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Abstract

Increased concentration of aerosols in air caused by ever rising urbanization, de-
velopment of various industries and natural phenomenon has horrendous conse-
quences on human health, environment and climate. To counter these adverse
effects of air pollution, spatial characterization of aerosol concentration in the re-
gion of interest needs to be developed first. For this purpose, Aerosol Optical
Thickness (AOT) data product for the years 2017-2018, based on remote-sensing
data of MODerate resolution Imaging Spectroradiometer (MODIS) on NASA’s
Aqua satellite was utilized having a spatial resolution of 3 KM and temporal reso-
lution of 1-2 days. For the validity of this MODIS AOT data, positive correlation
was established between AERONET AOT and MODIS AOT. Glowworm Swarm
Optimization (GSO) algorithm was employed to identify several aerosol hot-spot
locations in and around Lahore with their associated aerosol content based on
MODIS AOT data. In addition to aerosol hot-spot characterization, a spatial
statistical model based on Gaussian Processes with ARD Exponential kernel was
also proposed to solve the problem of spatial coverage holes in MODIS data, using
which, one can predict the value of AOT at any location in Lahore with a certain
confidence level. Cross-validation results revealed the yearly normalized MSE of
0.0093 and 0.0106 for 2017 and 2018 respectively. These research directions were
explored for the first time in the context of air pollution studies for Lahore and
provide an interesting insight on regional aerosol concentration of Lahore for air
quality management.
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Chapter 1

Introduction

In recent times, an enormous trend towards urbanization and development of var-

ious industries in developing countries like Pakistan is evident. This ever rising

urbanization has brought with itself the crisis of air pollution with absolutely hor-

rendous consequences. The severity of this crisis is reflected in the 2015 World

Health Organization (WHO) report, according to which, almost 60,000 people

died from large amounts of fine particles in air and is one of the highest death

tolls recorded globally due to air pollution (FAO of UN report, 2018). Moreover,

according to a statement available from Punjab’s Environment Protection Depart-

ment (EPD), the average air pollution in Pakistan’s big cities is up to four times

higher than the WHO limits.

These aforementioned figures are more than enough of a reason to motivate

policy decisions to counter the harmful effects of air pollution. However, in order

to ensure that the right measures are put in place, the exact scale of the problem

needs to be understood. Thus we need to develop a precise spatial and tempo-

ral characterization of air pollutants and identify the major sources from which

they originate. Unfortunately, such a characterization in the context of Pakistani

environment is non-existent. There are positive signs however. In the last few
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years, the EPD has deployed air quality sensors at several locations in Lahore

with those sensor readings made publicly available [1]. To monitor data from

more locations, a couple of privately owned sensors have been recently deployed

at various locations as well. In addition to these, AErosol RObotic NETwork

(AERONET) sensors installed in Lahore and Karachi provide data of useful atmo-

spheric aerosol properties like Aerosol Optical Thickness (AOT). However, these

ground-based sensors provide measurements for selected cities such as Lahore, and

that too with significant coverage holes. Even if the ground-based measurement

nodes within Lahore were of satisfactory spatial density, determining an elaborate

characterization of pollutants using only ground-based sensor measurements be-

comes infeasible as it requires an elaborate sensor network covering large swathes

of geographical areas. Fortunately, satellite-based remote sensing of aerosols pro-

vides an attractive alternative that provide a global coverage. While there are

several satellites that provide aerosol measurements, MODIS, a sophisticated in-

strument on NASA’s Aqua and Terra satellites, with a promising spatial resolution

of 10 km and 3 km happens to provide the most accurate and reliable satellite-data

of aerosol properties for Lahore [2].

Using both the satellite and ground-based sensors, researchers have been trying

to understand the air pollution sources and trends in Pakistan over the last two

decades. Research in this domain has previously investigated the problem in the

following directions: Seasonal trends in the properties of aerosols in Lahore includ-

ing the variation in AOT values and classification of aerosols into two major types

(desert dust and biomass burning/urban industrial) based on bi-modal distribu-

tions of Angstrom Exponent and AOT from Aqua MODIS and AERONET [3].

Spatio-temporal variations in aerosol concentration for several cities of Pakistan

was analyzed using the Hybrid Single Particle Lagrangian Integrated Trajectory

(HYSPLIT) model on satellite-based data of MODIS, Multi-angle Imaging Spec-
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troradiometer (MISR) and Total Ozone Mapping Spectrometer (TOMS) via back-

tracking air mass trajectories [4], [5], [6]. The above two research directions have

revealed that the average AOT concentration in pre-monsoon (or summer) is the

highest followed with that in the monsoon season, with the lowest value in winter.

Moreover, classification analysis discovered the presence of coarse-mode particles

with dominance in the pre-monsoon season owing to high dust storm frequency,

while post-monsoon with fine particles, winter and monsoon with both fine and

coarse-mode particles.

Other research directions have explored the validity of satellite-based AOT

measurements with the ground-based AERONET data using correlation analy-

sis [7]. These studies have compared the reliability of the two most important

MODIS AOT retrieval algorithms, Deep Blue (DB) [8] and Dark Target (DT) [9]

for Karachi and Lahore [10]. It was also discovered that DT and DB data products

are more suitable for the urban areas in Pakistan dominated by coarse and fine

particles respectively. However, AOT based on DT is the most suitable to use

for Lahore as the region around Karachi has more bright surfaces and requires

algorithms like DB to retrieve AOT on those regions [11].

In addition to the above literature, there are some studies that were conducted

on the ground-based sensor measurements only. For example, there is an elaborate

study of various aerosol properties like AOT, Angstrom Exponent (AE), Single

Scattering Albedo (SSA), Aerosol Radiative Forcing (ARF) over Lahore using

only the ground-based AERONET data [12]. Moreover, ground-based samplers

have also been used to detect and quantify the presence of certain particles in the

air. This approach was followed to carry out the detection of various atmospheric

trace metals present in Islamabad’s air, which showed the highest amount for Iron

with 1.761µg m−3 followed by Sodium with 1.661µg m−3[13].

The variation in concentration of aerosol over a region tends to have an impact
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on its climate. To understand this relationship, an analysis based on correlation

between properties of aerosol and clouds was performed over 8 big cities of Pakistan

using the aerosol and atmosphere data products of MODIS onboard Terra [14].

Water vapor, cloud fraction, cloud top temperature and cloud top pressure were

the four important optical properties of clouds that were considered in the analysis.

