPix

for the accurate computation of SHT of a signal, bandlimited to degree L ≤ 2Nside.

Proof. Since Lmax = 2Nside denotes the maximum bandlimit of the signal for a given

HEALPix resolution parameter Nside, and the number of samples on the HEALPix

grid is given by Npix = 12N2
side, we have Lmax =

√
Npix/3. As the proposed sampling

scheme requires L(≤ Lmax) iso-latitude rings of samples for the accurate computation

of SHT, total number of samples in the proposed sampling scheme, denoted by Nprop,

is given by Nprop ≤ L(4Nside) ≤ Lmax(4Nside) or Npix/Nprop ≥ 3/2.

In Figure 6-4, we plot the number of samples used for computing SHT through

the HEALPix quadrature, number of samples required to accurately compute SHT

formulated for the proposed sampling scheme and the theoretical bound established

in Lemma 1, at different values of bandlimit in the range 2 ≤ L ≤ 512. It can be seen

that beyond a rather small bandlimit of L = 8, the proposed sampling scheme requires

about half the number of samples compared to HEALPix. Figure 6-5 shows a visual
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(a) (b)

Figure 6-5: Visual comparison of sampling density between (a) HEALPix and (b)
proposed sampling scheme, for bandlimit L = 32.

comparison of the number of samples used by HEALPix and the proposed sampling

scheme to accurately compute the spherical harmonic transform at bandlimit L = 32.

Figure 6-6: Number of samples used, in units of L2, for the computation of spherical
harmonic transform of a signal, bandlimited to degree 2 ≤ L ≤ 512. For L = 2Nside,
HEALPix uses 3L2 samples, while the proposed sampling scheme requires at most
2L2 samples (∼ 1.5L2 samples for L ≥ 8) to compute the SHT.
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Remark 8. We observe that for bandlimit L = 2Nside, HEALPix has Npix = 12N2
side =

3L2 samples on the sphere. From Lemma 1, the proposed sampling scheme uses at

most 2L2 samples to accurately compute the spherical harmonic transform of a sig-

nal, bandlimited to degree L. This fact can be verified from Figure 6-6, which shows

that for bandlimit L ≥ 8, the proposed sampling scheme utilizes ∼ 1.5L2 samples, to

compute the SHT of the signal.

Figure 6-7: Emax and Emean between spectral coefficients of the test and reconstructed
signals, averaged over 50 realizations of the test signal, for bandlimits in the range
2 ≤ L ≤ 512.

Accuracy analysis

SHT formulated for the proposed sampling scheme is evaluated on a test signal gener-

ated using spectral coefficients, (fT )
m

� , uniformly distributed in the interval (−1, 1) in

real and imaginary parts. Denoting the reconstructed spectral coefficients by (fR)
m

� ,

accuracy of the spherical harmonic transform is evaluated through the fractional max-

imum and mean errors, defined as

Emax �
1

‖fT‖S2
max

{∣∣(fT )m� − (fR)m�
∣∣} ,

Emean �
1

‖fT‖S2
1

L2

L−1∑
�=0

�∑
m=−�

∣∣(fT )m� − (fR)m�
∣∣ .

(6.20)
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Spherical harmonic transform is computed for 50 different realizations of the test

signal and the fractional errors are averaged over all realizations. Figure 6-7 shows

the average fractional maximum error and average fractional mean error curves for

the computation of SHT of the test signal, bandlimited to degree in the range 2 ≤

L ≤ 512, using the proposed framework and the HEALPix quadrature rule in (6.7).

It is evident that the proposed sampling scheme, although requires lesser number of

samples, enables accurate computation of SHT with errors on the order of numerical

precision.
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Chapter 7

Multiscale analysis on the sphere

In some applications, it may be desirable to study scale-dependent characteristics

of the signals by analyzing them at different resolutions. Such multiresolution (or

multiscale) analysis has been extensively carried out for the 1D time domain signals

using the framework of wavelet analysis [93, 94, 95], which has also been extended

for signals defined on the sphere [78, 51, 79, 80, 82, 81, 83, 84, 85].

Unlike the Euclidean domain, the spherical domain is bounded and hence, as

discussed in Chapter 6, can be partitioned into different pixels. If the partitioning

scheme has the tendency to further divide the pixels into nested sub-pixels, the whole

sphere can be partitioned into pixels of varying spatial extent. Such a hierarchical

partitioning scheme provides an alternate way of formulating the framework of mul-

tiscale analysis, by finding signal representations in terms of basis functions which

are localized within the pixels. Representing a signal in terms of such localized basis

functions (for pixels of varying spatial extent) is similar in spirit to filtering the signal

with wavelet functions of varying dilation. The localized basis functions for all the

pixels at different scales can be collected together to form a multiscale dictionary,

which is overcomplete by design. Unlike the wavelet coefficients, this dictionary is in-

dependent of the underlying signal and can be used to perform localized spatial (and

spectral) analysis at different scales.

Slepian spatial-spectral concentration problem on the sphere, reviewed in Sec-

tion 2.5, results in bandlimited and spatially well-optimally concentrated Slepian func-
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tions, which can be used as localized basis functions for the partitioned regions on

the sphere. These functions provide a useful way for accurate local signal repre-

sentation within the pixels and have been previously used to construct a multiscale

dictionary in [125]. However, [125] uses binary division of a cubed sphere to obtain

multiscale pixels and does not present analytical computation of Slepian functions for

the partitioned regions.

In this chapter, we propose a hierarchical partitioning scheme to divide the sphere

into multiscale pixels, which are shown to have relatively simple mathematical rep-

resentations, and employ the framework in [76] to obtain Slepian functions for these

pixels on the sphere. We also consider HEALPix for hierarchical partitioning of the

sphere at different resolutions, and present exact analytical expressions for the com-

putation of Slepian functions for the resulting multiscale pixels. Due to complex

mathematical representations of the boundaries of HEALPix pixels, such analytical

computation is found to be a highly non-trivial task. Following the methodology

in [125], we present two methods of constructing overcomplete multiscale dictionaries

for both partitioning schemes, and analyze the dictionaries for the range and mutual

coherence of their elements.

7.1 HEALLPix

We present Hierarchical Equal Area iso-Latitude iso-Longitude Pixelization scheme,

abbreviated as HEALLPix, to partition the the sphere into disjoint, equal area pix-

els. Number of pixels on the sphere is determined by the resolution parameter

L = 0, 1, 2, . . ., where L = 0, corresponds to the whole sphere. At L = 1, an

iso-latitude ring at θ = π/2 divides the sphere into two hemispheres and each hemi-

sphere is further divided into two halves by iso-longitude rings at φ = 0, π, for a total

of four pixels1. An increase in the resolution parameter by 1 partitions each pixel

into four sub-pixels using systematic placement of iso-latitude and iso-longitude rings

1Although referred as an iso-longitude ring, it is actually an iso-longitude semi-ring. Two semi-
rings of a great circle are considered separately because they are specified by different longitudes.
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described below. Hence, for a given resolution level L, the sphere is divided into 4L

or 22L disjoint pixels.

7.1.1 Placement of iso-latitude rings

An iso-latitude ring is placed at θ = θk such that the spherical annulus formed by the

iso-latitude rings at θ = θk−1, θk+1 is equally divided in area. Since area of a spherical

annulus bounded by θ = θ1, θ2, and denoted by Aθ1,θ2 , is given by

Aθ1,θ2 = 2π

∫ θ2

θ1

sin θ dθ = 2π(cos θ1 − cos θ2)

= 2π(z1 − z2),

where zk = cos θk, the condition for the placement of an iso-latitude ring at θ = θk

becomes

Aθk−1,θk+1

2
= Aθk,θk+1

⇒ zk =
zk−1 + zk+1

2
.

Starting with z0 = 1, z1 = 0, z2 = −1 at L = 1, we find that at a given resolution level

L, there are 2L − 1 iso-latitude rings placed at positions given by (see Appendix B)

zk =

(
1− k

2L−1

)
, 1 ≤ k ≤ 2L − 1, L ≥ 1, (7.1)

where z0 = 1, z2L−1 = 0, z2L = −1. Figure 7-1 shows the placement of iso-latitude

rings for different values of the resolution parameter.

7.1.2 Placement of iso-longitude rings

Each equal area annulus is further divided into equal area pixels along φ by iso-

longitude rings. An increase in resolution parameter L by 1 divides each pixel along

longitude into two halves. Hence, for a given resolution parameter L, 2L iso-longitude
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(a) L = 1 (b) L = 2

(c) L = 3 (d) L = 4

Figure 7-1: Placement of iso-latitude rings for HEALLPix at different resolutions.

rings are placed at the following positions (see AppendixB),

φk =
(k − 1)π

2L−1
, 1 ≤ k ≤ 2L, L ≥ 1. (7.2)

Figure 7-2 shows the placement of iso-longitude rings for different values of resolution

parameter. Pixelization of the sphere under this scheme is shown in Figure 7-3 for

different values of L. The resulting pixels are indexed in anticlockwise direction along

longitude (starting at φ = 0), and from north to south along colatitude.

7.1.3 Area of a pixel

HEALLPix partitions the sphere into equal area pixels. For 1 ≤ k1, k2 ≤ 2L, area

of a pixel bounded by iso-latitude rings at θ = θk1−1, θk1 and iso-longitude rings at
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(a) L = 1 (b) L = 2

(c) L = 3 (d) L = 4

Figure 7-2: Placement of iso-longitude rings for HEALLPix at different resolutions.

φ = φk2 , φk2+1, at resolution level L, is denoted by AL
k1,k2

and given as

AL
k1,k2

=

∫ θk1

θk1−1

∫ φk2+1

φk2

sin θ dθdφ

= (φk2+1 − φk2)(cos θk1−1 − cos θk1) =
(
(k2 − (k2 − 1))

π

2L−1

)
(zk1−1 − zk1)

=
π

4L−1
= constant = AL. (7.3)

7.1.4 Pixel centers

For 1 ≤ k1, k2 ≤ 2L, we represent the north-west, north-east, south-west and south-

east vertices of a pixel, bounded by iso-latitude rings at θ = θk1−1, θk1 and iso-

longitude rings at φ = φk2 , φk2+1, as x̂nw(θk1−1, φk2), x̂
ne(θk1−1, φk2+1), x̂

sw(θk1 , φk2)
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(a) L = 1 (b) L = 2

(c) L = 3 (d) L = 4

Figure 7-3: Hierarchical equal area iso-latitude iso-longitude pixelization of the sphere
at different resolutions.

and x̂se(θk1 , φk2+1) respectively. Then, the pixel center, denoted by x̂0(θ0k1 , φ
0
k2
), can

be defined as the mean of the pixel vertices, i.e.,

θ0k1 =
θk1−1 + θk1

2
, φ0

k2
=

φk2 + φk2+1

2
. (7.4)

Alternately, we can define the pixel center so that it is equi-angular-distant from the

pixel vertices, i.e.,

x̂nw.x̂0 = x̂ne.x̂0 = x̂sw.x̂0 = x̂se.x̂0, (7.5)
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where, using (2.7), we get the following expressions

x̂nw.x̂0 = cos θk1−1 cos θ0
k1

+ sin θk1−1 sin θ0
k1

cos(φk2 − φ0
k2

),

x̂sw.x̂0 = cos θk1 cos θ0
k1

+ sin θk1 sin θ0
k1

cos(φk2 − φ0
k2

),

x̂ne.x̂0 = cos θk1−1 cos θ0
k1

+ sin θk1−1 sin θ0
k1

cos(φk2+1 − φ0
k2

),

x̂se.x̂0 = cos θk1 cos θ0
k1

+ sin θk1 sin θ0
k1

cos(φk2+1 − φ0
k2

).

(7.6)

From (7.6), it can be observed that the longitudinal contribution to the angular

distance between pixel vertices and pixel center depends on the difference of φk2 and

φk2+1 with φ0
k2

, which can be made constant by choosing φ0
k2

as in (7.4), i.e.,

cos(φk2+1 − φ0
k2

) = cos

(
φk2+1 − φk2

2

)
,

cos(φk2 − φ0
k2

) = cos

(
φk2 − φk2+1

2

)
= cos

(
φk2+1 − φk2

2

)
.

(7.7)

Solving the first two equations from the set of expressions in (7.6) results in the

colatitude of the pixel center as2

θ0
k1

= tan−1

[
1

cos(φk2 − φ0
k2

)

cos θk1−1 − cos θk1

sin θk1 − sin θk1−1

]

= tan−1

 1

cos
(
φk2+1−φk2

2

) cos θk1−1 − cos θk1

sin θk1 − sin θk1−1

 . (7.8)

The angular distance between pixel vertices and pixel center is then given by

x̂nw.x̂0 = cos θk1−1 cos θ0
k1

+ sin θk1−1 cos θ0
k1

(
cos θk1−1 − cos θk1

sin θk1 − sin θk1−1

)
(7.9)

=
cos θ0

k1

sin θk1 − sin θk1−1

(sin θk1 cos θk1−1 − cos θk1 sin θk1−1)

= x̂sw.x̂0 = x̂ne.x̂0 = x̂se.x̂0. (7.10)

Pixel centers, for these two methods, are shown in Figure 7-4.

2Solving the last two equations from the set of expressions in (7.6) yields the same result as given
in (7.8).
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Figure 7-4: HEALLPix pixel centers shown as mean of the pixel vertices in green dots.
Red dots show the pixel centers which are equi-angular-distant from the pixel vertices.
Pixel centers have nearly the same position on the sphere for the two methods.

7.1.5 Quaternary tree structure

Since HEALLPix divides each pixel hierarchically into four sub-pixels, partitioning

of the sphere has a quaternary tree structure as shown in Figure 7-5. Each node in

the tree represents a pixel on the sphere. We define tree level as the depth (counted

as number of tree edges) of the nodes from the root node and denote it by hT. Root

node, at tree level hT = 0, represents the whole sphere, S2. Nodes at tree level hT = 1
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7.1 HEALLPix

represent pixels on the sphere at resolution L = 1. Hence, the tree level is given by

the resolution parameter of the HEALLPix scheme, i.e., hT = L. Maximum value

of hT is called the height of the tree and is given by H = Lmax. Nodes are labeled

as P (hT, ihT
) where ihT

is the index of the node at tree level hT, which is given by

1 ≤ ihT
≤ 4hT . Each parent node, representing a parent pixel, at tree level hT is

related to its child nodes, representing child pixels, at tree level hT + 1 as follows

P (hT, ihT
) =

4ihT⋃
k=4ihT

−3

P (hT + 1, k). (7.11)

Since there are 4hT nodes at the tree level hT, total number of nodes in the quaternary

tree, denoted by nP , is given by

nP =
H∑

hT=0

4hT =
(4H+1 − 1)

3
. (7.12)

P(0,1)

P(1,1) P(1,2) P(1,3) P(1,4)

P(2,1) P(2,2) P(2,3) P(2,4) P(2,5) P(2,6) P(2,7) P(2,8) P(2,9) P(2,10) P(2,11) P(2,12) P(2,13) P(2,14) P(2,15) P(2,16)

Figure 7-5: Quaternary tree representation for HEALLPix. Each node is represented
as P (hT, ihT

) where 0 ≤ hT ≤ H is the tree level and 1 ≤ ihT
≤ 4hT is the index of

the node at tree level hT. H is the maximum tree level, called height of the tree.
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7.2 Overcomplete multiscale dictionary of Slepian

functions

Bandlimited Slepian functions, which are solution (in the spectral domain) to the

eigenvalue problem in (2.60), not only serve as basis functions for the space of ban-

dlimited signals on the sphere HL, the first NR bandlimited Slepian functions also

form a (reduced) basis set for accurate representation of bandlimited signals, which

are (energy) concentrated in a region R, where NR, the spherical Shannon number,

is a measure of the number of well-optimally concentrated Slepian functions in the

region R. Hence, we can use this “reduced Slepian basis set” as localized basis for

accurate representation of bandlimited signals within the HEALLPix pixels. Chang-

ing HEALLPix resolution changes the scale of pixelization and finding Slepian basis

functions for these multiscale pixels lays the foundation for the framework of multires-

olution analysis of signals on the sphere. In this section, we present two formulations

to collect spectral representations of Slepian functions in an overcomplete multiscale

dictionary.