In another study, heavy pollution episodes were classified into dust episode (DE)

and haze episode (HE) over Karachi and Lahore using correlation between AOD

and AE [15].

After having gone through the relevant research work, it is not hard to observe

that no significant contribution has been made to identify and quantify the air

pollution sources in terms of aerosol hot-spots in Pakistan. This is indeed a very

important step that needs to be investigated before making any effort to bring

the air quality back into the safe limits. This is because only with the help of

such aerosol hot-spots characterization, one would be able figure out the locations

that need the most attention with regards to the air quality control. In addition

to this, an interesting research direction of learning statistical model for aerosol

properties can assist in better aerosol characterization and other relevant analyses

by e.g. estimating the values for missing data. This kind of statistical modeling

also seems non-existent in the context of Pakistan’s air pollution research.

1.1 Outline and Contribution of the Thesis

1.1.1 Thesis Objectives

The objective of this thesis is to explore the following two research dimensions

that were discerned above using data from Aqua’s MODIS aerosol product.
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Statistical Modeling of Aerosol Optical Thickness:

In this phase, a spatial statistical model, based on Gaussian Processes (GP) is

proposed for Aerosol Optical Thickness (AOT), which is the most significant prop-

erty of aerosols. The parameters for kernel governing the statistical relationship

between the AOT at different locations can be learned based on likelihood max-

imization in GP framework. K-folds cross validation can be further employed to

choose the most potential GP model. This model will provide a way to estimate

the AOT value at any location in the region under consideration with a certain con-

fidence level and thus, a better understanding of the spatio-temporal distribution

of aerosol concentration can be inferred from it.

Aerosol Hot-spot Characterization:

In this part of the thesis, the regions in Lahore that have persistently high values of

aerosols are identified using the Glowworm Swarm Optimization algorithm. After

having identified the locations, the next step is to quantify the concentration of

aerosols within these hot-spots using appropriate quantification metrics. At the

end, hot-spots can be ranked according to their aerosol concentration. Since the

locations are geographical coordinates, one can readily tell what areas of Lahore

fall within the identified hot-spots with their estimated aerosol concentration.

1.1.2 Thesis Outline

In a nutshell, Chapter 2 presents the scientific background of atmospheric sci-

ence, related preliminaries and problem formulation. Next two chapters provide

a detailed theoretical description of the proposed methods to solve the problems

identified at the end of Chapter 2. Chapter 3 is about the theoretical concepts

which govern the working of Gaussian Processes Regression. While in Chapter
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4, the mechanism of Glowworm Swarm Optimization algorithm is explained in a

detail for the purpose of optimizing multi-modal functions. In order to achieve the

objectives of the thesis, the concepts introduced in Chapter 3 and 4 are to be em-

ployed according to the nature of problem statements and MODIS data structure.

The results of all the analyses performed on the data and findings after applying

the proposed methods are presented in Chapter 5. Chapter 6 concludes the thesis

by summarizing the results and highlighting future considerations.
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Chapter 2

Preliminaries and Problem

Formulation

This is an introductory chapter that discusses science of atmospheric pollution,

types of pollutants and their hazards, causes that lead to high concentrations of

pollutants and different techniques to measure these concentrations. The details

of satellite data from MODIS that was used in this work is also described followed

by the identification of research dimensions that were explored in this work.

2.1 Understanding Atmospheric Pollution

2.1.1 Scientific Background

The word atmosphere originated from two Greek words atmos meaning vapor and

sphaira which means sphere. Atmosphere is a set of gaseous layers that surrounds

the planet and is retained by its gravitational pull. The Earth’s atmosphere has

been divided into five layers depending on the composition, temperature and pres-

sure of each layer. The layer that harbors life on Earth is called troposphere. This
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layer is composed of different types of gases, suspended liquid droplets and various

particulate matter. Among the gases, about 78% Nitrogen, 30% Oxygen, 0.93%

Argon, 0.04% Carbon Dioxide and traces of other gases is present. This ideal com-

position is bound to change as a consequence of various phenomenon occurring on

the planet’s surface which become the sources of atmospheric pollution.

2.1.2 Sources of Atmospheric Pollution

Many natural phenomenon as well as anthropogenic activities are responsible for

creating an unhealthy change in the composition of air. Natural sources of air pol-

lution include volcanic eruption, acid rain, wild fires, sea-sprays, dust storms and

biological allergens. However, in the context of developing countries such as Pak-

istan, degraded atmosphere is primarily due to anthropogenic sources such as ve-

hicular fuel and gasoline combustion, industrial boilers, burning of coal and wood,

commercial and residential heaters, waste disposal, chemically harmful sprays and

paints. All these sources of air pollution can potentially increase the atmospheric

concentration of Sulphur and Nitrogen oxides, hydrocarbons (e.g. Methane), Car-

bon Monoxide, ground-level Ozone, and even Lead.

Liquid droplets and small suspended particles present in the air form another

significant class of pollutants called Particulate Matter (PM). These are of major

interest in the context of this work. These are divided into different types based on

their dimensions. Generally, they are classified in the two classes called PM10 and

PM2.5. PM10 include all those particles that are of dimensions less than or equal

to 10 µm whereas PM2.5 are of dimensions less than or equal to 2.5 µm. Figure 2-1

illustrates some well-known particles in PM against their dimensions in microns.
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Figure 2-1: Particulate matter with their dimensions in microns (Image courtesy:
https://en.wikipedia.org/wiki/Particulates).

2.1.3 Classification of Pollutants

Different pollutants that were mentioned earlier can be classified into two major

categories based on how they enter into the atmosphere. They are usually divided

into two major categories of primary and secondary pollutants. Primary pollutants

are the ones that directly enter into the atmosphere and become a part of it.

Carbon Monoxide coming out of the vehicles, Volatile Organic Compounds (VOCs)

being ejected out of industries and all types of PM are some chief examples.

9



Secondary pollutants emerge when the primary pollutants combine together

under some favorable conditions. Ozone is the most prominent example and is

formed when Nitrogen Dioxide and VOCs react together. Sulphuric acid and

Ammonia are some other examples of secondary pollutants.

Aerosol: The Pollutant under Consideration

Aerosol is suspension of solid particles and suspended liquid droplets in a gas,

and in fact, just another term that is used to refer to the PM present in air.