As the number of well-optimally concentrated Slepian functions depends on the

area of the pixel, pixels (or nodes representing pixels) at different resolutions (tree

levels) will have different cardinality of the associated localized basis set. Therefore,

Shannon number becomes a function of the tree level and is denoted by NhT
. From

(7.3), Shannon number for nodes at tree level hT, denoted by NhT
, is given by

NhT
=
AhT

L2

4π
=
L2

4L
=

L2

4hT
, (7.13)

which is the same for all pixels represented by the nodes at tree level hT = L.

The eigenvalue problem in (2.60) is solved for pixels represented by the nodes at

a given tree level hT to obtain NSF number of well-optimally concentrated Slepian

functions using (2.62), which are associated with the tree nodes representing respec-

tive pixels on the sphere. We present two methods of choosing the number of well-

optimally concentrated Slepian functions to associate with each node in the tree.
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7.2 Overcomplete multiscale dictionary of Slepian functions

Table 7.1: Height of the HEALLPix quaternary tree along with maximum HEALLPix
resolution parameter, for fixed NSF, at different values of bandlimit L and NSF.

Bandlimit, L NSF Tree height, H Lmax

4 2 1 1
8 4 2 2
16 8 2 2
32 16 3 3
64 32 3 3
128 50 4 4
256 64 5 5

7.2.1 Fixed NSF for each tree node

We can choose to fix the cardinality of the localized basis set so that the pixels,

represented by nodes in the tree at all tree levels, have the same number of well-

optimally concentrated Slepian functions NSF. Height of the HEALLPix tree, in this

case, should be such that at least NSF number of well-optimally concentrated Slepian

functions are available for pixels represented by the nodes at tree level hT = H, i.e.,

NH ≥ NSF,

H ≤ 1

2
log2

(
L2

NSF

)
,

⌊
1

2
log2

(
L2

NSF

)⌋
, (7.14)

where we have used (7.13) to get the final result. As height of the HEALLPix tree

should be non-zero, number of well-optimally concentrated Slepian functions should

satisfy the following constraint

1

2
log2

(
L2

NSF

)
≥ 1,

NSF ≤
L2

4
. (7.15)

Table 7.1 lists some values of the tree height H and maximum HEALLPix resolution

Lmax required to generate pixels corresponding to nodes at the tree height, for different

values of NSF and bandlimit L.
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Table 7.2: Height of the HEALLPix quaternary tree along with maximum HEALLPix
resolution parameter, for varying NSF, at different bandlimits L.

Bandlimit, L Tree height, H Lmax

4 2 2
8 3 3
16 4 4
32 5 5
64 6 6
128 7 7
256 8 8

7.2.2 Varying NSF for nodes at different tree levels

Instead of choosing constant NSF for all the nodes in the tree, we can vary NSF across

tree levels by setting it equal to the spherical Shannon number for pixels represented

by the nodes at a given tree level, hT, i.e.,

NSF = NhT
=

L2

4hT
. (7.16)

For this case, height of the tree should be such that at-least one well-optimally con-

centrated Slepian function is available for the pixels represented by nodes at tree level

hT = H, i.e.,

L2

4H
≥ 1,

H ≤ log2 L,

H , blog2 Lc . (7.17)

From (7.17), we also note that

Lmax , blog2 Lc . (7.18)

Table 7.2 lists some values of the height of the tree H and maximum HEALLPix

resolution parameter, for different values of bandlimit L, under this scheme.
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7.2 Overcomplete multiscale dictionary of Slepian functions

7.2.3 Dictionary

Depending upon the choice, we find the height of the tree, either from (7.14) or (7.17),

at a given bandlimit L, compute first NSF number of eigenvectors using (2.60) (which

are spectral domain representations of the bandlimited Slepian functions in (2.62))

for pixels represented by each node of the tree at tree level 0 ≤ hT ≤ H, and store

them in an L2 × nD matrix D, called a dictionary, as

D =
[
d0

(1,1),d
0
(1,2), . . . ,d

0
(1,L2),d

1
(1,1),d

1
(1,2), . . . ,d

1
(1,NSF), . . .

dH
1,1, . . . ,d

H
1,NSF

, . . . ,dH
(4H,1), . . . ,d

H
(4H,NSF)

]
, (7.19)

where

nD = L2 +
H∑

hT=1

4hTNSF =


L2 + 4NSF

3
(4H − 1), fixedNSF,

H∑
hT=0

4hT
(
L2/4hT

)
= (H + 1)L2, varyingNSF

(7.20)

is the size of the dictionary and represents the total number of Slepian functions in D.

Dictionary element dhT

(ihT
,α) is the αth spectral domain representation of the Slepian

function (i.e., gα in (2.60)) for the pixel represented by the node at tree level hT and

index ihT
. dhT

(ihT
,α) for α = 1, . . . , NSF and 1 ≤ ihT

≤ 4hT represent well-optimally

concentrated Slepian functions for all the pixels at HEALLPix resolution L = hT.

The dictionary in (7.19) is multiscale in nature because dhT

(ihT
,α), for different values

of hT, represents localized Slepian basis functions for pixels at different scales on the

sphere. The dictionary is overcomplete because it contains nD number of localized

Slepian basis functions, which for H > 1 is greater than L2, where L2 is the number

of basis functions required to represent a signal f ∈ HL on the sphere.

Remark 9. We note that for the root node in Figure 7-5, which represents the whole

sphere, Slepian matrix in (2.60) becomes identity and the corresponding Slepian func-

tions become global spherical harmonic functions. Hence, for both methods of finding

NSF, the first L2 elements of the dictionary, representing spherical harmonics, are the

orthonormal vectors.
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7.2.4 Computation of Slepian functions

Every node at tree level hT represents a pixel at HEALLPix resolution L = hT, which

is bounded by two co-latitude rings, θ1, θ2 and two longitude rings, φ1, φ2. To compute

the Slepian functions for a pixel, we solve for the elements of the matrix K in (2.58),

using the formulation given in [76], as

K`m,pq =
∑̀
m′=−`

F `
m′,m

p∑
q′=−p

F p
q′,qQ(m′ + q′)S(q −m), (7.21)

where F `
m′,m, although defined in (4.8), is repeated here for convenience

F `
m′,m = (−i)m

√
2`+ 1

4π
∆`
m′,m ∆`

m′,0, ∆`
m′,m , d`m′,m(π/2), (7.22)

and

Q(m) =


1
4
(2im(θ2 − θ1)) + e2imθ1 − e2imθ2 , |m| = 1,

1
m2−1

(
eimθ1(− cos θ1 + im sin θ1) + eimθ2(cos θ2 − im sin θ2)

)
, |m| 6= 1,

S(m) =

φ2 − φ1, m = 0,

i
m

(eimφ1 − eimφ2), m 6= 0.

(7.23)

Figure 7-6 shows Slepian functions on the sphere, obtained using the Fourier expansion

in (2.23), for different nodes in the HEALLPix quaternary tree constructed for NSF

given by (7.16), at bandlimit L = 16 for which H = 4.

7.3 Analysis

We construct the dictionary using varying number of Slepian functions, i.e., NSF =

NhT
, for which the height of the HEALLPix quaternary tree and number of elements

in the dictionary are given by (7.17) and (second expression in) (7.20) respectively.

We assume that the bandlimit L is a power of 2 so that the Shannon number in (7.16)
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(a) d11,1, λ ∼ 1 (b) d11,64, λ = 0.6 (c) d21,1, λ ∼ 1 (d) d21,16, λ = 0.55 (e) d23,1, λ ∼ 1

(f) d23,16, λ = 0.48 (g) d34,1, λ = 0.94 (h) d34,4, λ = 0.54 (i) d311,1, λ = 0.87 (j) d311,4, λ = 0.44

Figure 7-6: Magnitude of Slepian functions for different nodes in the HEALLPix qua-
ternary tree, constructed using (7.16) for bandlimit L = 16 and height H = 4. For
each node, we show the most well-optimally concentrated and least well-optimally con-
centrated Slepian functions, where λ denotes the fractional energy concentration (see
(2.57)). Boundary of the pixels is shown in black.

is an integer, which in turn gives the height of the tree in (7.17), and the maximum

HEALLPix resolution in (7.18), as log2 L. The resulting dictionary is overcomplete

by design and hence, its elements do not make an orthogonal basis. This motivates

the analysis for the range of the dictionary D, which is the vector space spanned

by its elements, and mutual coherence, which is defined as magnitude of the inner

product between dictionary elements.

7.3.1 Range of D

The utility of the dictionaryD is in its ability to represent and reconstruct bandlimited

signals concentrated within a pixel on the sphere. We analyze the range of the

dictionary D by considering the following subset

Dk =
{
dhT

(ihT ,α) ∈ D : hT ∈ [1,H],

ihT
= (k − 1)4(hT−1) + 1, . . . , k4(hT−1), α = 1, . . . , NhT

}
, k ∈ [1, 4], (7.24)
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Figure 7-7: Angle (in degrees) between the range space of D1 and Vα(1, 1) for different
values of α and bandlimit L = 16 (H = 4). Thick red lines mark the integer multiples
of Shannon number N1 = 64.

i.e., Dk contains Slepian functions for the pixels represented by the node P (1, k)

and all its child nodes. Hence, the range space of Dk is the vector space spanned

by the dictionary elements which are well-optimally concentrated within the pixels

represented by the node P (1, k) and all its child nodes. In order to analyze the range

of Dk, for k = 1, we compare its range space to the vector space of bandlimited

signals which are well-optimally concentrated within the pixel represented by the

node P (1, 1), i.e., we compare the range space of D1 to that of the following matrix

Vα(1, 1) =
[
d1
(1,1), . . . ,d

1
(1,α)

]
, α ∈ [1, N1], N1 =

L2

4
, (7.25)

by investigating the angle between them, where N1 is the Shannon number at tree

level hT = 1 and d1
(1,α) is an element of the dictionary D in (7.19). For two subspaces,
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having different dimensions, we define the angle as the maximum principle angle

between them3. The results are shown in Figure 7-7 for bandlimit L = 16 and tree

height H = 4. It can be seen that the elements of D1 comfortably span the space of

bandlimited signals which are well-optimally concentrated within pixel represented by

the node P (1, 1), since the angle ∠(D1, Vα(1, 1)) is essentially 0 for not only just the

well-optimally concentrated Slepian functions, i.e., α ≤ N1 but also forN1 ≤ α ≤ 3N1.

7.3.2 Mutual coherence

Mutual coherence between the elements of the dictionary is defined as

MC(α, β) =

∣∣∣∣(dhT

(ihT
,α)

)H

dhT

(ihT
,β)

∣∣∣∣ , α 6= β. (7.26)

The dictionary D is required to be mutually incoherent, i.e., exhibit small mutual

coherence, as this is of significant importance for the sparse representation of sig-

nals (e.g. [126, 127]). Figure 7-8 shows that the mutual coherence between most of the

dictionary elements is negligibly small4, with the exception of the nodes which share

their ancestors’ pixels. Specifically, the dictionary elements d0
(1,α),d

1
(1,α),d

2
(1,α),d

3
(1,α), . . .

tend to have large mutual coherence while the nodes representing disjoint pixels have

negligibly small mutual coherence. In Figure 7-9, we sample the range of mutual

coherence into bins and plot the cumulative fraction of the total number of abso-

lute inner products between the dictionary elements, excluding self inner products,

for different quaternary trees with height H = 1, 2, 3, 4 at corresponding bandlimit

L = 2, 4, 8, 16. Arrow shows the direction in which the approximate knee of the curves

is displaced with increasing values of the bandlimit L. It is observed that ∼ 96% of

the total number of inner products, for the tree with height H = 4, have magnitude

less than 0.13. Hence, at bandlimit L = 16, only ∼ 4% of the total number of inner

products between dictionary elements contribute to mutual coherence MC ≥ 0.13.

Table 7.3 tabulates the approximate knee for each curve in Figure 7-9.

3We use the subspace function in MATLAB to compute the angle between two subspaces.
4The first L2 dictionary elements are orthonormal vectors which exhibit zero mutual coherence.
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Figure 7-8: Mutual coherence between elements of the dictionary constructed for
HEALLPix at bandlimit L = 16 (H = 4).

We can quantify the number of those inner products between the dictionary el-

ements which result in significant mutual coherence5. Slepian functions computed

for the child pixels exhibit large mutual coherence with those of their parent pixel,

e.g., tracing the left-most ancestry of the tree in Figure 7-5, Slepian functions com-

puted for the pixel represented by the root node P (0, 1) exhibit large mutual coher-

ence with the Slepian functions of the pixels represented by the child node P (1, 1),

the grandchild nodes P (2, 1), P (2, 2), P (2, 3), P (2, 4), the great grandchild nodes

P (3, 1), P (3, 2), . . . , P (3, 16) and so on. Noting that the number of Slepian functions

associated with the root node P (0, 1) is L2, number of those associated with the child

5The word “significant” is not used in its true sense, significant mutual coherence refers to absolute
inner products between Slepian functions of the overlapping pixels.
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Figure 7-9: Cumulative fractional mutual coherence between dictionary elements,
plotted against the range of mutual coherence values, for HEALLPix quaternary
trees with height H = 1, 2, 3, 4, corresponding to bandlimit L = 2, 4, 8, 16. Arrow
shows the direction in which the approximate knee of the curves is displaced with
increasing values of L.

node P (1, 1) is L2/4, number of those associated with each of the grandchild nodes

P (2, 1), P (2, 2), P (2, 3), P (2, 4) is L2/16 and so on, we can write the number of inner

products resulting in significant mutual coherence as

Nsig,MC
= 4

H∑
J1=1

L24(J1−1) L
2

4J1
+ 4

H∑
J1=2

L2

4
4(J1−1) L

2

4J1
+

42
H∑

J1=3

L2

42
4(J1−2) L

2

4J1
+ . . .+ 4(H−1) L2

4(H−1)
4
L2

4H

=
H∑

J1=1

L4 +
H∑

J1=2

L4

4
+

H∑
J1=3

L4

42
+ . . .+

L4

4(H−1)
=

H−1∑
J2=0

L4(H− J2)

4J2
, (7.27)
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Table 7.3: Approximating the knee for each curve in Figure 7-9.

Bandlimit, L Coordinates for knee of curves in Figure 7-9
2 (0.61, 0.86), i.e., ∼ 86% of the total number of inner products

result in mutual coherence ≤ 0.61
4 (0.4, 0.94), i.e., ∼ 94% of the total number of inner products

result in mutual coherence ≤ 0.4
8 (0.24, 0.95), i.e., ∼ 95% of the total number of inner products

result in mutual coherence ≤ 0.24
16 (0.13, 0.96), i.e., ∼ 96% of the total number of inner products

result in mutual coherence ≤ 0.13

where H is the height of the HEALLPix quaternary tree at bandlimit L. Ratio of

the number of inner products resulting in significant mutual coherence to the total

number of inner products between dictionary elements, excluding self inner products,

i.e., of type MC(α, α), is given by

Nsig,MC

Ntot,MC

=

L4

[
H−1∑
J2=0

(H− J2)4−J2

]
0.5 ∗ [(H + 1)2L4 − (H + 1)L2]

=

2L2

[
H−1∑
J2=0

(H− J2)4−J2

]
(H + 1) [(H + 1)L2 − 1]

. (7.28)

Figure 7-10, which plots this ratio for HEALLPix quaternary tree with different

heights, shows that the fraction of total number of inner products between dictio-

nary elements, resulting in significant mutual coherence, decreases with increasing

height of the tree. For a HEALLPix quaternary tree with height H = 4, at bandlimit

L = 16, ∼ 39% of the total number of inner products between dictionary elements

result in significant mutual coherence.

It must be noted that “significant” mutual coherence is computed as the magni-

tude of inner product between those dictionary elements which are associated with

nodes representing overlapping pixels on the sphere. At small bandlimits, spatial

concentration of bandlimited Slepian functions within the pixels is relatively poor,

hence, inner product between the dictionary elements associated with nodes repre-

senting non-overlapping pixels can also be significant, due to greater leakage (i.e.,

small associated eigenvalues) for even the well-optimally concentrated Slepian func-

tions. This is apparent from the curves in Figure 7-9 for bandlimits L = 2, 4.
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Figure 7-10: Fraction of total number of inner products between HEALLPix dictio-
nary elements which result in significant mutual coherence.

7.4 Multiscale analysis for HEALPix

HEALLPix scheme, proposed in the previous section, generates pixels with bound-

aries having simple mathematical representations, which makes the computation of

Slepian functions a relatively simple task. In this section, we present exact analyt-

ical expressions for the computation of bandlimited Slepian functions for the pixels

generated using HEALPix [57], which was reviewed in Section 6.2.1. HEALPix pix-

els have much more complex mathematical expressions for the boundaries, which

makes the computation of Slepian functions a highly non-trivial task. We exploit

rotational symmetries between different HEALPix pixels to find appropriate rotation

angles, and employ Wigner-D functions to develop an efficient framework for the

computation of Slepian functions. We propose convergence criterion for infinite se-

ries expansions employed in the framework and construct an overcomplete multiscale
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dictionary of Slepian functions, which is analyzed for the range and mutual coher-

ence of its elements. However, before presenting the mathematical formulation for

the computation of surface integrals over HEALPix pixels, we review the geometry

of HEALPix in detail.

(a) Nside = 1 (b) Nside = 2

(c) Nside = 4 (d) Nside = 8

Figure 7-11: Hierarchical equal area iso-latitude pixelization of the sphere at different
resolutions. Light shade of gray represents pixels at the boundary of polar and equa-
torial zones whereas dark and medium shades of gray represent pixels in the polar
and equatorial zones respectively. Pixel boundaries are shown in black.
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7.4.1 Geometry of HEALPix

As reviewed in Section 6.2.1, HEALPix divides the whole sphere into 12 equal area pix-

els at the base-resolution, i.e., Nside = 1. Increasing the resolution level by one step di-

vides each pixel into 4 sub-pixels, resulting in Npix = 12N2
side pixels, which are divided

into three zones, namely north polar (cos θ ≥ 2/3), equatorial (−2/3 < cos θ < 2/3)

and south polar (cos θ ≤ −2/3). Partitioning of the sphere under HEALPix is shown

in Figure 7-11 for different values of Nside. We treat pixels which are centered on the

iso-latitude rings at cos θ = ±2/3 separately from polar and equatorial pixels and refer

to them as north-polar-equatorial and south polar-equatorial pixels respectively (these

pixels are shown in the lightest shade of gray in Figure 7-11). Hence, in the context of

this work, HEALPix pixels are divided into five zones, namely north polar (NP), north

polar-equatorial (NPE), equatorial (EQ), south polar-equatorial (SPE) and south po-

lar (SP).

Pixel Indexing

There are two schemes which can be adopted for indexing HEALPix pixels, namely

the ring scheme and the nested scheme [57]. We choose the ring scheme, in which

pixels are indexed in anticlockwise direction along longitude (starting from φ = 0),

and from north to south along colatitude. Ring index, denoted by p, for pixels in the

five zones on HEALPix grid, is given by

NP : 1 ≤ p ≤ 2Nside(Nside − 1),

NPE : 2Nside(Nside − 1) < p ≤ 2Nside(Nside + 1),

EQ : 2Nside(Nside + 1) < p ≤ Nside(10Nside − 2),

SPE :Nside(10Nside − 2) < p ≤ Nside(10Nside + 2),

SP :Nside(10Nside + 2) < p ≤ Npix.

(7.29)

Given a pixel indexed by p ∈ {1, 2, . . . , Npix}, we further refine the indexing using

the “row kind” (r, which indexes the pixel along colatitude) and “column kind” (c,
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which indexes the pixel along longitude) indices as

r =



⌈
−1+

√
1+2p

2

⌉
, NP,

1, NPE,⌈
p−2Nside(Nside+1)

4Nside

⌉
, EQ,

1, SPE,⌈
−1+
√

1+2(Nside(Nside−1)−ps+1)

2

⌉
, SP,

(7.30)

c =



p− 2r(r − 1), NP,

p− 2Nside(Nside − 1), NPE,

p− 2Nside(Nside + 1)− 4Nside(r − 1), EQ,

p−Nside(10Nside − 2), SPE,

ps − 2(Nside − r − 1)(Nside + r), SP,

(7.31)

where ps = p−Nside(10Nside+2). Note that for south polar pixels, row index decreases

from Nside − 1 to 1 as the colatitude increases towards π.

Diametrically opposite pixels

Every pixel in the southern hemisphere has a diametrically opposite pixel in the

northern hemisphere. Denoting the row and column indices of the equatorial pixels

in the southern hemisphere by req,S and ceq,S respectively, we note that

req,N = 2Nside − req,S,

ceq,N =

(ceq,S + 2Nside) mod 4Nside, if (ceq,S + 2Nside) mod 4Nside 6= 0,

4Nside, otherwise,

(7.32)

where req,N and ceq,N are the row and column indices of the equatorial pixels in

the northern hemisphere. Denoting the row and column indices of the north polar
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and north polar-equatorial pixels by rp,N, cp,N and rpe,N, cpe,N respectively, similar

expressions can be obtained as

rp,N = rp,S,

cp,N =

(cp,S + 2rp,S) mod 4rp,N, if (cp,S + 2rp,S) mod 4rp,N 6= 0,

4rp,N, otherwise,

(7.33)

and

rpe,N = rpe,S = 1,

cpe,N =

(cpe,S + 2Nside) mod 4Nside, if (cpe,S + 2Nside) mod 4Nside 6= 0,

4Nside, otherwise,

(7.34)

where rp,S, cp,S and rpe,S, cpe,S are row and column indices of the pixels in the south

polar and south polar-equatorial zones respectively.

Pixel Boundaries

Polar pixels have non-linear boundaries. Defining cpz as the cyclic polar zone column

index, i.e.,

cpz ,

c mod r, c mod r 6= 0,

r, c mod r = 0,

(7.35)

for r and c given in (7.30) and (7.31) respectively, north polar pixel boundaries are

given by the following expressions [57],

φ =



πEpz
u`/ (apz sin(θ/2)) + ∆φ, (upper left),

π/2− πEpz
`` / (apz sin(θ/2)) + ∆φ, (lower left),

πEpz
`r / (apz sin(θ/2)) + ∆φ, (lower right),

π/2− πEpz
ur/ (apz sin(θ/2)) + ∆φ, (upper right),

(7.36)
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where apz = 2
√

6Nside, E
pz
u` = cpz − 1, Epz

`` = r − cpz + 1, Epz
`r = cpz, Epz

ur = r − cpz,

∆φ ,

(π/2)
(⌈

c
r

⌉
− 1
)
, for NP/SP pixels,

(π/2)
(⌈

c
Nside

⌉
− 1
)
, for NPE/SPE pixels,

(7.37)

and the subscripts, denoting upper left, lower left, lower right and upper right, de-

scribe the respective sides of the pixel boundary with respect to the center of the

pixel. Similarly, south polar pixel boundaries are given by

φ =



πEpz
u`/ (apz cos(θ/2)) + ∆φ, (lower left),

π/2− πEpz
`` / (apz cos(θ/2)) + ∆φ, (upper left),

πEpz
`r / (apz cos(θ/2)) + ∆φ, (upper right),

π/2− πEpz
ur/ (apz cos(θ/2)) + ∆φ, (lower right),

(7.38)

which can be easily derived from (7.36) by replacing θ with π − θ.

Equatorial pixels have linear boundaries which are given by the following expres-

sions [57]

cos θ =



2/3− Eez
u`a

ez + bφ, (upper left),

2/3− Eez
``a

ez − bφ, (lower left),

2/3− Eez
`ra

ez + bφ, (lower right),

2/3− Eez
ura

ez − bφ, (upper right),

(7.39)

where aez = 4/3Nside, b = 8/3π, Eez
u` = cez − 1, Eez

`` = r − (cez − 1), Eez
`r = cez,

Eez
ur = r − cez, and cez is defined as

cez , c+ br/2c. (7.40)

Polar-equatorial pixels are shared between polar and equatorial zones. Hence,

their boundaries can be derived from (7.36), (7.38) and (7.39). Defining cpe as the
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cyclic column index for the polar-equatorial zone, i.e.,

cpe =

c mod Nside, c mod Nside 6= 0,

Nside, c mod Nside = 0,

(7.41)

for c given in (7.31), boundaries for the north polar-equatorial pixels are given by

φ =

πE
npe
u` / (apz sin(θ/2)) + ∆φ, (upper left),

π/2− πEnpe
ur / (apz sin(θ/2)) + ∆φ, (upper right),

cos θ =

2/3− Enpe
`` aez − bφ, (lower left),

2/3− Enpe
`r aez + bφ, (lower right),

(7.42)

where Enpe
u` = cpe − 1, Enpe

ur = Nside − cpe, Enpe
`` = 1 − c and Enpe

`r = c. Similarly,

boundaries for the south polar-equatorial pixels are given by

cos θ =

2/3− Espe
u` a

ez + bφ, (upper left),

2/3− Espe
ur a

ez − bφ, (upper right),

φ =

πE
spe
`` / (apz cos(θ/2)) + ∆φ, (lower left),

π/2− πEspe
`r / (apz cos(θ/2)) + ∆φ, (lower right),

(7.43)

where Espe
u` = Nside + c− 1, Espe

ur = Nside − c, Espe
`` = cpe − 1 and Espe

`r = Nside − cpe.

7.5 Slepian functions for HEALPix pixels

Slepian functions are computed from (2.62) in which the spectral coefficients are

obtained as eigenvectors of the Slepian matrix K in (2.60). From (2.53), elements of

the Slepian matrix, given in (2.58), can be written as

K`m,pq(r, c) =
∑̀
m′=−`

F `
m′,m

p∑
q′=−p

F p
q′,qGmq,m′q′(r, c), (7.44)
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where F `
m′,m is given in (7.22),

Gmq,m′q′(r, c) =

∫
R(r,c)

ei(q−m)φ sin θ ei(m
′+q′)θ dθ dφ (7.45)

is the Slepian sub-integral and R(r,c) is the region bounded by the HEALPix pixel

indexed by row index r and column index c.

7.5.1 North polar pixels

To speed up computation, we compute the Slepian matrix elements for the north

polar pixels in the first longitudinal quadrant only, i.e., for 0 ≤ φ ≤ π/2. For pixels

in the other three longitudinal quadrants, Slepian matrix elements are obtained from

the matrix elements computed for the pixels in the first longitudinal quadrant. Hence

for a north polar pixel with index 1 ≤ p ≤ 2Nside(2Nside − 1), we get

K`m,pq(r, c) =

∫
R(r,c)

Y m
` (θ, φ)Y q

p (θ, φ) sin θdθdφ

=

∫
R(r,cpz)

(
D(0, 0,−∆φ)Y m

` Y
q
p

)
(θ, φ) sin θdθdφ

=
∑̀
m′=−`

D`
m′,m(0, 0,−∆φ)

p∑
q′=−p

Dp
q′,q(0, 0,−∆φ)

∫
R(r,cpz)

Y m′
` (θ, φ)Y q′

p (θ, φ) sin θdθdφ

= e−i(m−q)∆φK`m,pq(r, c
pz), (7.46)

where we have used the spectral representation of rotated spherical harmonics in (4.6)

along with the following identity

d`m,n(0) , δm,n, (7.47)

to obtain the final result, r and c are the row and column indices of the north polar

pixel indexed by p, cpz is defined in (7.35) and ∆φ is given in (7.37). Here K`m,pq(r, c
pz)

denote the Slepian matrix elements for the pixel which can be rotated into the pixel,

with ring index p, by an angle ∆φ around the z-axis. Matrix elements K`m,pq(r, c
pz)
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7.5 Slepian functions for HEALPix pixels

are computed using (7.44), in which the Slepian sub-integral is given by

Gmq,m′q′(r, c
pz) =

∫ θr

θr−1

∫ π
2
− πE

pz
ur

apz sin θ2

πE
pz
u`

apz sin θ2

ei(q−m)φ sin θei(m
′+q′)θdφdθ+

∫ θr+1

θr

∫ πE
pz
`r

apz sin θ2

π
2
−

πE
pz
``

apz sin θ2

ei(q−m)φ sin θei(m
′+q′)θdφdθ, (7.48)

where we have used the pixel boundaries in (7.36) (with ∆φ = 0) to obtain the

integration limits on φ and θr is the colatitude of the iso-latitude ring that the pixel

is centered on, given by

θr = cos−1

(
1− r2

3N2
side

)
, 1 ≤ r ≤ Nside − 1. (7.49)

We present an analytical expression for the Slepian sub-integral in (7.48) in the fol-

lowing theorem.

Theorem 8. Let Gmq,m′q′(r, c
pz) be an integral of the form given in (7.48), where r

is the row index of the pixel, cpz is given by (7.35) in which c is the column index

of the pixel, θr is the colatitude given in (7.49), and apz = 2
√

6Nside, E
pz
u` = cpz − 1,

Epz
`` = r − cpz + 1, Epz

`r = cpz, Epz
ur = r − cpz. Then,

Gmq,m′q′(r, c
pz) =

−4eiν

(q−m)

2|M |∑
J1=0

(
2|M |
J1

)
(sM i)

J1

(
F pz(J1,M,Apz, Bpz, ν,Γu, θr−1, θr)−

F pz(J1,M,Dpz, Cpz, ν,Γl, θr, θr+1)

)
, m 6= q,

π
2

(
C1(M,θr−1,θr)−C1(M,θr,θr+1)

1−M2

)
+ 4

1−4M2×(
C2(M,

πEpz
u`

apz ,−πEpz
ur

apz , θr−1, θr) + C2(M,−πEpz
``

apz ,
πEpz

`r

apz , θr, θr+1)
)
, m = q,M 6= ±1,

π
2

(
C3(M, θr−1, θr)− C3(M, θr, θr+1)

)
+ 4

1−4M2×(
C2(M,

πEpz
u`

apz ,−πEpz
ur

apz , θr−1, θr) + C2(M,−πEpz
``

apz ,
πEpz

`r

apz , θr, θr+1)
)
, m = q,M = ±1,

(7.50)
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where M , m′ + q′, ν = (q −m)π/4, the functions F pz, C1, C2 and C3 are given by

F pz(J1,M,A,B, ν,Γu, θ1, θ2) =
Γu∑

J2=0

(
|M | − J1/2

J2

)
(−1)J2

(J1 + 2J2 + 2)!
×

(
(J1+2J2+1)∑

J3=0

(−1)d
J3+1

2 e(J1 + 2J2 + 1− J3)!
[
(B)J3W(J3 mod 2)(J1, J2, J3, B, ν, θ1, θ2)−

(A)J3 W(J3 mod 2)(J1, J2, J3, A,−ν, θ1, θ2)
])

+ (−1)b
J1+2J2+2

2 c
[
(B)(J1+2J2+2)×

W(fJ1,J2)(J1, J2, B, ν, θ1, θ2)− (A)(J1+2J2+2)W(fJ1,J2)(J1, J2, A,−ν, θ1, θ2)
]
, (7.51)

C1(M, θ1, θ2) =
[
eiMθ(iM sin θ − cos θ)

∣∣θ2
θ1
,

C2(M,A,B, θ1, θ2) = (B − A)

[
eiMθ

(
sin

θ

2
+ 2iM cos

θ

2

)∣∣∣∣θ2
θ1

,

C3(M, θ1, θ2) =

[
−1

4
cos 2θ + sM

i

2
θ − sM

i

4
sin 2θ

∣∣∣∣θ2
θ1

.