As mentioned earlier, these are the pollutants that are of major interest in this

work. Their scientific properties can be exploited to quantify and even classify the

suspended particles in the air. One of these properties, Aerosol Optical Thickness

(AOT), happens to be the very fundamental measure based on which the entire

analysis and modeling will be done. Description of the relevant properties are as

follows:

• Aerosol Optical Thichness (AOT) is defined as a measure of quantity of light

removed from the sunbeam reaching the surface of Earth. AOT inherently

measures the quantity of particles present in the air that scatter the sunbeam

by relating it to the intensity of light being observed at the surface. Thus,

higher the AOT, higher will be amount of aerosols present in the air.

• Angstrom Exponent (AE) is defined as the negative slope of AOT with re-

spect to wavelength. It is useful to infer about the sizes and hence, the class

of aerosols.

2.1.4 Effects and Hazards of Pollutants

The aforementioned pollutants of atmosphere, even seeming unlikely, have hor-

rendous consequences. These include contamination of crops and livestock, pro-

10



duction of greenhouse gases, acid rain, reduced visibility and formation of smog

[16]. Moreover, pollutants can alter cloud properties by absorbing and reflecting

sunlight, due to which the climate and the hydrological cycle is affected [17]. The

biggest impact however is on the human body with cardiopulmonary health being

the biggest sufferer. As far as PM is concerned, it is the major contributor to

diseases of eyes and respiratory system. PM with smaller dimensions can even

penetrate deep into the bloodstreams which can lead to many diseases [18]. In-

deed, according to the World Health Organization, about 3 million deaths are

reported globally every year as a result of exposure to ambient air pollution. More

alarmingly for Pakistan should be a 2014 World Bank report which states that

more than 20,000 premature deaths among adults and almost 5,000,000 cases of

illness among children each year are recorded in Pakistan [19] due to degraded air

quality. Moreover, according to a statement available from Punjab’s Environment

Protection Department (EPD), the average air pollution in Pakistan’s big cities

is up to four times higher than the WHO limits. Steps must be taken to reduce

these numbers and bring this alarming situation under control. This can only be

done once the spatial distribution of aerosols is formed and regions with high con-

centrations of air pollution within the distribution are identified, which happens

to be one of the objectives of this work. In order to build this spatial distribution,

measurement of the aerosol concentration at different locations in the region of

interest is required. This calls for the knowledge of air pollution measurement

techniques, which will be introduced next.

2.1.5 Quantification of Pollutants

Fortunately, engineering and science has made it possible that there exist sensors

and monitors that can continuously record the concentration of these pollutants

and even keep a history. This monitoring is of high importance since without any
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handy information extracted out of this data, no reasonable effort can be made to

curb and control this crisis. Pollutants whose concentration is usually measured

include Carbon Monoxide, Ozone, Sulphur Dioxide, Nitrogen Dioxide and both

types of PM. The concentration of these pollutants is measured in the units of

parts per million (ppm), parts per billion (ppb) and micro grams per cubic meters

(µg m−3). These concentrations are further converted into a quantity with values

ranging from 0 to 500 called the Air Quality Index (AQI), which is commonly

used instead of the concentrations to represent the standard of air quality. This

index corresponds to five labels representing the air quality as ’good’ (lower AQI)

to ’hazardous’ (higher AQI).

Following are the two primary ways to measure the concentration of pollutants

in the atmosphere:

Ground-based Measurement Techniques:

This technique involves the installation of monitoring sensors in the desired loca-

tions to measure the concentration of pollutants in the vicinity. In Lahore, Envi-

ronmental Protection Department (EPD) has installed several air quality monitors

around the city, that provide daily average concentration of Sulphur Dioxide, ox-

ides of Nitrogen, PM2.5, PM10, Carbon Monoxide and Ozone. These are located

on Jail Road, Ravi Road, Band Road and Gulberg. Moreover, some privately

owned sensors, measuring similar pollutants are also installed on various locations

including Lahore Upper Mall, Bedian Road, Abubakr Block and NETSOL-Ghazi

Road Interchange.

In addition to the above monitoring stations, AErosol RObotic NETwork

(AERONET), a network of ground-based sun photometers which measures at-

mospheric aerosol properties is another source of ground-based measurements of
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aerosol concentrations but in the form of AOT [20]. These aerosol properties are

retrieved via an inversion algorithm developed by Dubovik and King in the year

2000 [21] which few years later, was further developed by Dubovik et al. to in-

corporate non-spherical shapes of aerosols [22]. In Pakistan, AERONET data is

available at two sites, Lahore and Karachi, with the one in Lahore being opera-

tional under a collaboration of NASA and Institute of Space Technology [3].

In the context of this research, the data from ground-based sensors is of im-

portance for the purpose of validating the satellite-based data which is discussed

next.

Satellite-based Measurement Techniques:

Radiometry is a well-known technique used to measure electromagnetic radiation

reflected or emitted by an object in different frequency bands. Remote sensing is

based on radiometry which is of two types: active and passive sensing. Active sens-

ing involves emission of radiation by the sensor towards the target, followed by the

measurement of the reflected radiation from the target. Whereas, passive sensing,

as the name suggests, involves the measurement of radiation being emitted by the

target alone. Various kinds of radiometers are mounted on satellites that measure

electromagnetic radiation of Earth based on these sensing principles. Literature

review reveals that satellite data for conducting research on atmospheric sciences

is mostly taken from MODerate resolution Imaging Spectroradiometer (MODIS)

on NASA’s Aqua and Terra satellites, measurements made by sensors on Landsat-

8, Aura as well as European Space Agency’s (ESA) Sentinel-2. In this work, data

from MODIS will be used, details of which will be presented in the next section.

The major drawback of ground-based sensors is extreme sparsity of data being

measured in context of spatial coverage. Due to the deployment and maintenance

being expensive and cumbersome, it is impossible to install the sensor nodes almost
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everywhere to get a nice uniform distribution of aerosol concentration. Fortunately,

satellite-based remote sensing of aerosols provides an attractive alternative for a

global coverage. It is important to note at this point that some sparsity of data with

respect to spatial coverage still remains in satellite data due to some limitations

(that will be revealed soon) and is indeed one of the problems that will be solved

in this work via statistical modeling.

2.2 Data Description and Problem Formulation

In this section, a detailed description of dataset used will be presented first followed

with the identification of potential problems.

2.2.1 MODerate resolution Imaging Spectroradiometer

MODerate resolution Imaging Spectroradiometer (MODIS) is an instrument on

NASA’s two satellites called Terra and Aqua. MODIS is a passive instrument

which measures intensity of radiation reflected back from Earth in 36 wavelength

bands (0.405 – 14.385 µm) with three spatial resolutions of 250, 500 and 1000

m. It covers the entire Earth’s surface in 1-2 days, which is a reasonable tempo-

ral resolution for research under consideration. At specific bandwidth channels,

different atmospheric phenomenon and particles are detected [23]. This had lead

to the availability of diverse data products for land, cryosphere, ocean and atmo-

sphere. These data products are readily available for researchers to be downloaded

by NASA. Since the launch of Terra and Aqua satellites back in 1999 and 2002,

respectively, MODIS data has been extensively used for atmospheric research. In

this work, AOT data acquired from Aqua MODIS will be used only. Next section

describes the details of how a mere radiation from Earth sensed by MODIS is

converted into an entire dataset of AOT.

14



From Radiation to MODIS Aerosol Product:

To understand the process of how AOT dataset is developed from sensor mea-

surements made by MODIS, it is important to look at the data processing levels

of MODIS. Figure 2-2 shows a flow diagram taken from [24] that illustrates this

process.

Figure 2-2: Data processing levels of MODIS.

As shown in the diagram, aerosol product is developed at the data processing

level-2. Level-0, raw instrument package consisting of 5 minute swath of data,

is used to produce radiance counts for each wavelength band, classified as level-

1A data. These radiance counts are further converted into a more useful form,

level-1B, consisting of geolocation and calibrated radiances (in SI units) for all

36 wavelength bands. Level-1B data has the spatial resolution of 250, 500 and
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1000 m. However, in the context of this research, level-2 data is of much higher

significance.

MODIS level-2 data is developed using information of cloud mask, atmospheric

profiles along with calibrated radiances and geolocation of level-1B data. Aerosol

product equipped with AOT and Aerosol Size Distribution also resides at this level

with a spatial resolution of 10 km and even 3 km. AOT observed by MODIS can

be thought of as the amount of light scattered or absorbed by the particles in a

vertical column through the atmosphere. This, as expected, happens to be corre-

lated with the ground-level AOT measurements made at the AERONET stations

[10]. Aerosol Size Distribution is based on the Angstrom Exponent (AE) and is

used to differentiate between aerosols of different dimensions. There exist vari-

ous algorithms to retrieve AOT from level-1B data, most common ones of which

include Dark Target, Deep Blue, Dark Dense Vegetation [25]. MODIS’s 10 km

AOT is based on Deep Blue and Dark Target both whereas 3 km AOT is based on

Dark Target only. All the AOT retrieval algorithms work on the principle that in

some particular wavelength band, surface type under observation should appear

dark and aerosols should appear bright. Dark Target, for example, retrieves AOT

for the locations which appear dark in visible and longer wavelengths [9]. These

are usually the surfaces with vegetation and dark soil. Deep Blue considers the

locations that appear dark in near ultraviolet wavelengths (hence the name Deep

Blue) [8]. Deep Blue when combined with Dark Target increases the overall spatial

coverage by including bright land surfaces like deserts for which Dark Target al-

gorithm fails to retrieve AOT. Furthermore, comparison of various AOT retrieval

algorithms has also been made for the benefit of researchers [26]. It is worthy to

mention here that these AOT datasets inherently suffer from the problem of miss-

ing data, as described earlier. This absence of data is a consequence of MODIS

not being able to observe aerosols due to, for example, cloud cover above the area
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under observation.

2.2.2 Problem Formulation

There is no doubt that the first step to control the crisis of degraded air quality

is to identify the locations with high concentrations of pollutants. This is exactly

the problem of atmospheric pollution characterization for which, statistical and

mathematical methods will serve as a backbone.

For the purpose of this characterization, it is pretty straight-forward that one

would be interested to identify the locations where pollution concentration stays

high for longer periods of time. These are the locations that not only suffer from

high aerosol concentration but also, are responsible for dispersing these aerosols

in the vicinity. Once these locations or ”aerosol hot-spots” are identified, various

quantification metrics can help characterize the aerosols residing in these areas.

This is in fact, the first proposed idea in this work to gain more understanding of

the aerosol concentration in Lahore.

However, keeping in view the limitations of MODIS dataset that is to be used

i.e. it suffers from spatial coverage holes, predicting the values for these missing

points using a model that governs the relationship between locations and data

becomes another interesting problem to solve.

It is worthwhile to note at this point that these research dimensions have

never been explored for Lahore’s atmospheric data before. Although, similar other

analyses and modeling has been performed based on the atmospheric data of other

developing countries like China [18], [27]. Later chapters will refer to some methods

used in these studies that are relevant to this work.

The next two chapters are entirely based on the theoretical details of proposed

methods which were applied to achieve the objectives discerned above.
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Chapter 3

Gaussian Processes for Statistical

Modeling of Aerosol Optical

Thickness

In past, several methods have been proposed to deal with the problem of missing

AOT values in MODIS data. These methods include fusion of AOT data from

sensors of multiple satellites [28], development of new AOT retrieval algorithms

with better spatial coverage [29], and more recently, with the boom of machine

learning and inference methods, statistical modeling techniques have also been

proposed lately to solve this problem [18].

In this work, Gaussian Processes Regression (GPR), a probabilistic supervised

modeling technique based on the idea of learning a model from data and using

Bayesian inference to estimate the values at locations where data is missing was

employed. This step of estimating missing AOT values is essential for many appli-

cations where missing data in MODIS AOT product becomes a hurdle. With this

statistical model, one can readily predict the AOT value anywhere in the region

under study with a certain confidence level and can infer about the relationship
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of aerosol at one location with that of another location. Theoretical details of

GPR will be presented in this chapter based on which, estimation and statistical

modeling of AOT will be formulated in Chapter 5.

3.1 Motivation

Oftentimes, in the domain of signal processing research, there exist two or more

quantities that are related to each other via a functional mapping. Some of these

quantities or variables are independent which means that they do not depend on

any other quantity. The others are dependent variables which take on some value

according to the functional mapping involving independent quantities. In most

of the cases, this mapping is unknown and could be estimated using a powerful

learning technique called regression provided that the quantities involved take on

continuous values. Once a suitable mapping is found that can describe this relation

with a negligible error, one can readily use this mapping or model to predict values

of dependent quantity at the points where they were missing. It is clearly evident

that regression falls under the category of supervised learning since it requires a

dataset with correspondences between the two quantities, commonly referred as

the labeled data.

Regression could be of two major types - parametric and non-parametric. In

parametric modeling, some assumptions on the mapping are required to be made.