(7.52)

Here
(

2|M |
J1

)
is binomial coefficient,

(|M |−J1/2
J2

)
is generalized binomial coefficient, fJ1,J2 =

2 + [(J1 + 2J2 + 3) mod 2], the constants are given by

Apz =
π(q −m)Epz

u`

apz
, Bpz = −π(q −m)Epz

ur

apz
,

Cpz = −π(q −m)Epz
``

apz
, Dpz =

π(q −m)Epz
`r

apz
,

(7.53)

sM =

1, M ≥ 0,

−1, M < 0,

(7.54)

summation limits, Γu for upper half and Γl for lower half of the pixel, are given by

Γu = Γl =

|M | − J1/2, J1 mod 2 = 0,

∞, J1 mod 2 = 1,

(7.55)
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and the functions W(·)(·) are defined as

W(0)(J1, J2, J3, w, v, θ1, θ2) =

sin
(
w csc θ

2
+ v
)
− i(−1)J3 cos

(
w csc θ

2
+ v
)

(
csc θ

2

)(J1+2J2+2−J3)

∣∣∣∣∣∣∣
θ2

θ1

,

(7.56)

W(1)(J1, J2, J3, w, v, θ1, θ2) =

cos
(
w csc θ

2
+ v
)
− i(−1)J3 sin

(
w csc θ

2
+ v
)

(
csc θ

2

)(J1+2J2+2−J3)

∣∣∣∣∣∣∣
θ2

θ1

,

(7.57)

W(2)(J1, J2, w, v, θ1, θ2) = Ci(w, v, θ1, θ2)− i(−1)(J1+2J2+2)Si(w, v, θ1, θ2), (7.58)

W(3)(J1, J2, w, v, θ1, θ2) = Si(w, v, θ1, θ2)− i(−1)(J1+2J2+2)Ci(w, v, θ1, θ2), (7.59)

where the functions Si(w, v, θ1, θ2) and Ci(w, v, θ1, θ2) are given by the following ex-

pressions

Si(w, v, θ1, θ2) =


cos v TS

(
w, csc

(
θ1
2

)
, csc

(
θ2
2

))
+

sin v TC
(
w, csc

(
θ1
2

)
, csc

(
θ2
2

))
, w 6= 0,

sin v ln
(

csc(θ2/2)
csc(θ1/2)

)
, w = 0,

(7.60)

Ci(w, v, θ1, θ2) =


cos v TC

(
w, csc

(
θ1
2

)
, csc

(
θ2
2

) )
−

sin v TS

(
w, csc

(
θ1
2

)
, csc

(
θ2
2

) )
, w 6= 0,

cos v ln
(

csc(θ2/2)
csc(θ1/2)

)
, w = 0,

(7.61)

in which TS and TC are the Maclaurin series expansions of the sine and cosine inte-
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grals, i.e.,

TS(w, u1, u2) =
∞∑

kS=0

(−1)kSw2kS+1

(2kS + 1)!

(
u2kS+1

2 − u2kS+1
1

2kS + 1

)
, (7.62)

TC(w, u1, u2) = ln

(
u2

u1

)
+

∞∑
kC=1

(−1)kCw2kC

(2kC)!

(
u2kC

2 − u2kC
1

2kC

)
. (7.63)

Proof. See Appendix C for the proof of Theorem 8 and Section 7.7 for convergence

criterion of the infinite series expansions.

7.5.2 Equatorial pixels (centered either above or at equator)

We take advantage of the rotational symmetry of the equatorial pixels centered on

a given iso-latitude ring and compute the Slepian matrix for only the first pixel in

an iso-latitude ring (i.e., the pixel with column index c = 1). Slepian matrix for an

equatorial pixel, centered above or at equator, with row index r and column index

c > 1 is then obtained as

K`m,pq(r, c) =

∫
R(r,c)

Y m
` (θ, φ)Y q

p (θ, φ) sin θdθdφ

=

∫
R(r,1)

(
D
(

0, 0,
π(1− c)
2Nside

)
Y m
` Y

q
p

)
(θ, φ) sin θdθdφ

=
∑̀
m′=−`

D`
m′,m

(
0, 0,

π(1− c)
2Nside

) p∑
q′=−p

Dp
q′,q

(
0, 0,

π(1− c)
2Nside

)
×∫

R(r,1)

Y m′
` (θ, φ)Y q′

p (θ, φ) sin θdθdφ

= e
−i(m−q)π(c−1)

2Nside K`m,pq(r, 1), (7.64)

where R(r,1) is the region bounded by the pixel with row index r and column index 1,

π(c− 1)/2Nside is the rotational symmetry between the pixels with same row indices

and columns indices c and 1 respectively, and we have used (4.6), (7.47) to obtain the

final result. Slepian matrix elements K`m,pq(r, 1) are computed from (7.44) in which
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the Slepian sub-integral is given by

Gmq,m′q′(r, 1) =

θr∫
θr−1

(
2
3
− 4Eez

ur
3Nside

−cos θ
)
/b∫

(
cos θ− 2

3
+

4Eez
u`

3Nside

)
/b

ei(q−m)φ sin θei(m
′+q′)θdφdθ+

θr+1∫
θr

(
cos θ− 2

3
+

4Eez
`r

3Nside

)
/b∫

(
2
3
−

4Eez
``

3Nside
−cos θ

)
/b

ei(q−m)φ sin θei(m
′+q′)θdφdθ, (7.65)

where (7.39) have been used to obtain the integration limits on φ and

θr = cos−1

(
2

3

(
1− r

Nside

))
, 1 ≤ r ≤ 2Nside − 1 (7.66)

is the colatitude of the iso-latitude ring that the pixel is centered on. Analytical

expression for the Slepian sub-integral in (7.65) is presented in the following theorem.

Theorem 9. Let Gmq,m′q′(r, 1) be an integral of the form given in (7.65), where r is

the row index of the pixel and θr is the colatitude given in (7.66). Then,

Gmq,m′q′(r, 1) =

2
(q−m)

|M |∑
J1=0

(|M |
J1

)
(sM i)

J1

(
F ez(J1,M,Aez, Bez, µ,Γu, θr−1, θr)

−F ez(J1,M,Dez, Cez, µ,Γl, θr, θr+1)
)
, m 6= q,

1
b(1−M2)

[C4(M,Aez, Bez, θr−1, θr)− C4(M,Cez, Dez, θr, θr+1)]

− 2
b(4−M2)

[C5(M, θr−1, θr)− C5(M, θr, θr+1)] , m = q,M 6= ±1,±2,

1
b

[C6(M,Aez, Bez, θr−1, θr)− C6(M,Cez, Dez, θr, θr+1)]

− 2
b(4−M2)

[C5(M, θr−1, θr)− C5(M, θr, θr+1)] , m = q,M = ±1,

1
b(1−M2)

[C4(M,Aez, Bez, θr−1, θr)− C4(M,Cez, Dez, θr, θr+1)]

−1
b

[C7(M, θr−1, θr) + C7(M, θr, θr+1)] , m = q,M = ±2,

(7.67)
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where M , m′ + q′, µ = (q −m)/b and functions F ez, C4, C5, C6, C7 are given by

F ez(J1,M,A,B, µ,Γu, θ1, θ2) = e
iµ
2

(B−A)

Γu∑
J2=0

(
J1/2

J2

)
(−1)J2×

(2J2+|M |−J1+1)∑
J3=1

(−1)d
J3+1

2 eµ−J3
(2J2 + |M | − J1)!

(2J2 + |M | − J1 + 1− J3)!
×


[
(cos θ)(2J2+|M |−J1+1−J3) cos

(
µ
(
cos θ − A+B

2

))∣∣θ2
θ1
, J3 odd,

[
(cos θ)(2J2+|M |−J1+1−J3) sin

(
µ
(
cos θ − A+B

2

))∣∣θ2
θ1
, J3 even,

(7.68)

C4(M,A,B, θ1, θ2) = (A+B)
[
eiMθ(iM sin θ − cos θ)

∣∣θ2
θ1
,

C5(M, θ1, θ2) =

[
eiMθ

(
iM

2
sin 2θ − cos 2θ

)∣∣∣∣θ2
θ1

,

C6(M,A,B, θ1, θ2) = (A+B)

[
−1

4
cos 2θ + sM

i

2
θ − sM

i

4
sin 2θ

∣∣∣∣θ2
θ1

,

C7(M, θ1, θ2) =

[
−1

8
cos 4θ + sM

i

2
θ − sM

i

8
sin 4θ

∣∣∣∣θ2
θ1

.

(7.69)

Here,
(|M |

J1

)
is binomial coefficient,

(
J1/2
J2

)
is generalized binomial coefficient,

sM =

1, M ≥ 0,

−1, M < 0,

(7.70)

and the constants are defined by pixel parameters, i.e.,

Aez =
2

3
− Eez

u`a
ez, Bez =

2

3
− Eez

ura
ez,

Cez =
2

3
− Eez

``a
ez, Dez =

2

3
− Eez

`ra
ez,

(7.71)

for aez = 4/3Nside, b = 8/3π, Eez
u` = cez−1, Eez

`` = r−(cez−1), Eez
`r = cez, Eez

ur = r−cez

and cez = 1 + br/2c. The summation limits Γu and Γl (for the upper and lower halves

of the pixel respectively) are given by
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Γu = Γl =

J1/2, J1 mod 2 = 0,

∞, J1 mod 2 = 1.

(7.72)

Proof. See Appendix C for the proof of Theorem 9 and Section 7.7 for convergence

criterion of the infinite series expansion.

Remark 10. An alternative formulation of the Slepian sub-integral Gmq,m′q′(r, 1) in

(7.67), for the case when m 6= q, can be obtained as

Gmq,m′q′(r, 1) = F ez(Bez,M, b,−µ, θr−1, θr)− F ez(Aez,M, b, µ, θr−1, θr)+

F ez(Dez,M, b, µ, θr, θr+1)− F ez(Cez,M, b,−µ, θr, θr+1),

(7.73)

for M , m′ + q′, µ = (q −m)/b and

F ez(A,M, b, µ, θ1, θ2) =
(θ1 − θ2)

2bµ
e−iµA

(
iM+1JM+1(µ) ∗ ε(M + 1; θ1, θ2)−

iM−1JM−1(µ) ∗ ε(M − 1; θ1, θ2)
)
,

(7.74)

where JM(µ) is the Bessel function of first kind and order M , evaluated at µ, ∗ denotes

the Euclidean domain convolution,

ε(M ; θ1, θ2) = eiM
(
θ1+θ2

2

)
sinc

[
M

(
θ2 − θ1

2

)]
, (7.75)

and

sinc(x) , sinx/x (7.76)

is the sinc function. We refer the reader to Appendix C for the derivation of (7.73)

and for details on computing the convolution of JM(µ) and ε(M, θ1, θ2). In the rest

of this work, we use the results in Theorem 9 to compute the Slepian sub-integral for

equatorial pixels.
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7.5.3 North polar-equatorial pixels

North polar-equatorial pixels are located at the boundary of north polar and equa-

torial zones, i.e., their upper and lower halves are located in the north polar and

equatorial zones respectively. Exploiting the rotational symmetry between pixels,

Slepian matrix is computed for pixels with column index c ≤ Nside. For a pixel with

column index c > Nside, Slepian matrix elements are given by

K`m,pq(r, c) =

∫
R(r,c)

Y m
` (θ, φ)Y q

p (θ, φ) sin θdθdφ

=

∫
R(r,cpe)

(
D(0, 0,−∆φ)Y m

` Y
q
p

)
(θ, φ) sin θdθdφ = e−i(m−q)∆φK`m,pq(r, c

pe), r = 1,

(7.77)

where again (4.6), (7.47) have been used to obtain the final result, c is the column

index of the pixel, cpe is defined in (7.41), and ∆φ, given in (7.37), is the rotational

symmetry between pixels with column indices c and cpe. Since, north polar-equatorial

pixels are shared between the north polar and equatorial zones, we can use the re-

sults presented in Theorem 8 and Theorem 9 to compute the Slepian matrix elements

K`m,pq(r, c
pe) from (7.44), by formulating the Slepian sub-integral as

Gmq,m′q′(r, c
pe) =

θr∫
θr−1

π
2

+ Bnpe

(q−m) sin θ2∫
Anpe

(q−m) sin θ2

ei(q−m)φ sin θeiMθdφdθ+

θr+1∫
θr

(cos θ−Dnpe)
b∫

(Cnpe−cos θ)
b

ei(q−m)φ sin θei(m
′+q′)θdφdθ, r = 1, (7.78)

where

θk =


cos−1

(
1− (Nside−1)2

3N2
side

)
, k = r − 1,

cos−1
(

2
3

)
, k = r,

cos−1
(

2
3

(
1− 1

Nside

))
, k = r + 1,

(7.79)
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and the constants are given by

Anpe =
π(q −m)Enpe

u`

apz
, Bnpe = −π(q −m)Enpe

ur

apz
,

Cnpe =
2

3
− Enpe

`` aez, Dnpe =
2

3
− Enpe

`r aez,

(7.80)

for pixel parameters b, apz, aez, Enpe
u` , Enpe

ur , Enpe
`` and Enpe

`r defined in Section 7.4.1.

We note that Anpe, Bnpe and Cnpe, Dnpe are defined in a similar way as in Theorem 8

and Theorem 9 respectively. Hence, the first and second integral in (7.78) correspond

to the first integral in (7.48) and second integral in (7.65). Therefore, an analyt-

ical expression for the Slepian sub-integral in (7.78) can be directly obtained from

Theorem 8 and Theorem 9 as

Gmq,m′q′(1, c
pe) =

−4eiν

(q−m)

2|M |∑
J1=0

(
2|M |
J1

)
(sM i)

J
1F

pz(J1,M,Anpe, Bnpe, ν,Γu, θ0, θ1)−

2
(q−m)

|M |∑
J1=0

(|M |
J1

)
(sM i)

J1 F ez(J1,M,Dnpe, Cnpe, µ,Γl, θ1, θ2), m 6= q,

π
2(1−M2)

C1(M, θ0, θ1) + 2
b(4−M2)

C5(M, θ1, θ2)+

4
(1−4M2)

C2(M,
πEnpe

u`

apz ,−πEnpe
ur

apz , θ0, θ1)−

1
b(1−M2)

C4(M,Cnpe, Dnpe, θ1, θ2), m = q,M 6= ±1,±2,

π
2
C3(M, θ0, θ1) + 2

b(4−M2)
C5(M, θ1, θ2)+

4
(1−4M2)

C2(M,
πEnpe

u`

apz ,−πEnpe
ur

apz , θ0, θ1)

−1
b
C6(M,Cnpe, Dnpe, θ1, θ2), m = q, M = ±1,

π
2(1−M2)

C1(M, θ0, θ1) + 1
b
C7(M, θ1, θ2)+

4
(1−4M2)

C2(M,
πEnpe

u`

apz ,−πEnpe
ur

apz , θ0, θ1)

− 1
b(1−M2)

C4(M,Cnpe, Dnpe, θ1, θ2), m = q, M = ±2,

(7.81)

where F pz, M , ν, sM , Γu, C1, C2, C3 are given in Theorem 8 and F ez, µ, Γl, C4, C5,

C6, C7 are given in Theorem 9.
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7.5.4 Pixels centered below equator

From (2.18), we note that Pm
` (−z) = (−1)`+mPm

` (z). Hence, spherical harmonics for

the diametrically opposite (antipodal) pixels satisfy the following relation

Y m
` (π − θ, π + φ) = (−1)` Y m

` (θ, φ), (7.82)

where (π − θ, π + φ) is antipodal to a point (θ, φ) on the sphere. Since every pixel

in the southern hemisphere is diametrically opposite to some pixel in the northern

hemisphere, we can use the indexing in (7.32), (7.33) and (7.34) to directly find the

Slepian matrix elements for the southern equatorial, south polar and south polar-

equatorial pixels as

K`m,pq

(
req,S, ceq,S

)
= (−1)`+pK`m,pq

(
req,N, ceq,N

)
,

K`m,pq

(
rp,S, cp,S

)
= (−1)`+pK`m,pq

(
rp,N, cp,N

)
,

K`m,pq

(
rpe,S, cpe,S

)
= (−1)`+pK`m,pq

(
rpe,N, cpe,N

)
,

(7.83)

where K`m,pq

(
req,N, ceq,N

)
, K`m,pq

(
rp,N, cp,N

)
and K`m,pq

(
rpe,N, cpe,N

)
are the Slepian

matrix elements for the northern equatorial, north polar and north polar-equatorial

pixels, given in (7.64), (7.46) and (7.77) respectively.