For instance, the assumption that a linear relation exists between the two quanti-

ties. This is a classical form of probabilistic regression known as linear regression.

But this assumption of linearity will not work in every scenario. It is bound to fail

if the underlying mapping is not linear (or any other degree polynomial). More-

over, in parametric techniques, one has to specify the number of parameters and

exactly how they will appear in the functional mapping. This structural com-
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plexity makes modeling even more specific towards one class of functions and this

could lead to overfitting.

The structural specificity and enumeration of parameters can be potentially

avoided by resorting to non-parametric techniques and GPR happens to be one of

them. In a nutshell, other approaches of regression assume a structure of model

(e.g. linear) and on the top of it, a prior distribution on the values of those

parameters. GPR, in contrast, assumes a prior probability for ”every possible

function”, with higher probabilities to the functions that are more likely to be

the mapping being sought. Hence, one can use GPR to perform linear or, as a

matter of fact, any kind of regression. Moreover, each prediction has an associated

uncertainty or confidence level with it which gives a fair idea of how consistent the

prediction is with the trained model. These are some of the characteristics that

make GPR an extremely attractive and powerful regression technique.

3.2 Gaussian Processes Regression

3.2.1 Gaussian Processes

A Gaussian Process (GP) is a collection of Gaussian random variables, any finite

number of which have a jointly Gaussian distribution. A GP is completely char-

acterized by a mean and covariance function [30]. If a real process f , a function

of x, is a GP with mean function m(x) and covariance function k(xi, xj), it is

represented as follows:

f ∼ GP(m(x), k(xi, xj)), (3.1)

where,

m(x) = E[f(x)].

k(xi, xj) = E[f(xi)−m(xi)(f(xj)−m(xj)].
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For simplicity, the mean function is usually taken to be equal to zero. The

covariance function k(xi, xj), as the definition suggests, captures statistical rela-

tionship based on correlation between any two random variables f(xi) and f(xj)

in the process. In GPR framework, this function is simply called the kernel, hence

the notation k(.). The way this function is defined, it turns out that it becomes

dependent on the x values that the two random variables correspond to i.e. kernel

is just a function of xi and xj and not of the values f(xi) and f(xj). Very often,

kernels are defined as functions of the distance ‖xi−xj‖ instead of other functions

of xi and xj, making the GP a stationary process. In most of the applications, it

is expected that when the distance ‖xi − xj‖ is small, the two random variables

f(xi) and f(xj) should be more correlated and thus, kernel should take a higher

value signifying higher correlation. This is achieved by defining kernels that has

a factor of e−‖xi−xj‖, the squared exponential kernel is a famous example of this

kind. The choice of kernel parameters further changes the way a functions looks

like e.g. in squared exponential kernel, changing the length scale parameter makes

the function look either wiggly or smoother [31].

The marginalization property of Gaussian distribution is the foundational back-

bone of GP’s and its implications to carry out inference in the context of GPR

are remarkably useful. This property states that if an N multi-variate Gaussian

distribution is given by

y ∼ N (0,Σ),

where y is a combination of N Gaussian random variables
[
y1 y1 ... yN

]T
with

0 being an N-dimensional zero vector and Σ is an NxN covariance matrix. Then

the marginalization property states that each yi will be a univariate Gaussian

random variable of the form

yi ∼ N (0,Σii),
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with Σii represents the variance of yi. Similarly, any two of the random variables

will form a bi-variate Gaussian distribution of the following form

[
yi yj

]T
∼ N (0,Σij),

with 0 being a two-dimensional zero vector and

[Σij] =

 Σii Σij

Σji Σjj

 ,
where the diagonal entries represent the variance of each y and non-diagonal

entries represent the covariance between each yi and yj. Here, all the Σ’s will be

a function of x values only as described earlier. The above idea of marginalization

can be extended to more than two y’s (multi-variate case) as well.

It is important to understand the role of x in the above formulation. x, in the

most simplest of the applications is a 1-dimensional time-indexing variable or 2

or 3 dimensional spatial coordinates (as it will be in the case of our application).

As a matter of fact, it could be any n-dimensional vector that the function under

consideration (f or y) depends on. This abstractness of the indexing variable is

an attractive feature of GP framework and thus, GP assumption can be applied

in many engineering problems including regression and classification.

3.2.2 Regression with Gaussian Processes

Coming back to the regression problem, assume a data D with N points st. D =

{xi, f(xi)} with i = 1, ..., N . Here, each data point is represented as the function

value f(xi) corresponding to the independent quantity xi, which is a D-dimensional

indexing vector. Then under the assumption that f(.) is a GP with a certain kernel

(covariance matrix) K, the data D will follow the following framework:

22



f ∼ GP(0,K),

with f =
[
f(x1) f(x2) ... f(xN)

]T
and using the marginalization property,

f(xi) ∼ N (0, Kii),

[
f(xi) f(xj)

]T
∼ N (0,Kij),

where

[Kij] =

 Kii Kij

Kji Kjj

 ,
and multiple points taken together will follow a jointly Gaussian distribution,

based on the extension of the 2-dimensional case above.

Inference in Gaussian Processes Regression:

Note that in this data space of GP, there will exist points that do not belong to

the data D, corresponding to which, prediction of the function value f is required.

Assume such a test point x∗, with a corresponding f(x*) which is to be predicted.

Interestingly, this f(x∗) together with the rest of the data points f(xi) for i = 1, ...,

N from D will again follow a jointly Gaussian distribution because f(x∗) is just

another random variable in the GP. So the joint distribution will be:

[
f(x1) f(x2) ... f(xN) f(x∗)

]T
∼ N (0,K),

with

[K] =

 K K∗

KT
∗ K∗∗

 .
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Since GPR is based on Bayesian inference, values of the unknown quantities are

estimated using the posterior probability i.e. Pr (quantity | observations). There-

fore, the problem of predicting the value f(x∗) is to find the posterior probability

given by Pr (f(x∗) |f(x1), f(x2), ..., f(xN),x1,x2, ...,xN). Luckily, this probability

simply turns out to be the conditional probability distribution on Gaussian random

variables in the GP. This can be extended from one D-dimensional test point to M

D-dimensional test points. In this general case, the posterior distribution looks like

Pr (f(x∗1) , f(x∗2), ..., f(x∗M)|f(x1), f(x2), ..., f(xN),x1,x2, ...,xN,x
∗
1,x

∗
2, ...,x

∗
M). This

conditional distribution on the Gaussian random variables follow a particular form

that uses the information from the joint distribution (assuming zero mean function

for simplicity) [32]:

Let’s assume that the joint probability is given by:

[
f(x1) f(x2) ... f(xN) f(x∗1) f(x∗2) ... f(x∗M)

]T
∼ N (0,K), (3.2)

where

[K] =

 K K∗

KT
∗ K∗∗

 ,
with K is the NxN kernel matrix for the training points, K∗ and K∗ are NxM

and MxN kernel matrices for both the training and test points, while K∗∗ is the

MxM kernel matrix for the test points only. The conditional posterior probability

distribution will follow the following form:

f(x∗1), ..., f(x∗M)|f(x1), ..., f(xN),x1, ...,xN,x
∗
1, ...,x

∗
M ∼ N (µc,Kc), (3.3)

where the parameters µc and Kc are found using the kernel matrices from equation

(3.2) as:
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µc = KT
∗ K−1f(x),

Kc = K∗∗ −KT
∗ K−1K∗.

Thus, the predictive distribution in equation (3.3) is yet another joint Gaussian

distribution with mean given by the vector µc and covariance matrix given by Kc.

Each test point f(x∗i ) is a Gaussian with mean given by the ith element in µc and

variance given by the ith diagonal entry in Kc, hence each f(x∗i ) turned out be a

Gaussian RV in the GP as was assumed earlier. In theory, the value of f(x∗i ) that

should be chosen as the prediction has to be the one that maximizes the distribu-

tion of f(x∗i ). Since this maximizer in a Gaussian distribution is simply the mean

value, the prediction for the f corresponding to each ith test point will be µi (the

ith element of µc) with Kii
c (the ith diagonal entry of Kc) uncertainty associated

with the prediction. Higher the value of Kii
c , more uncertain the prediction f(x∗i )

will be and thus, less confidence will be given to the prediction.

In real-world applications, the observations in training data happen to be noisy

and there is some uncertainty associated in the value that each data point takes. In

sensing applications, this additive, independent and identically distributed noise

is termed as the sensor noise, which, as expected, is assumed to follow a Gaussian

distribution. In GPR, model for such noisy observations takes a slightly different

form from what was shown above. Each data point f(x∗i ) is assumed to be coming

from the following model:

yi = f(xi) + ε, (3.4)

with i = 1, 2, ..., N, f being a GP and the sensor noise of ε:

f ∼ GP(0,K),
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ε ∼ N (0, σ2
n).

With this noisy and more realistic model of the observations, the joint and

predictive posterior distribution derived earlier take on the following form:

[
y(x1) y(x2) ... y(xN) f(x∗1) f(x∗2) ... f(x∗M)

]T
∼ N (0,K), (3.5)

where

[K] =

 K + σ2
nI K∗

KT
∗ K∗∗

 .
And thus, the conditional posterior distribution will become:

f(x∗1), ..., f(x∗M)|y(x1), ..., y(xN),x1, ...,xN,x
∗
1, ...,x

∗
M ∼ N (µc,Kc), (3.6)

where

µc = KT
∗ (K + σ2

nI)−1y,

Kc = K∗∗ −KT
∗ (K + σ2

nI)−1K∗.

Learning in Gaussian Processes Regression:

The above discussion assumes that the kernel along its parameters and the variance

of sensor noise is known besides the training and test data. Essentially, it describes

the method of inference in GPR after having learned the kernel and distribution

of sensor noise. In reality, fitting a noisy GPR model on any data is exactly the

same problem as learning the kernel and sensor noise from the training data. This

is where the learning aspect of GPR comes in which addresses the questions of

how to choose an appropriate kernel and variance of sensor noise. It is to be noted

that the performance of prediction is highly dependent on this learning phase as
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this will fix the characteristics of the model y given in Equation (3.4). Once the

learning part is done, one can readily use the predictive distribution in Equation

(3.6) for inference.

Similar to most of the other probabilistic learning methods, likelihood maximiza-

tion principle is used to find the optimal parameter values in GPR. Ideally, poste-

rior estimates for parameters should be chosen based on maximizing the posterior

distribution: Pr (parameters | data). This is defined as a product of two dis-

tributions - likelihood function Pr (data | parameters) and a prior distribution

Pr (parameters) according to the Bayes’ Theorem. When there is little prior in-

formation known about the parameters, it is useful to maximize the likelihood

function only [33]. Note that in this case, the prior distribution takes on the form

of uniform probability spanning all possible values that the parameters can take.

Thus, maximization of the likelihood will be equivalent to maximization of the

posterior distribution. Often, the likelihood function has a pretty cumbersome

form, this can be made simpler by taking its log. This works because log is a

monotone which implies that maximization of the likelihood will give same results

as the maximization of the log-likelihood. This log-likelihood function in GPR is

defined as follows [33]:

log p(y|x,θ) = −1

2
yT (K + σ2

nI)−1y − 1

2
log |(K + σ2

nI)| − N

2
log 2π. (3.7)

Note that θ in the above equation represents all the parameters that are to be

learned. The way this is employed in GPR is that a kernel is specified and then all

the parameters of kernel along the variance of noise (denoted by σ2
n) is estimated

by optimizing the log-likelihood function over all the parameters. This can be

achieved by applying any suitable optimization algorithm. The set of parameter

values that maximize the log-likelihood function will be the optimum parameters
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that should be used for inference using Equation (3.6).

Since there could be many possible kernel functions to choose from, how does

one make this choice and then estimate the model parameters based on Equation

(3.7)? This is where the concept of cross-validation comes into play. In this

process, several kernels that could most likely represent the data are chosen and

optimal parameters based on Equation (3.7) are found for each of them. At this

point, there will be several models similar to the one defined in Equation (3.4)

at hand, each based on one of the chosen kernels and the corresponding optimum

parameters. Now to choose a model among these, k-folds cross validation technique

can be employed on each of these and the model that gives the best performance

(based on e.g., the mean squared error between actual and predicted values) could

be a potential model for the data under consideration.

This concludes the discussion of theoretical details of GPR. These concepts

from GPR theory will be used in Chapter 5 to formulate and resolve the problem

of AOT modeling. This proposed idea will not only solve the problem of missing

data in AOT product of MODIS but will also provide a statistical model that will

be able to predict AOT value with a certain confidence level at any location in

Lahore, making it a much more significant result of this work.