7.6 Multiscale dictionary of Slepian functions for

HEALPix

We compute spectral coefficients of the Slepian functions as eigenvectors of the Slepian

matrix using the formulations given in Section 7.5.1, Section 7.5.2, Section 7.5.3 and

Section 7.5.4 for north polar pixels, equatorial pixels, north-polar-equatorial pixels

and pixels centered below equator respectively, at different resolutions of HEALPix

partitioning scheme. As in Section 7.1.5, we associate a quaternary tree structure with

HEALPix, in which tree levels and tree height are denoted by hT and H respectively.

Root node, at tree level hT = 0, represents the whole sphere. Every node in the tree,
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P(0,1)

P(1,1) P(1,2)

P(2,1) P(2,2) P(2,3) P(2,4) P(2,5) P(2,6) P(2,7) P(2,8) P(2,45) P(2,46) P(2,47) P(2,48)

P(1,12)P(1,1)

Figure 7-12: Quaternary tree representation for HEALPix scheme. Each node is
represented as P (hT, ihT

) where hT ∈ [0,H] is the tree level and ihT
is the index of

the node at tree level hT. H is the maximum tree level, called height of the tree.

at tree level hT ≥ 1, represents one of the HEALPix pixels at resolution given by

Nside = 2hT−1, hT ≥ 1,

hT = 1 + log2Nside. (7.84)

Height of the tree is the maximum tree level, which relates to the maximum HEALPix

resolution Nmax
side as

H = 1 + log2N
max
side , H ≥ 1. (7.85)

At a given tree level hT ≥ 1, there are 12N2
side = 3(4hT) nodes which are indexed by

ihT
as

ihT
=

1, hT = 0,

1, 2, . . . , 3
(
4hT
)
, 1 ≤ hT ≤ H.

(7.86)
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As before, each node is labeled as P (hT, ihT
), i.e., by its tree level and its index at

that tree level. Given a parent node, denoted by P (hT, ihT
), its four child nodes in

the tree can be found as P (hT + 1, k), 4ihT
− 3 ≤ k ≤ 4ihT

. Total number of nodes in

the quaternary tree is given by

nP = 1 +
H∑

hT=1

3
(
4hT
)

= 4(H+1) − 3. (7.87)

Since nodes in the quaternary tree represent HEALPix pixels at resolution given by

(7.84), we can relate cardinality of the reduced Slepian basis set, i.e., the spherical

Shannon number, with the tree level as

NhT
=
AhT

L2

4π
=

L2

3 (4hT)
, hT ≥ 1, (7.88)

where

AhT
=

4π

3 (4hT)
, hT ≥ 1 (7.89)

is the area of the pixel represented by a node at tree level hT.

7.6.1 Construction of overcomplete multiscale dictionary

To facilitate multiresolution analysis, i.e., signal analysis at different scales on the

sphere, we associate L2 number of orthonormal vectors (which are spectral represen-

tations of spherical harmonic basis functions) with the root node at hT = 0 and NSF

number of spectral representations of well-optimally concentrated Slepian functions,

computed as eigenvectors of (2.60), with each of the nodes in the quaternary tree at

tree levels hT ≥ 1. Set of all such spectral representations, associated with all the

nodes in the tree, makes an overcomplete multiscale dictionary D, which is given by,

D =
[
d0

1,1,d
0
1,2, . . . ,d

0
1,L2 ,d1

1,1,d
1
1,2, . . . ,d

1
1,NSF

, . . . ,

dH
1,1,d

H
1,2, . . . ,d

H
1,NSF

, . . . ,dH
3(4H),1, . . . ,d

H
3(4H),NSF

]
, (7.90)
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Table 7.4: Height of the HEALPix quaternary tree along with maximum HEALPix
resolution, for fixed NSF, at different values of bandlimit L and NSF.

Bandlimit, L NSF Tree height, H Nmax
side

4 1 1 1
8 3 1 1
16 5 2 2
32 7 2 2
64 8 3 4
128 9 4 8
256 10 5 16

where, as before, dhT
ihT

,α is gα computed from (2.60) for the pixel represented by the

node at tree level hT and index ihT
. Size of the dictionary nD depends on the number

of spectral eigenvectors gα for each node in the quaternary tree, i.e., NSF, which again

can be chosen in the following two ways.

Fixed NSF for each tree node

We can associate a fixed number of localized Slepian functions with each of the nodes

in the HEALPix quaternary tree by keeping NSF constant for all the nodes in the

tree. Hence, from (7.88), we observe that the number of well-optimally concentrated

Slepian functions for nodes at tree level hT = H should be greater than NSF, i.e.,

NSF ≤ NH, from which we obtain

H ≤ 1

2
log2

(
L2

3NSF

)
,

⌊
1

2
log2

(
L2

3NSF

)⌋
, (7.91)

where again we have chosen H to be the greatest integer which is smaller than or

equal to (1/2) log2(L2/(3NSF)). Since H has to be positive, we note that

NSF ≤
L2

12
. (7.92)

Hence, given the bandlimit L, NSF can be chosen to be any number as long as the

inequality in (7.92) is satisfied. From (7.87), it can be seen that size of the resulting

209



Multiscale analysis on the sphere

dictionary is given by

nD = L2 +NSF(4(H+1) − 4). (7.93)

Table 7.4 lists some values of the tree height H and maximum HEALPix resolution

for different values of NSF and bandlimit L.

Varying NSF for nodes at different tree levels

Instead of choosing constant NSF for all the nodes in the tree, we can vary NSF across

tree levels by choosing it equal to spherical Shannon number for pixels represented

by the nodes at a given tree level, hT, i.e.,

NSF = NhT
=

L2

3 (4hT)
, hT ≥ 1. (7.94)

Now height of the tree should be such that NH ≥ 1, which gives

H ≤ 1

2
log2

(
L2

3

)
,

H ,

⌊
1

2
log2

(
L2

3

)⌋
, H ≥ 1, (7.95)

where again we have chosen H to be the greatest integer which is smaller than or

equal to (1/2) log2(L2/3). Size of the resulting dictionary is then given by

nD = L2 +
H∑

hT=1

NhT
3
(
4hT
)

= (H + 1)L2. (7.96)

Table 7.5 lists some values of the tree height H and maximum HEALPix resolution

for different values of bandlimit L under this scheme.

Remark 11. We note that spherical Shannon number at tree level hT, i.e., NhT
, may

differ from (7.88) when rounded to the nearest integer, due to which, the actual size

of the dictionary may be different from that given in (7.96).
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Table 7.5: Height of the HEALPix quaternary tree along with maximum HEALPix
resolution, for varying NSF, at different bandlimits L.

Bandlimit, L Tree height, H Nmax
side

4 1 1
8 2 2
16 3 4
32 4 8
64 5 16
128 6 32
256 7 64

7.7 Numerical considerations

Analytical formulations of the Slepian sub-integrals for the polar, equatorial and

polar-equatorial pixels, presented in Section 7.5, depend on infinite series expansions.

In this section, we present convergence criteria to truncate such expansions for the

accurate computation of Slepian sub-integrals.

7.7.1 Generalized binomial series expansions

Generalized binomial series expansion in (C.9) indexed by J2 is infinite when J1 is

odd, as can be seen from (7.55). Considering the integral in (C.10), infinite series

indexed by J2 is terminated at Γu, for each odd value of J1 at a given M , when∣∣∣∣4× 2× 2
√

2|M |
(

2|M |
J1

)(
|M | − J1

2

Γu

)
u(−J1−2Γu−2)
r

∣∣∣∣ ≤ tol, Γu > Jpzo

2 , (7.97)

for the upper half of the north polar pixel, i.e., θr−1 ≤ θ ≤ θr, where u , csc(θ/2), tol

is a preset tolerance and Jpzo

2 is determined by the maximum value of the generalized

binomial coefficient
(|M |−J1/2

J2

)
, i.e.,

Jpzo

2 =

d|M |/2− J1/4e , |M | − J1/2 + 0.5 even,

b|M |/2− J1/4c , |M | − J1/2 + 0.5 odd.

(7.98)
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The truncation criterion in (7.97) estimates the integral (over the upper half of the

pixel) in (C.10) by an upper bound, given by

2
√

2

∫ ur

ur−1

1

u(J1+2Γu+3)
du < 2

√
2

1

u
(J1+2Γu+2)
r

, (7.99)

where the factor of 2
√

2 is an upper bound on the magnitude of the trigonometric

term in the integrand in (C.10). Moreover, for each value of M , there are |M | odd

values for the summation index J1 and hence, a factor of |M | is included in (7.97) to

ensure that the compounded error is within the preset tolerance.

Similarly, for the lower half of the pixel, i.e., θr ≤ θ ≤ θr+1, infinite series indexed

by J2 in (C.10) is terminated at Γl when∣∣∣∣4× 2× 2
√

2|M |
(

2|M |
J1

)(
|M | − J1

2

Γl

)
u

(−J1−2Γl−2)
r+1

∣∣∣∣ ≤ tol, Γl > Jpzo

2 , (7.100)

where the integral in (C.10), over lower half of the pixel, has been estimated by the

following upper bound

2
√

2

∫ ur+1

ur

1

u(J1+2Γl+3)
du < 2

√
2

1

u
(J1+2Γl+2)
r+1

. (7.101)

An additional factor of 2 in (7.97) and (7.100) takes into account the compounding

effect of the truncation for the upper and lower halves of the pixel respectively.

For the equatorial pixels, generalized binomial series expansion in (C.27) has an

infinite series indexed by J2 for each odd value of J1 at a given M , as can be seen

from (7.72), which, considering the integral in (C.29), is terminated at Γu and Γl, for

the upper and lower halves of the pixel respectively, when∣∣∣∣2× 2×
⌈
|M |

2

⌉(
|M |
J1

)(
J1/2

Γu

)
u

(2Γu+|M |−J1+1)
r−1

∣∣∣∣ ≤ tol, Γu > Jezo
2 ,∣∣∣∣2× 2×

⌈
|M |

2

⌉(
|M |
J1

)(
J1/2

Γl

)
u

(2Γl+|M |−J1+1)
Γl

∣∣∣∣ ≤ tol, Γl > Jezo
2 ,

(7.102)

where an additional factor of 2 d|M |/2e takes into account the compounding effect of
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the truncation for the upper and lower halves of the pixel6, u , cos θ, tol is the preset

tolerance,

uΓl =

cos(θr), r < Nside,

cos(θr+1), r = Nside,

(7.103)

and Jezo
2 is determined by the maximum value of the generalized binomial coefficient(

J1/2
J2

)
, i.e.,

Jezo
2 =

dJ1/4e , J1/2 + 0.5 even,

bJ1/4c , J1/2 + 0.5 odd.

(7.104)

Truncation criterion in (7.102) estimates the magnitude of the integral in (C.29) over

the upper half of the pixel by the following upper bound∣∣∣∣∫ ur

ur−1

u(2J2+|M |−J1) sin

[
µ

(
u− Aez +Bez

2

)]
du

∣∣∣∣ < ∣∣∣∣∫ ur

ur−1

u(2J2+|M |−J1)du

∣∣∣∣
<

∣∣∣∣∣u(2J2+|M |−J1+1)
r − u(2J2+|M |−J1+1)

r−1

(2J2 + |M | − J1 + 1)

∣∣∣∣∣
<
∣∣∣u(2J2+|M |−J1+1)
r−1

∣∣∣ , (7.105)

and the lower half of the pixel by the upper bound given below∣∣∣∣∫ ur+1

ur

u(2J2+|M |−J1) sin

[
µ

(
u− Cez +Dez

2

)]
du

∣∣∣∣ < ∣∣∣∣∫ ur+1

ur

u(2J2+|M |−J1)du

∣∣∣∣
<

∣∣∣∣ 1

(2J2 + |M | − J1 + 1)

(
u

(2J2+|M |−J1+1)
r+1 − u(2J2+|M |−J1+1)

r

)∣∣∣∣
≤


∣∣∣u(2J2+|M |−J1+1)
r

∣∣∣ , r < Nside,∣∣∣u(2J2+|M |−J1+1)
r+1

∣∣∣ , r = Nside,

(7.106)

where µ = (q −m)/b.

6There are d|M |/2e odd values for the summation index J1, for each value of M , in the expression
given in (C.29).
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7.7.2 Infinite Maclaurin series expansions

Infinite Maclaurin series expansions in (7.62) and (7.63), indexed by kS and kC re-

spectively, are truncated at T1 and T2 when[
16
√

2Nt×max

{(
2|M |
J1

)∣∣∣∣(|M |− J1

2

J2

)∣∣∣∣ Q
(J1+2J2+2)
pz

(J1+2J2+2)!

}]∣∣∣∣∣w2T1+1
(
u2T1+1

2 −u2T1+1
1

)
(2T1 + 1)(2T1 + 1)!

∣∣∣∣∣≤tol,[
16
√

2Nt×max

{(
2|M |
J1

)∣∣∣∣(|M | − J1

2

J2

)∣∣∣∣ Q
(J1+2J2+2)
pz

(J1 + 2J2 + 2)!

}] ∣∣∣∣∣w2T2
(
u2T2

2 − u2T2
1

)
2T2(2T2)!

∣∣∣∣∣ ≤ tol,

(7.107)

where the first term on the left hand side takes into account the compounding of

truncation error, in which

Nt =

(4(L− 1) + 1)×max {Γumax + 1, 2(L− 1) + 1} , θ ∈ [θr−1, θr],

(4(L− 1) + 1)×max {Γlmax + 1, 2(L− 1) + 1} , θ ∈ [θr, θr+1]

(7.108)

is an upper bound on number of terms in the double summation indexed by J1, J2,

Qpz =

max {|Apz| , |Bpz|} , θ ∈ [θr−1, θr],

max {|Cpz| , |Dpz|} , θ ∈ [θr, θr+1],

(7.109)

which depends on the pixel boundary parameters and tol is the preset tolerance. Here,

Γumax and Γlmax are the maximum number of terms in truncated series for different

values of M and J1 for the upper and lower halves of the north polar pixel respectively.

Additional factor of 4
√

2 takes into account the compounding of truncation error of

the infinite Maclaurin series in real and imaginary parts of the integral in (C.10).

7.8 Analysis

We construct the overcomplete multiscale dictionary of Slepian functions at bandlimit

L = 32 using (7.94), which gives the height of the HEALPix quaternary tree to be

H = 4 and maximum HEALPix resolution parameter Nmax
side = 8. As an illustration,
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(a) d11,1 (b) d15,1 (c) d22,1 (d) d222,1 (e) d236,1

(f) d31,1 (g) d320,1 (h) d369,1 (i) d380,1 (j) d413,1

(k) d4143,1 (l) d4218,1 (m) d4343,1 (n) d4430,1 (o) d4600,1

Figure 7-13: Magnitude of most well-optimally concentrated Slepian functions for dif-
ferent nodes in the HEALPix quaternary tree, constructed for bandlimit L = 32 (H =
4). Thick green, red, black and blue lines mark the boundaries of HEALPix base-
resolution pixels, where the red line also indicates the φ = 0 great circle arc. Boundary
of the pixels is shown in black.

Figure 7-13 shows dictionary elements in the spatial domain, obtained using (2.62),

for pixels represented by different nodes in the HEALPix quaternary tree.

7.8.1 Range of D

We verify the span of the elements of dictionary by comparing the range space of the

subset Dk, given in (7.24) for k ∈ [1, 12], with the range space of the following matrix

Vα(1, k) =
[
d1
(k,1), . . . ,d

1
(k,α)

]
, α ∈ [1, N1], N1 =

L2

12
, k ∈ [1, 12], (7.110)
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Figure 7-14: Angle (in degrees) between the range spaces of D1, Vα(1, 1) and D5,
Vα(1, 5), for different values of α at bandlimit L = 32 (H = 4). Thick red lines mark
the integer multiples of Shannon number N1 = 85.

where N1 is the Shannon number for pixels represented by the nodes at tree level hT =

1 and d1
(k,α) is an element of the dictionary D in (7.90). Range space of the matrix

Vα(1, k) represents the vector space of bandlimited signals which are well-optimally

concentrated within the pixel represented by the node P (1, k). As before, the range

space of Dk is compared to that of Vα(1, k) by analyzing the maximum principle

angle between them7. Figure 7-14 shows the results of this comparison for the pixels

represented by the nodes P (1, 1) and P (1, 5). The respective dictionary elements can

be seen to comfortably, if not strictly, span the space of bandlimited signals which are

optimally concentrated within pixels represented by the nodes P (1, 1) and P (1, 5),

since the angle is essentially 0 for not just the well-optimally concentrated Slepian

functions, i.e., α ≤ N1 but also for N1 ≤ α ≤ 2N1.

7Please refer to Footnote 3 on page 185 for more details.
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Figure 7-15: Mutual coherence between elements of the dictionary constructed for
HEALPix at bandlimit L = 32 (H = 4).

7.8.2 Mutual coherence

Mutual coherence, defined in (7.26), is computed for the overcomplete multiscale

dictionary of Slepian functions for HEALPix, and is shown in Figure 7-15 as a surface

plot of the absolute inner products between the dictionary elements, from which it can

be observed that mutual coherence between most of the dictionary elements is very

small. The first L2 elements of the dictionary are orthonormal vectors, which exhibit

zero mutual coherence. The pixels which share overlapping regions on the sphere

tend to exhibit relatively large mutual coherence. As the resolution of HEALPix

partitioning scheme is increased, fraction of such overlapping pixels is reduced. This

can be seen from Figure 7-16, which shows the cumulative fractional mutual coherence
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Figure 7-16: Cumulative fractional mutual coherence between dictionary elements,
plotted against the range of mutual coherence values, for HEALPix quaternary trees
at bandlimit L = 4, 8, 16, 32, having corresponding height H = 1, 2, 3, 4. Arrow shows
the direction in which the approximate knee of the curves is displaced with increasing
values of L.

at various bandlimits. Increasing the bandlimit L increases height of the HEALPix

Table 7.6: Approximating the knee for each curve in Figure 7-16.

Bandlimit, L Coordinates for knee of the curves in Figure 7-16
4 (0.35, 0.96), i.e., ∼ 96% of the total number of inner products

result in mutual coherence ≤ 0.35
8 (0.24, 0.97), i.e., ∼ 97% of the total number of inner products

result in mutual coherence ≤ 0.24
16 (0.13, 0.97), i.e., ∼ 97% of the total number of inner products

result in mutual coherence ≤ 0.13
32 (0.07, 0.98), i.e., ∼ 98% of the total number of inner products

result in mutual coherence ≤ 0.07

quaternary tree according to (7.95), which increases the maximum resolution of the
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HEALPix partitioning scheme, thus, increasing the fraction of dictionary elements

exhibiting small mutual coherence.

Table 7.6 lists the approximate coordinates for the knee of curves in Figure 7-

16, which shows that at bandlimit L = 32, ∼ 98% of the total number of inner

products between dictionary elements, excluding self inner products, have magnitude

less than 0.07, indicating that only ∼ 2% of the total number of inner products

between dictionary elements result in mutual coherence MC ≥ 0.07.
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Chapter 8

Summary and future work

This dissertation has been concerned with the development of novel techniques for

signal processing on the sphere. In this chapter, we give a brief summary of the work

presented in this dissertation, along with potential research directions for future.

8.1 Summary of dissertation

We have proposed novel signal filtering and estimation methods in the joint domain

using spatially localized spherical harmonic transform and scale-discretized wavelet

transform, assuming the noise to be a realization of a zero-mean and anisotropic pro-

cess on the sphere. We have also designed axisymmetric and directional optimal win-

dow signals to enhance the performance of signal filtering and estimation framework

in the joint spatial-spectral domain and the joint SO(3)-spectral domain respectively,

where these joint domain representations are enabled by spatially localized spherical

harmonic transform. The effectiveness of these methods have been demonstrated on

bandlimited Earth and Mars topography maps.

In the context of localized signal analysis, we have formulated a framework for

analytical evaluation of integral of signals, and analytical computation of bandlimited

Slepian functions, to support localized analysis over simple spherical polygons, and

have provided illustrations using bandlimited Earth and Mars topography maps. We

have also proposed a joint spatial-Slepian domain representation for spherical sig-
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nals through the novel spatial-Slepian transform. The joint spatial-Slepian domain

representation is given by the spatial-Slepian coefficients, which have been shown to

exhibit better spatial localization compared to scale-discretized wavelet coefficients.

Spatial-Slepian coefficients have been further employed to detect the presence of hid-

den (extremely weak) localized variations in the signal, and to formulate a framework

for linear transformations in the joint spatial-Slepian domain. These transformations

have been specified by a spatial-Slepian transformation kernel, special forms of which

have been used to provide illustrations on a bandlimited Mars topography map.

Finally, we have proposed Hierarchical Equal Area iso-Latitude iso-Longitude Pix-

elization (HEALLPix) scheme and have used it to construct an overcomplete multi-

scale dictionary of localized (spectral domain) Slepian functions on the sphere. We

have also considered HEALPix and have proposed a sampling scheme, which uses a

subset of HEALPix samples, for efficient and accurate computation of spherical har-

monic transform of bandlimited signals. Moreover, we have presented a framework for

the analytical computation of bandlimited Slepian functions for multiscale HEALPix

pixels by exploiting rotational symmetries between pixels, and using Wigner-D func-

tions of appropriate rotation angles, for efficient computation. Localized spectral

representations of bandlimited Slepian functions, computed for HEALPix pixels at

different scales, have been collected to form another overcomplete multiscale dictio-

nary of localized basis functions. The two dictionaries have been shown to span the

space of bandlimited signals, with negligibly small mutual coherence between most of

their respective elements.

8.2 Future research directions

A number of potential research directions stem from different studies carried out in

this dissertation, as listed below.

� Instead of designing optimal filters in the joint domain through minimum mean-

square error criterion, optimal filters can be designed by minimizing variance

of the spectral estimate of the signal in the joint domain. Performance of the
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such filters can be compared with the results presented in this dissertation.

� Since the mean-square error can be written as sum of the variance and bias-

squared of the spectral estimate [128], a weighted mean-square error (where

weights sum to 1) can be used to design joint domain optimal filters. The

weights can be adjusted to further optimize the performance of the filters.

� A framework, similar to that of multiscale optimal filtering using scale-discretized

wavelet transform, can also be formulated for other wavelet transforms on the

sphere available in the literature.

� Spatially localized spherical harmonic transform can be extended for signal

analysis on the ball1. The resulting joint domain representation can be used to

design joint domain filters for signal estimation on the ball.

� Multiscale optimal filtering can be extended to filter signals on the ball using

the framework of wavelet analysis on the ball, presented in [130].

� The framework of localized signal analysis over simple spherical polygons can

be extended to compute vector Slepian functions over polygons for localized

analysis of vector fields on the sphere.

� The framework of localized variation analysis using spatial-Slepian transform

has been illustrated on a synthetic data set. This framework can be applied

to real data sets from medical imaging for the diagnosis of different anomalies.

This framework can also be used for cosmological data sets to detect localized

spatial variations across time.

� Using the framework of Slepian spatial-spectral concentration problem on the

ball [129], spatial-Slepian transform can be extended to analyze signals on the

ball.

1A ball is defined as the set B3 , R+ × S2, where R+ represents the half-real line domain, i.e.,
[0,∞), and S2 is the surface of the sphere [129].
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� In the context of analytical computation of Slepian functions over spherical

right-angled triangles and HEALPix pixels, a framework for analytical compu-

tation of Slepian functions over spherically elliptical regions can be formulated.

� The overcomplete multiscale dictionaries of Slepian functions can be used to

formulate a framework of multiresolution analysis on the sphere to perform

i. multiscale feature extraction,

ii. localized spectral analysis at different scales.

Furthermore, these dictionaries can be used for optimal filtering of signals and

for the solution of ill-posed inverse problems on the sphere such as:

i. signal inpainting,

ii. signal deconvolution,

iii. sparse representation of signals.

� Referring again to the framework of Slepian spatial-spectral concentration prob-

lem on the ball [129], overcomplete multiscale dictionaries of Slepian functions

can be constructed for signal analysis on the ball.
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A.1 Integration of eiqφeimθ over spherical right-angled

triangle in standard orientation

Integration in (4.9) can be expressed as four separate integrals over θ and φ, using

(4.20), as

I(q,m, θb,t, φc,t) =

∫ φc,t

φ=0

∫ π/2

θ=tan−1(kt/ sin(φc,t−φ))

eiqφeimθdθdφ

=



∫ φc,t

φ=0

(
π

2
− tan−1

(
kt

sin(φc,t − φ)

))
dφ, q = 0,m = 0,

∫ φc,t

φ=0

1

im

(
im − eim tan−1

(
kt

sin(φc,t−φ)

))
dφ, q = 0,m 6= 0,

∫ φc,t

φ=0

eiqφ
(
π

2
− tan−1

(
kt

sin(φc,t − φ)

))
dφ, q 6= 0,m = 0,

∫ φc,t

φ=0

eiqφ

im

(
im − eim tan−1

(
kt

sin(φc,t−φ)

))
dφ, q 6= 0,m 6= 0,

=



I(0, 0, θb,t, φc,t), q = 0,m = 0,

imφc,t
im
− 1

im
S(0,m, θb,t, φc,t), q = 0,m 6= 0,

π(eiqφc,t−1)
2iq

−Q(q, θb,t, φc,t), q 6= 0,m = 0,

−im(eiqφc,t−1)
mq

− 1
im
S(q,m, θb,t, φc,t), q 6= 0,m 6= 0,

(A.1)
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where the functions Q and S are given by

Q(q, θb,t, φc,t) =

∫ φc,t

φ=0

eiqφ tan−1

(
kt

sin(φc,t − φ)

)
dφ, (A.2)

S(q,m, θb,t, φc,t) =

∫ φc,t

φ=0

eiqφe
im tan−1

(
kt

sin(φc,t−φ)

)
dφ. (A.3)

The integral in (A.1) is solved for different cases of q and m.

A.1.1 q = 0, m = 0, 0 ≤ θb,t < π/4:

Let φ = φ1 be the angle at which sin(φc,t − φ)/kt = 1. Then

φ1 = φc,t − sin−1(kt). (A.4)

Since |sin(φc,t − φ)/kt| ≥ 1 for 0 ≤ φ ≤ φ1 and |sin(φc,t − φ)/kt| < 1 for φ1 < φ ≤ φc,t,

we can break I(0, 0, θb,t, φc,t) in (A.1) into two integrals as

I(0, 0, θb,t, φc,t) =

∫ φc,t

φ=0

(
π

2
− tan−1

(
kt

sin(φc,t − φ)

))
dφ

=

∫ φ1

φ=0

(
π

2
− tan−1

(
kt

sin(φc,t − φ)

))
dφ+

∫ φc,t

φ=φ1

tan−1

(
sin(φc,t − φ)

kt

)
dφ

=
π

2
φ1 + kt

∫ kt/ sinφc,t

kt/ sin(φc,t−φ1)

tan−1(y1)

y1

√
y2

1 − k2
t

dy1 + kt

∫ sin(φc,t−φ1)/kt

0

tan−1(y2)√
1− (y2kt)2

dy2, (A.5)

where, in the last equality, we have used the substitutions y1 = kt/ sin(φc,t − φ) and

y2 = sin(φc,t − φ)/kt. Expanding tan−1(·) in Taylor series as

tan−1(y1) =
∞∑

n1=0

(−1)n1

(2n1 + 1)
y2n1+1

1 =
∞∑

n1=0

(−1)n1k2n1+1
t

(2n1 + 1) sin2n1+1(φc,t − φ)
, (A.6)

and

tan−1(y2) =
∞∑

n2=0

(−1)n2

(2n2 + 1)
y2n2+1

2 =
∞∑

n2=0

(−1)n2

k2n2+1
t (2n2 + 1)

sin2n2+1(φc,t − φ), (A.7)
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we can rewrite I(0, 0, θb,t, φc,t) as

I(0, 0, θb,t, φc,t) =
π

2
φ1 +

∞∑
n1=0

kt(−1)n1

(2n1 + 1)

∫ kt
sinφc,t

kt
sin(φc,t−φ1)

y2n1−1
1√

1− (kt/y1)2
dy1+

∞∑
n2=0

kt(−1)n2

(2n2 + 1)

∫ sin(φc,t−φ1)

kt

0

y2n2+1
2√

1− (y2kt)2
dy2. (A.8)

The denominator in the two integrands in the last expression can be expanded in the

following generalized binomial series

(
1− (kt/y1)2

)−1/2

=
∞∑

J1=0

(
−1/2

J1

)
(−1)J1k2J1

t

1

y2J1
1

, (A.9)

(
1− (y2kt)

2
)−1/2

=
∞∑

J2=0

(
−1/2

J2

)
(−1)J2k2J2

t y2J2
2 , (A.10)

where
(−1/2

J1

)
and

(−1/2
J2

)
are generalized binomial coefficients. Therefore,

I(0, 0, θb,t, φc,t) =
π

2
φ1 +

∞∑
n1=0

kt(−1)n1

(2n1 + 1)

∞∑
J1=0

(
−1/2

J1

)
(−1)J1k2J1

t ×

kt
sinφc,t∫
kt

sin(φc,t−φ1)

y2n1−1−2J1
1 dy1 +

∞∑
n2=0

kt(−1)n2

(2n2 + 1)

∞∑
J2=0

(
−1/2

J2

)
(−1)J2k2J2

t

sin(φc,t−φ1)

kt∫
0

y2n2+1+2J2
2 dy2

=
π

2
φ1 +

∞∑
n1=0

kt(−1)n1

(2n1 + 1)
W1(θb,t, φc,t, φ1, n1) +

∞∑
n2=0

kt(−1)n2

(2n2 + 1)
W2(θb,t, φc,t, φc,t − φ1, n2),

(A.11)

where the final expression is a consequence of the following simple result

∫ yb

ya

y(a+b)dy =


[
y(a+b+1)/(a+ b+ 1)

∣∣∣yb
ya
, a+ b 6= −1,[

ln y
∣∣∣yb
ya
, a+ b = −1,

(A.12)

andW1, W2 are given in (4.27), (4.28) respectively. We refer the reader to Section 4.2.5

for the truncation of infinite series indexed by n1, n2, J1 and J2.
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A.1.2 q = 0, m = 0, π/4 ≤ θb,t < π/2

For this case

|sin(φc,t − φ)/kt| ≤ 1, (A.13)

hence, we can write I(0, 0, θb,t, φc,t) as

I(0, 0, θb,t, φc,t) =

∫ φc,t

φ=0

(
π

2
− tan−1

(
kt

sin(φc,t − φ)

))
dφ

=

∫ sinφc,t/kt

0

kt
tan−1(y)√
1− (ykt)2

dy, (A.14)

where, in the last equality, we have used the substitution y = sin(φc,t − φ)/kt. Using

the expansion in (A.7) and expanding the denominator of the integrand above in the

following generalized binomial series

(
1− (ykt)

2
)−1/2

=
∞∑

J2=0

(
−1/2

J2

)
(−1)J2k2J2

t y2J2 , (A.15)

I(0, 0, θb,t, φc,t) can be solved as

I(0, 0, θb,t, φc,t) =
∞∑

n3=0

(−1)n3kt

(2n3 + 1)

∞∑
J2=0

(
−1/2

J2

)
(−1)J2k2J2

t

∫ sinφc,t
kt

0

y2n3+1+2J2dy

=
∞∑

n3=0

(−1)n3kt

(2n3 + 1)
W2(θb,t, φc,t, φc,t, n3), (A.16)

where
(−1/2

J2

)
is the generalized binomial coefficient and W2 is given in (4.28). We

refer the reader to (4.40) for the truncation of alternating series indexed by n3 and

to (4.41) for the truncation of infinite series indexed by J2 in (A.15).