Next chapter will discuss the theoretical concepts needed to undertake the

second potential research dimension of aerosol characterization in Lahore.
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Chapter 4

Characterization of Aerosol

Hot-spots using Glowworm

Swarm Optimization Algorithm

The objective of this chapter is to introduce the theory of proposed mathematical

method which will be employed for the spatio-temporal characterization of pollu-

tion hot-spots based on AOT data. Hot-spots in this text are considered to be

those locations where the AOT values persistently remain high relative to their

surroundings.

For the purpose of characterization, hot-spot locations are needed to be identi-

fied first. To identify these locations, a suitable optimization method called Glow-

worm Swarm Optimization (GSO) algorithm is proposed which was developed in

2005 by Krishnanand and Ghose [34]. It is one of the most relevant optimiza-

tion algorithms for the application under consideration. The reasons for choosing

GSO over other algorithms will shortly become clear in the next section where the

distinctive features of algorithm are described followed by its working principle.
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4.1 Motivation

As mentioned earlier, the most significant goal in the spatio-temporal character-

ization is to first identify the hot-spot locations in the region based on MODIS

AOT data. Interestingly, this problem is exactly equivalent to the problem of lo-

cating all the maxima of the daily MODIS data grid. In more technical terms,

the problem is to locate all the local maxima of a two-dimensional AOT discrete

multi-modal signal.

These kind of problems where the locations corresponding to the maxima of

a function are required to be found fall under the category of optimization prob-

lems. Since the objective function in this study is a multi-modal function, an

optimization algorithm that can locate all local maxima of the function should be

considered.

Multi-modal functions usually model signals with multiple signal sources like

sound, heat, light and leaks in pressurized systems [35]. They model well the

source profiles of such signals that originate from a point and spread in the sur-

roundings. Intuitively, when these signals are optimized, the locations from where

the signal originated are found. Population-based approaches are well-suited for

the multi-modal optimization and are divided into two main categories - Evolution

Computation (EC) and Swarm Intelligence (SI) techniques [35]. EC techniques are

based on evolutionary mechanism encountered in natural selection are not very

relevant in the context of aerosol hot-spot identification, leaving behind the SI

algorithms.

SI algorithms are meta-heuristic in nature which means that they are based

on high level methods that perform sufficiently good for optimization problems.

The word swarm is used for a dense group, usually that of small biological crea-

tures. Hence, SI algorithms consist of agents that locally interact with one an-

other and their environment, mimicking the behavior of biological systems like
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ant colonies and bacterial growth. Some of the well-known SI algorithms include

Particle Swarm Optimization (PSO), Ant Colony System (ACS) and Artificial Bee

Colony (ABC) [36]. Similar to these algorithms is Glowworm Swarm Optimization

(GSO) algorithm, which, as the name suggests, mimics the behavior of glowworms.

GSO is different from the earlier approaches to multi-modal optimization in the

dynamic decision domain that the agents in the swarm use to locate multiple peaks.

Moreover, it is memoryless, gradient free and doesn’t even require knowledge of

global information of the signal to be optimized [35]. These features of GSO makes

it a reasonable choice to work with. As a matter of fact, there exists a recent

experimental study in which, after slight modifications in the GSO algorithm,

back-scattering of the aerosols in Chengdu city of China is modeled to identify the

air pollution sources [27]. However, the use of GSO in this study is to only locate

the hot-spots which will be the first step for the aerosol hot-spot characterization

of Lahore. Next section is devoted to elaborate the working principle of GSO

algorithm.

4.2 Glowworm Swarm Optimization (GSO) Al-

gorithm

Being an SI algorithm, GSO algorithm is based on a population of agents that

interact with one another and their environment to optimize the objective func-

tion. Each agent in GSO algorithm is called a glowworm. These artificial glow-

worms possess characteristics similar to their natural counterparts. This includes

a Luciferin-level associated with each glowworm in GSO which is analogous to the

glow in natural glowworms. This glow helps the glowworms to interact better with

each other and their environment. Similar benefits can be achieved from the arti-

ficial glowworms in GSO algorithm by exploiting this Luciferin-level. Like many
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other optimization methods, GSO algorithm can be employed for seeking either

the local maxima or the local minima by making slight changes in the algorithm.

Since in this thesis, positions of local maxima are of interest, the version of GSO

used to locate local maxima will be discussed. Next section introduces three basic

mechanisms that govern the whole working principle of GSO algorithm.

4.2.1 Three Mechanisms of GSO Algorithm

In GSO, all the glowworms are given a default Luciferin-level and are randomly

spread out in the search space of the objective function. How the glowworms will

move around and interact with one another to locate the local maxima of the

objective function rely on the following three mechanisms [34]:

Fitness Broadcast:

The Luciferin-level associated with each glowworm takes its value based on the

fitness of its location in the search space. It is denoted by li for every ith-glowworm.

Intuitively, the closer a glowworm is to a local maxima, the higher the value of

its Luciferin-level. This value is broadcasted to all glowworms in the search space

making each glowworm know the Lucifern-level of every other glowworm despite

large distances among them. Note that this capability of unconstrained perception

is not possessed by the natural glowworms and it tends to reduce as the distance

among them increases.

Adaptive Neighborhood:

Each glowworm involved in the algorithm has a local decision range. This, as

mentioned earlier, is a dynamic or adaptive range which is used to form a neigh-

borhood for every glowworm. It is based on a variable range denoted by rid which is

bounded by a hard-limited sensor range rs, such that 0 < rid < rs. r
i
d is modulated
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based at every iteration to ensure the adaptiveness of decision range. Based on

this rid, a glowworm forms its neighborhood range and chooses those glowworms

as its neighbors that have higher Luciferin-level than itself.

It is important to understand the significance of this feature. In the multi-

modal functions where the local maxima are being sought, agents use their vision

(decision range) to decide where the peak is and move towards that direction. If

this range is fixed, it has to be smaller than the minimum distance between the

peaks in the function, otherwise, some peaks will not get located. Since little

information is known about the function to be optimized, it is better to have a

dynamic decision range which will update itself based on the information of local

neighborhood. This is exactly what GSO uses to locate all the peaks.

Positive Taxis:

Among all the neighbors of a glowworm, there will be one neighbor that the glow-

worm will choose to move towards. Since the glowworms move towards the stim-

ulus (higher Luciferin-level), this movement is termed as the positive taxis. The

selection of this neighbor among all the others is based on some probabilistic

heuristic.

The above three mechanisms interplay with one another to form the entire

algorithm of GSO, which will be revealed next.