A.1.3 q = 0, m 6= 0, q 6= 0, m = 0 and q 6= 0, m 6= 0

For all other cases, integral I(q,m, θb,t, φc,t) depends either on the function Q or the

function S.
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Evaluating the function Q(q, θb,t, φc,t):

Substituting u = φc,t − φ in (A.2), we get

Q(q, θb,t, φc,t) = −eiqφc,t
∫ 0

u=φc,t

e−iqu tan−1

(
kt

sinu

)
du

= −eiqφc,t
∫ 0

φ=−φc,t
eiqφ tan−1

(
kt

sinφ

)
dφ. (A.17)

Expanding the complex exponential function in binomial series as

eiqφ = (cosφ+ sqi sinφ)|q|

=

|q|∑
n0=0

(
|q|
n0

)
A(q, n0)(cosφ)n0(sinφ)|q|−n0 , (A.18)

and performing integration by parts, Q(q, θb,t, φc,t) becomes

Q(q, θb,t, φc,t) = −e
iqφc,t

iq

(
e−iqφc,t tan−1

(
kt

sinφc,t

)
− π

2
+

kt

|q|∑
n0=0

(
|q|
n0

)
A(q, n0)

∫ 0

−φc,t

(cosφ)n0+1 (sinφ)|q|−n0

sin2 φ+ k2
t

dφ

)
, (A.19)

where A(q, n0) is defined in (4.26) and

sq =

+1, q ≥ 0,

−1, q < 0.

(A.20)

Now we observe that

∫
(cosφ)n0+1(sinφ)|q|−n0

sin2 φ+ k2
t

dφ =
(sinφ)(1+|q|−n0)

k2
t (1 + |q| − n0)

×

F1

(
(1 + |q| − n0)

2
,
−n0

2
, 1,

(3 + |q| − n0)

2
; sin2 φ,−sin2 φ

k2
t

)
, (A.21)

where F1 is the AppellF1 hypergeometric function, which can be used to formulate

the integral in (A.19) as
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Q(q, θb,t, φc,t) = −e
iqφc,t

iq

(
e−iqφc,t tan−1

(
kt

sinφc,t

)
− π

2

)
−

eiqφc,tkt
iq

|q|∑
n0=0

(
|q|
n0

)
A(q, n0)W3(n0, q, θb,t, φc,t), (A.22)

where W3 is given in (4.29).

Evaluating the function S(q,m, θb,t, φc,t):

Substituting u = φc,t − φ in (A.3), we get

S(q,m, θb,t, φc,t) = −
∫ 0

u=φc,t

eiqφc,te−iqueim tan−1
(

kt
sinu

)
du

= eiqφc,t
∫ 0

φ=−φc,t
eiqφe−im tan−1

(
kt

sinφ

)
dφ. (A.23)

We note that

e−im tan−1
(

kt
sinφ

)
= e−smi|m| tan−1

(
kt

sinφ

)
=

 1√
1 +

k2
t

sin2 φ

− smi
kt/ sinφ√
1 +

k2
t

sin2 φ

|m|

=

(
1√

sin2 φ+ k2
t

(− sinφ)− smi
kt/ sinφ√
sin2 φ+ k2

t

(− sinφ)

)|m|

=
(−1)|m|k

|m|
t

(sin2 φ+ k2
t )
|m|/2

|m|∑
r=0

(
|m|
r

)
(−1)|m|−rA(m, r)(sinφ)r k−rt , (A.24)

where sm is defined in (A.20),
√

sin2 φ = − sinφ because sinφ < 0 over the range of

integration and A(m, r) is defined in (4.26). Using (A.18) and (A.24), the integral in

(A.23) becomes

S(q,m, θb,t, φc,t) = eiqφc,t
|q|∑

n0=0

(
|q|
n0

)
A(q, n0)

|m|∑
r=0

(−1)r×(
|m|
r

)
A(m, r) k

|m|−r
t

∫ 0

φ=−φc,t

(cosφ)n0(sinφ)|q|−n0+r

(sin2 φ+ k2
t )
|m|/2 dφ, (A.25)
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in which the integral can be written in terms of AppellF1 hypergeometric function as

∫
(cosφ)n0(sinφ)|q|−n0+r

(sin2 φ+ k2
t )
|m|/2 dφ =

(sinφ)1+|q|−n0+r

k
|m|
t (1 + |q| − n0 + r)

×

F1

(
(1 + |q| − n0 + r)

2
,
1− n0

2
,
|m|
2
,
(3 + |q| − n0 + r)

2
, sin2 φ,−sin2 φ

k2
t

)
.

(A.26)

Therefore,

S(q,m, θb,t, φc,t) = eiqφc,t
|q|∑

n0=0

(
|q|
n0

)
A(q, n0)

|m|∑
r=0

(−1)r
(
|m|
r

)
×

A(m, r)k
|m|−r
t W4(n0, r, q, |m|, θb,t, φc,t), (A.27)

where W4 is given in (4.30).
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B.1 Placement of iso-latitude rings for HEALLPix

An iso-latitude ring is placed at θ = θk such that area of the spherical annulus

bounded by iso-latitude rings at θ = θk−1, θk+1, denoted by Aθk−1,θk+1
, is divided into

two equal area sub-annuli, i.e.,

Aθk−1,θk+1

2
= Aθk−1,θk = Aθk,θk+1

, (B.1)

where

Aθk−1,θk+1
=

∫ θk+1

θk−1

∫ 2π

φ=0

sin θ dθ = 2π(cos θk−1 − cos θk+1) = 2π(zk−1 − zk+1), (B.2)

and zk = cos θk. Hence, the condition for placement of an iso-latitude ring at θ = θk

becomes

2π(zk−1 − zk) = 2π(zk − zk+1)⇒ zk =
(zk−1 + zk+1)

2
. (B.3)

At L = 0, there is no partitioning of the sphere and the whole sphere can be considered

a spherical annulus bounded by (trivial) iso-latitude rings at θ = 0, π or equivalently,

at z0 = 1 and z1 = −1. At L = 1, an iso-latitude ring is placed such that the spherical

annulus at resolution level L = 0 is divided into two equal area spherical annuli. As

a result, there are 3 iso-latitude rings dividing the sphere into 2 equal area spherical

annuli. At L = 2, two more iso-latitude rings are placed such that each of the two
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spherical annuli at resolution level L = 1 are further divided into two equal area

spherical annuli, resulting in 5 iso-latitude rings dividing the sphere into 4 equal area

spherical annuli. Therefore, at a given resolution level L, there are 2L + 1 (or 2L − 1,

excluding trivial iso-latitude rings) iso-latitude rings, indexed by k = 0, 1, . . . , 2L from

top to bottom, dividing the sphere into 2L equal area annuli which satisfy

Aθj ,θj+1
= Aθk,θk+1

, ∀ j, k = 0, 1, . . . , 2L,

2π(zj − zj+1) = 2π(zk − zk+1), ∀ j, k = 0, 1, . . . , 2L,

⇒ (zk − zk+1) = constant = ASA, ∀ k = 0, 1, . . . , 2L, (B.4)

from which we get the following relations for position of iso-latitude rings at HEALLPix

resolution L

z0 = 1 = 1− 0.ASA,

z0 − z1 = ASA ⇒ z1 = 1− ASA,

z1 − z2 = ASA ⇒ z2 = 1− 2ASA,

...

z2L−1 − z2L = ASA ⇒ z2L = 1− 2LASA = 1.

(B.5)

The (constant) area of the spherical annuli can be obtained from the last expression

in (B.5) as

ASA =
2

2L
=

1

2L−1
. (B.6)

Hence, the positions of iso-latitude rings, at HEALLPix resolution L, can be com-

pactly written as

zk =

(
1− k

2L−1

)
, 0 ≤ k ≤ 2L, L ≥ 1, (B.7)

where k = 0, 2L represents the position of trivial iso-latitude rings at θ = 0, π respec-

tively.
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B.2 Placement of iso-longitude rings for HEALLPix

Since area of the region between two iso-longitude rings at φ = φ1, φ2, denoted by

Aφ1,φ2 , is given by

Aφ1,φ2 =

∫ φ2

φ1

∫ π

θ=0

sin θ dθdφ = 2(φ2 − φ1), (B.8)

iso-longitude rings must be equiangular in order to obtain equal area partitioning of

the sphere along longitude as well.

There is no partitioning of the sphere at resolution level L = 0 and so, the whole

sphere is considered as one region along longitude. At L = 1, the sphere is divided into

two halves by placing 2 equiangular iso-longitude rings at φ = 0, π. At L = 2, each of

the two halves are further divided into two equal area regions by 2 more iso-longitude

rings, resulting in 4 equiangular iso-longitude rings at φ = 0, π/2, π, 3π/2, dividing

the sphere into 4 equal area regions along longitude. Therefore, at a given resolution

level L, there are 2L equiangular iso-longitude rings, indexed by k = 1, 2, . . . , 2L in

anticlockwise direction, dividing the sphere into 2L equal area regions satisfying

Aφj ,φj+1
= Aφk,φk+1

, ∀ j, k = 1, 2, . . . , 2L,

2(φj+1 − φj) = 2(φk+1 − φk), ∀ j, k = 1, 2, . . . , 2L,

⇒ (φk+1 − φk) = constant = ALONG, ∀ k = 1, 2, . . . , 2L, (B.9)

from which we get the following expressions for the position of iso-longitude rings at

HEALLPix resolution L

φ1 = 0⇒ φ1 = 0.ALONG,

φ2 − φ1 = ALONG ⇒ φ2 = ALONG,

...

φ2L − φ2L−1 = ALONG ⇒ φ2L =
(
2L − 1

)
ALONG,

φ2L+1 − φ2L = ALONG, φ2L+1 = φ1 = 2π,

(B.10)
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where the last relation is a consequence of periodicity in longitude, solving which

gives us the (constant) area of the divided regions along longitude as

ALONG =
2π

2L
. (B.11)

So, the positions of iso-longitude rings, at HEALLPix resolution L, can be compactly

written as

φk = (k − 1)ALONG =
2π(k − 1)

2L
=
π(k − 1)

2L−1
, 1 ≤ k ≤ 2L, L ≥ 1. (B.12)
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C.1 Evaluating Slepian sub-integral for HEALPix

north polar pixels

Defining M , (m′ + q′) and the constants as

Apz =
π(q −m)Epz

u`

apz
, Bpz = −π(q −m)Epz

ur

apz
,

Cpz = −π(q −m)Epz
``

apz
, Dpz =

π(q −m)Epz
`r

apz
,

(C.1)

where apz, Epz
u` , E

pz
ur, E

pz
`` and Epz

`r , which determine the shape and position of the

pixel, are defined in Section 7.4.1, we rewrite the Slepian sub-integral in (7.48) as

Gmq,m′q′(r, c
pz) =

θr∫
θr−1

π
2

+ Bpz

(q−m) sin θ2∫
Apz

(q−m) sin θ2

ei(q−m)φ sin θeiMθdφdθ+

θr+1∫
θr

Dpz

(q−m) sin θ2∫
π
2

+ Cpz

(q−m) sin θ2

ei(q−m)φ sin θeiMθdφdθ. (C.2)

Analytical expressions for the Slepian sub-integral in (C.2) can be derived for two

different cases of q −m.
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C.1.1 q −m 6= 0 :

Integrating (C.2) over φ results in the following expression

Gmq,m′q′(r, c
pz) =

∫ θr

θr−1

sin θ eiMθ e
i(q−m)π

2 eiB
pz csc θ

2 − eiApz csc θ
2

i(q −m)
dθ+∫ θr+1

θr

sin θ eiMθ e
iDpz csc θ

2 − ei(q−m)π
2 eiC

pz csc θ
2

i(q −m)
dθ

=
−8eiν

(q −m)

(∫ ur

ur−1

[√
u2 − 1

u
+sM

i

u

]2|M |
cos Υu sin(τu+ ν) + i sin Υu sin(τu+ ν)

u3
du

−
∫ ur+1

ur

[√
u2 − 1

u
+sM

i

u

]2|M |
cosχu sin(ψu+ ν) + i sinχu sin(ψu+ ν)

u3
du

)
, (C.3)

where we have used the substitution u = csc(θ/2),

sM =

1, M ≥ 0,

−1, M < 0,

(C.4)

and the constants are given by

τ =
(Bpz − Apz)

2
, Υ =

(Bpz + Apz)

2
,

ψ =
(Cpz −Dpz)

2
, χ =

(Cpz +Dpz)

2
,

(C.5)

ν = (q −m)
π

4
. (C.6)

Expanding
[√

u2−1
u

+ sM
i
u

]2|M |
as the following binomial series

[√
u2 − 1

u
+ sM

i

u

]2|M |

=
1

u2|M |

2|M |∑
J1=0

(
2|M |
J1

)
(sM i)

J1(u2 − 1)
1
2

(2|M |−J1), (C.7)

and using the following sum-product formulae for sine and cosine functions [121],

2 cos(a) sin(b) =
(

sin(a+ b)− sin(a− b)
)
,

2 sin(a) sin(b) =
(

cos(a− b)− cos(a+ b)
)
,

(C.8)
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we can rewrite Gmq,m′q′(r, c
pz) as

Gmq,m′q′(r, c
pz) =

−8eiν

(q −m)

2|M |∑
J1=0

(
2|M |
J1

)
(sM i)

J1

[∫ ur

ur−1

(u2 − 1)(|M |−J1/2)

u3+2|M |
1

2
×(

sin
{

(Υ + τ)u+ ν
}
− sin

{
(Υ− τ)u− ν

}
+ i cos

{
(Υ− τ)u− ν

}
−

i cos
{

(Υ + τ)u+ ν
})

du−
ur+1∫
ur

(u2 − 1)(|M |−J1/2)

u3+2|M |
1

2

(
sin
{

(χ+ ψ)u+ ν
}
−

sin
{

(χ− ψ)u− ν
}

+ i cos
{

(χ− ψ)u− ν
}
− i cos

{
(χ+ ψ)u+ ν

})
du

]
.

Expanding (u2 − 1)(|M |−J1/2) further in a generalized binomial series as

(u2 − 1)(|M |− J1
2

) =
Γu∑

J2=0

(
|M | − J1

2

J2

)
(−1)J2(u2)(|M |− J1

2
−J2), u ∈ [ur−1, ur],

(u2 − 1)(|M |− J1
2

) =

Γl∑
J2=0

(
|M | − J1

2

J2

)
(−1)J2(u2)(|M |− J1

2
−J2), u ∈ [ur, ur+1],

(C.9)

Slepian sub-integral becomes

Gmq,m′q′(r, c
pz) =

−4eiν

(q −m)

2|M |∑
J1=0

(
2|M |
J1

)
(sM i)

J1

[
Γu∑

J2=0

(
|M | − J1

2

J2

)
(−1)J2×

ur∫
ur−1

1

u(J1+2J2+3)

(
sin
{

(Υ + τ)u+ ν
}
− sin

{
(Υ− τ)u− ν

}
+ i cos

{
(Υ− τ)u− ν

}
−

i cos
{

(Υ + τ)u+ ν
})
du−

Γl∑
J2=0

(
|M |− J1

2

J2

)
(−1)J2

ur+1∫
ur

1

u(J1+2J2+3)

(
sin
{

(χ+ ψ)u+ ν
}

− sin
{

(χ− ψ)u− ν
}

+ i cos
{

(χ− ψ)u− ν
}
− i cos

{
(χ+ ψ)u+ ν

})
du

]
, (C.10)

where Γu and Γl are given by

Γu = Γl =

|M | − J1/2, J1 mod 2 = 0,

∞, J1 mod 2 = 1.

(C.11)
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Here
(

2|M |
J1

)
is binomial coefficient and

(|M |−J1/2
J2

)
is generalized binomial coefficient.

Through integration by parts, the integral

∫ u2

u1

sin(xu+ y)

u(J1+2J2+3)
du can be formulated as

∫ u2

u1

sin(xu+ y)

u(J1+2J2+3)
du =

(J1+2J2+1)∑
J3=0

(−1)d
J3+1

2 e (J1 + 2J2 + 1− J3)!xJ3

(J1 + 2J2 + 2)!



[

sin(xu+y)

u(J1+2J2+2−J3)

∣∣∣u2

u1

, J3 mod 2 = 0[
cos(xu+y)

u(J1+2J2+2−J3)

∣∣∣u2

u1

, J3 mod 2 = 1

+

(−1)b
J1+2J2+2

2 c x(J1+2J2+2)

(J1 + 2J2 + 2)!




u2∫
u1

cos(xu+y)
u

du, (J1 + 2J2 + 3) mod 2 = 0

u2∫
u1

sin(xu+y)
u

du, (J1 + 2J2 + 3) mod 2 = 1

 . (C.12)

Similarly,

∫ u2

u1

cos(xu+ y)

u(J1+2J2+3)
du can be integrated by parts to get the following expres-

sion

∫ u2

u1

cos(xu+ y)

u(J1+2J2+3)
du =

(J1+2J2+1)∑
J3=0

(−1)d
J3+2

2 e (J1 + 2J2 + 1− J3)!xJ3

(J1 + 2J2 + 2)!



[

cos(xu+y)

u(J1+2J2+2−J3)

∣∣∣u2

u1

, J3 mod 2 = 0[
sin(xu+y)

u(J1+2J2+2−J3)

∣∣∣u2

u1

, J3 mod 2 = 1

+

(−1)b
J1+2J2+3

2 c x(J1+2J2+2)

(J1 + 2J2 + 2)!




u2∫
u1

sin(xu+y)
u

du, (J1 + 2J2 + 3) mod 2 = 0

u2∫
u1

cos(xu+y)
u

du, (J1 + 2J2 + 3) mod 2 = 1

 . (C.13)

Furthermore, the integrals

∫ u2

u1

sin(xu+ y)

u
du,

∫ u2

u1

cos(xu+ y)

u
du can be solved as

∫ u2

u1

sin(xu+ y)

u
du =


cos y

∫ u2

u1

sin au

u
du+ sin y

∫ u2

u1

cos au

u
du, a 6= 0,

sin y ln
(
u2

u1

)
, a = 0,

=

cos y TS(a, u1, u2) + sin y TC(a, u1, u2), a 6= 0,

sin y ln
(
u2

u1

)
, a = 0,

(C.14)
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and

∫ u2

u1

cos(xu+ y)

u
du =


cos y

∫ u2

u1

cos au

u
du− sin y

∫ u2

u1

sin au

u
du, a 6= 0,

cos y ln
(
u2

u1

)
, a = 0,

=

cos y TC(a, u1, u2)− sin y TS(a, u1, u2), a 6= 0,

cos y ln
(
u2

u1

)
, a = 0,

(C.15)

where TS and TC are the Maclaurin series expansions given in (7.62) and (7.63) respec-

tively. Putting together (C.15), (C.14), (C.13), (C.12) and noting that (−1)d
J3+2

2 e =

(−1)J3(−1)d
J3+1

2 e, (−1)b
J1+2J2+3

2 c = (−1)(J1+2J2+2)(−1)b
J1+2J2+2

2 c, Slepian sub-integral

in (C.10) is formulated as

Gmq,m′q′(r, c
pz) =

−4eiν

(q −m)

2|M |∑
J1=0

(
2|M |
J1

)
(sM i)

J1×(
F pz(J1,M,Apz, Bpz, ν,Γu, θr−1, θr)− F pz(J1,M,Dpz, Cpz, ν,Γl, θr, θr+1)

)
,

(C.16)

where F pz is given in (7.51).

C.1.2 q −m = 0 :

For this case, Slepian sub-integral in (C.2) takes the following simpler form,

Gmq,m′q′(r, c
pz) =

π

2

∫ θr

θr−1

eiMθ sin θdθ − 2π

apz
(Epz

u` + Epz
ur)

∫ θr

θr−1

eiMθ cos
θ

2
dθ−

π

2

∫ θr+1

θr

eiMθ sin θdθ +
2π

apz
(Epz

`` + Epz
`r )

∫ θr+1

θr

eiMθ cos
θ

2
dθ. (C.17)

Performing integration by parts, we conclude that

∫ θ2

θ1

eixθ cos yθ dθ =
y

y2 − x2

[
eixθ

(
sin yθ +

ix

y
cos yθ

)∣∣∣∣θ2
θ1

, (C.18)
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∫ θ2

θ1

eixθ sin yθ dθ =
y

y2 − x2

[
−eixθ

(
cos yθ − ix

y
sin yθ

)∣∣∣∣θ2
θ1

, x 6= ±y, (C.19)

and

∫ θ2

θ1

e±iyθ sin yθ dθ =
1

4y

(
cos 2yθ1 − cos 2yθ2

)
± i

2
(θ2 − θ1)∓ i

4y

(
sin 2yθ2 − sin 2yθ1

)
.

(C.20)

As a result, Gmq,m′q′(r, c
pz) in (C.17) becomes

Gmq,m′q′(r, c
pz) =



π
2

(
C1(M,θr−1,θr)−C1(M,θr,θr+1)

1−M2

)
+

4
1−4M2

(
C2(M,

πEpz
u`

apz ,−πEpz
ur

apz , θr−1, θr)+

C2(M,−πEpz
``

apz ,
πEpz

`r

apz , θr, θr+1)
)
, M 6= ±1,

π
2

(
C3(M, θr−1, θr)− C3(M, θr, θr+1)

)
+

4
1−4M2

(
C2(M,

πEpz
u`

apz ,−πEpz
ur

apz , θr−1, θr)+

C2(M,−πEpz
``

apz ,
πEpz

`r

apz , θr, θr+1)
)
, M = ±1,

(C.21)

where the functions C1, C2 and C3 are given in (7.52).

C.2 Evaluating Slepian sub-integral for HEALPix

equatorial pixels

Defining M , (m′ + q′) and the constants as

Aez =
2

3
− Eez

u`a
ez, Bez =

2

3
− Eez

ura
ez,

Cez =
2

3
− Eez

``a
ez, Dez =

2

3
− Eez

`ra
ez,

(C.22)

where aez, Eez
u`, E

ez
ur, E

ez
`` and Eez

`r , which determine the shape and position of the pixel,

are defined in Section 7.4.1, we rewrite the Slepian sub-integral in (7.65) as
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Gmq,m′q′(r, 1) =

∫ θr

θr−1

(Bez−cos θ)
b∫

(cos θ−Aez)
b

ei(q−m)φ sin θei(m
′+q′)θdφdθ

+

∫ θr+1

θr

(cos θ−Dez)
b∫

(Cez−cos θ)
b

ei(q−m)φ sin θei(m
′+q′)θdφdθ. (C.23)

We derive analytical expressions for Gmq,m′q′(r, 1) for two different cases of q −m.

C.2.1 q −m 6= 0 :

Integrating (C.23) over φ, we get

Gmq,m′q′(r, 1) =
2

(q −m)

[
e
iµ(Bez−Aez)

2

∫ ur

ur−1

[
u+ sM i

√
1− u2

]|M |
×

sin

(
µu− µA

ez +Bez

2

)
du− e

iµ(Cez−Dez)
2

∫ ur+1

ur

[
u+ sM i

√
1− u2

]|M |
×

sin

(
µu− µC

ez +Dez

2

)
du

]
, (C.24)

where we have used the substitution u = cos θ, sM is defined in (C.4) and µ ,

(q −m)/b. Expanding
[
u+ isM

√
1− u2

]|M |
in binomial series as

[
u+ isM

√
1− u2

]|M |
=

|M |∑
J1=0

(
|M |
J1

)
u(|M |−J1)(sM i)

J1(1− u2)J1/2, (C.25)

we can rewrite the Slepian sub-integral for equatorial pixels as

Gmq,m′q′(r, 1) =
2

(q −m)

|M |∑
J1=0

(
|M |
J1

)
(sM i)

J1

[
e
iµ(Bez−Aez)

2

∫ ur

ur−1

u(|M |−J1)(1− u2)J1/2×

sin

(
µu− µA

ez +Bez

2

)
du− e

iµ(Cez−Dez)
2

∫ ur+1

ur

u(|M |−J1)(1− u2)J1/2×

sin

(
µu− µC

ez +Dez

2

)
du

]
.

(C.26)
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The term (1 − u2)J1/2 inside the integral can further be expanded using generalized

binomial series as

(1− u2)J1/2 =
Γu∑

J2=0

(
J1/2

J2

)
(−1)J2u2J2 , u ∈ [ur−1, ur],

(1− u2)J1/2 =

Γl∑
J2=0

(
J1/2

J2

)
(−1)J2u2J2 , u ∈ [ur, ur+1],

(C.27)

where Γu and Γl are given by

Γu = Γl =

J1/2, J1 mod 2 = 0,

∞, J1 mod 2 = 1.

(C.28)

Here
(|M |

J1

)
is binomial coefficient and

(
J1/2
J2

)
is generalized binomial coefficient.

Putting (C.27) in (C.26), we get

Gmq,m′q′(r, 1) =
2

q −m

|M |∑
J1=0

(
|M |
J1

)
(sM i)

J1×

[
Γu∑

J2=0

(
J1/2

J2

)
(−1)J2e

iµ(Bez−Aez)
2

ur∫
ur−1

u(2J2+|M |−J1) sin

(
µu− µA

ez +Bez

2

)
du

−
Γl∑

J2=0

(
J1/2

J2

)
(−1)J2e

iµ(Cez−Dez)
2

ur+1∫
ur

u(2J2+|M |−J1) sin

(
µu− µC

ez +Dez

2

)
du

]
, (C.29)

in which the integral

∫ u2

u1

u(2J2+|M |−J1) sin (µ(u− y)) du can be solved through inte-

gration by parts to obtain the following expression

∫ u2

u1

u(2J2+|M |−J1) sin (µ(u− y)) du =

(2J2+|M |−J1+1)∑
J3=1

(−1)d
J3+1

2
eµ−J3×

(2J2 + |M | − J1)!

(2J2 + |M | − J1 + 1− J3)!
×


[
u(2J2+|M |−J1+1−J3) sin (µ(u− y))

∣∣∣u2

u1

, J3 mod 2 = 0,[
u(2J2+|M |−J1+1−J3) cos (µ(u− y))

∣∣∣u2

u1

, J3 mod 2 = 1.

(C.30)
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Using (C.30) in (C.29), Slepian sub-integral for equatorial pixels becomes

Gmq,m′q′(r, 1) =
2

(q −m)

|M |∑
J1=0

(
|M |
J1

)
(sM i)

J1 ×(
F ez(J1,M,Aez, Bez, µ,Γu, θr−1, θr)− F ez(J1,M,Dez, Cez, µ,Γl, θr, θr+1)

)
, (C.31)

where F ez is given in (7.68).

Alternate Formulation in terms of Bessel Function

We can write (C.23) in an alternate manner as

Gmq,m′q′(r, 1) =
−1

2(q −m)

[
eiµB

ez

(∫ θr

θr−1

ei(M+1)θe−iµ cos θdθ −
∫ θr

θr−1

ei(M−1)θe−iµ cos θdθ

)
− e−iµAez

(∫ θr

θr−1

ei(M+1)θeiµ cos θ dθ −
∫ θr

θr−1

ei(M−1)θeiµ cos θ dθ

)
+

e−iµD
ez

(∫ θr+1

θr

ei(M+1)θeiµ cos θ dθ −
∫ θr+1

θr

ei(M−1)θeiµ cos θ dθ

)
−

eiµC
ez

(∫ θr+1

θr

ei(M+1)θe−iµ cos θ dθ −
∫ θr+1

θr

ei(M−1)θe−iµ cos θ dθ

)]
, (C.32)

where again µ = (q −m)/b. Now using the following Jacobi-Anger expansion

eiµ cos θ =
∞∑

n1=−∞

in1Jn1(µ)e−in1θ, (C.33)

where Jn1(µ) is the Bessel function of first kind and order n1, evaluated at µ =

(q −m)/b, and solving the integral of the form

∫ θ2

θ1

eiMθeiµ cos θdθ as

∫ θ2

θ1

eiMθeiµ cos θdθ =

∫ θ2

θ1

eiMθ

∞∑
n1=−∞

in1Jn1(µ)e−in1θdθ

=
∞∑

n1=−∞

in1Jn1(µ)
ei(M−n1)θ2 − ei(M−n1)θ1

i(M − n1)

= (θ2 − θ1)iMJM(µ) ∗ ε(M ; θ1, θ2), (C.34)
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where ε(M ; θ1, θ2) is defined in (7.75) and ∗ denotes the Euclidean domain convolu-

tion, Slepian sub-integral for the equatorial pixels can be reformulated as

Gmq,m′q′(r, 1) = F ez(Bez,M, b,−µ, θr−1, θr)− F ez(Aez,M, b, µ, θr−1, θr)+

F ez(Dez,M, b, µ, θr, θr+1)− F ez(Cez,M, b,−µ, θr, θr+1), (C.35)

where F ez is defined in (7.68).

We note that both Jn1(·) and ε(n2; ·, ·) have infinite mathematical support due to

which their convolution will have infinite support. However, we observe that Jn1(·) is

a much rapidly decreasing function compared to ε(n2; ·, ·) and hence, essentially de-

termines the mathematical support of their convolution. The Jacobi-Anger expansion

in (C.33) is truncated when |Jn1(·)| ≤ tol, where tol is a preset tolerance. Denoting

the lower and upper bounds on n1 by n1
l and nu1 respectively, we truncate ε(n2; ·, ·)

as

nl2 = −2(L− 1)− 1− nl1,

nu2 = 2(L− 1) + 1− nu1 ,
(C.36)

where nl2 and nu2 are the values of n2 at which ε(n2; ·, ·) is truncated in the negative

and positive directions respectively, and we have used the fact that Mmin = −2(L−1)

and Mmax = 2(L− 1) in (7.74).

C.2.2 q −m = 0 :

For this case, Gmq,m′q′(r, 1) in (C.23) is given by the following simplified expression

Gmq,m′q′(r, 1) =
1

b

[
(Bez + Aez)

θr∫
θr−1

eiMθ sin θ dθ −
θr∫

θr−1

eiMθ sin 2θ dθ+

θr+1∫
θr

eiMθ sin 2θ dθ − (Dez + Cez)

θr+1∫
θr

eiMθ sin θ dθ

]
, (C.37)

which can be easily solved, using (C.19) and (C.20), to get the expressions in (7.67).
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