4.2.2 Working Principle of GSO

The GSO algorithm consists of four main steps, three of which are repeated until

the local maxima in the objective function are found. The description of these

steps follow next.
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Step 1: Initialization

In this step, N glowworms are randomly spread out in the search space, each

initialized with a default Luciferin-level l0, regardless of their position. Other

parameters that govern the GSO algorithm are also initialized in this step.

Step 2: Luciferin Update

After initialization, each ith-glowworm’s Luciferin-level will be updated based on

its position in the search space. This value, as described earlier, is proportional to

the value of the objective function at the position of the glowworm. The Luciferin-

level of an ith-glowworm will be updated based on the following equation:

li(t+ 1) = (1− ρ)li(t) + γJ(xi(t+ 1)). (4.1)

Here, t represents the iteration number, J(.) is the objective function that is

to be optimized possessing multiple maxima, ρ is the Luciferin decay constant

0 < ρ < 1 which controls how much of the previous Luciferin-value has to be

retained and γ is Luciferin enhancement constant which scales the Luciferin-level

with the function value.

Step 3: Movement Phase

After all the glowworms attain an appropriate Luciferin-level based on the fitness of

their position, they are required to move towards a local maxima. This is achieved

by the glowworms by moving towards a neighbor that has a higher Luciferin-level

based on a probabilistic heuristic. The heuristic represents the probability with

which an ith-glowworm will move towards a jth-glowworm and is defined as:

pij(t) =
lj(t)− li(t)∑

k∈Ni(t)
lk(t)− li(t)

, (4.2)
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where j belongs to Ni(t) with Ni(t) = {j : dij(t) < rid; li(t) < lj(t)} being a set of

neighbors of a glowworm i that glow brighter than the itself and are located at a

Euclidean distance of less than rid, the adaptive decision range.

This is how each ith-glowworm in the search space forms a neighborhood Ni(t)

and moves towards a jth-glowworm with a probability of pij(t). At iteration num-

ber t, the update equation for the position of each glowworm is given by:

xi(t+ 1) = xi(t) + s
xj(t)− xi(t)
‖xj(t)− xi(t)‖

. (4.3)

In the above equation, xi(t) ∈ Rm, represents the position of the ith-glowworm at

iteration t in an m-dimensional space, ‖.‖ is the Euclidean norm operator and s is

a positive quantity that denotes the step size.

Step 4: Neighborhood Range Update

This is the last step in each iteration of the algorithm. After all the glowworms

have moved towards their chosen neighbors according to the above two equations,

they are all at a new position now (which is more closer to a local maxima). At

this point, due to the adaptive decision range property of GSO, each glowworm

needs to update the value of rid for forming a neighborhood in the next iteration.

The decision range of an ith-glowworm is updated based on the following rule:

rid(t+ 1) = min
rs
{rs,max{0, rid(t) + β(nt −Ni(t))}}. (4.4)

Here, rid(0) will be initialized at the first iteration as r0 for all i. rs is a fixed

sensor range which bounds the rid(t), nt controls the number of neighbors, Ni(t)

measures total number of neighbors of the glowworm i in the current iteration.
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After conducting extensive numerical experiments, appropriate values of most

of the parameters in GSO algorithm have been determined [33]. These include nt,

rs, l0, β, ρ, r0 and γ and their values are tabulated below. While the remaining

two parameters N and rs control the number of peaks that are captured by the

algorithm. These two parameters can be selected according to the requirement of

the application.

ρ γ β nt s l0

0.4 0.6 0.08 5 0.03 5

This concludes the discussion on the theory of GSO algorithm which will be

employed to identify aerosol hot-spots based on MODIS AOT data, the details of

which will be presented in the next chapter.
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Chapter 5

Experiments and Results

In this chapter, the identified problems will be formulated formally based on the

methods described in the Chapters 3 and 4. Study site description, useful notation

and some preliminary analyses carried out on the data will be presented first

followed by all the experiments that were conducted to achieve the objectives of

this thesis with their associated findings and conclusions.

5.1 Study Site Description

Lahore is one of the biggest cities of Pakistan, situated in the province of Punjab.

Increased aerosol concentration in Lahore is a consequence of city’s vehicular and

industrial emissions, biomass burning activities and dust aerosols [3]. Figure 5-1

shows the area around Lahore for which all the analyses were carried out (high-

lighted with red rectangular boundary). It consists of the city of Lahore, small

towns in the outskirts, some field areas and several highways that connect Lahore

to other cities.
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Figure 5-1: Region under study (Image courtesy: Google Maps).

5.2 Data Exploration and Notation

In this study, the aerosol product of Aqua MODIS available in the spatial resolution

of 3 km, the details of which were given in Section 2.2.1, was used. More specifically,

this comprises of the data product named as MYD04 3K, associated with the

years 2017 and 2018. This data was downloaded from the online LAADS DAAC

data archive [37]. Although, the 3 km product generally happens to have less

spatial coverage due to the fact that it uses Dark Target algorithm instead of

Deep Blue, it works good enough for the dark surface of Lahore. Moreover, the

choice of 3 km product was made because only the region in and around Lahore is
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of interest, so it is better to use a finer resolution to ensure that more data points

can cover the small region of Lahore. Next, the notation for this AOT data will be

developed to facilitate the understanding of all the components that are involved

in the dataset. This notation will be extensively used to describe the problem

formulation, methodology and relevant results in the later sections.

5.2.1 Notation

Let the AOT data points for a dth day of a particular year be denoted as Dd. st.

Dd = {xi, yi}. Here, d = 1, ..., 365 represents the day of year and i = 1, ..., N ,

the data point number, with N being the total number of data points available

in Dd. xi is a two dimensional vector representing the geographical coordinates

with x1 as the latitude and x2, the longitude. In this study, xi, the geographical

coordinates will always belong to the region of Lahore and its outskirts, denoted

as RL, where RL , {x | 31.2 ≤ x1 ≤ 31.7, 74 ≤ x2 ≤ 74.5}. yi denotes the value

of AOT observed by MODIS at the coordinates defined by xi.

For the data points in the daily AOT data for which the observation is missing

corresponding to some xi, a new notation x∗i with i = 1, 2, ...,M will be used.

5.3 Preliminary Data Analyses

In this section, some elementary analyses that were carried out on the data before

conducting the actual research are presented. These experiments were performed

to ensure that the datasets are valid and follow similar trends that were observed in

the studies before. Two major types of analyses were conducted for this purpose:

correlation studies between satellite and ground-based data, and seasonal trends

of AOT. The details of these analyses are presented next.
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5.3.1 Analysis I: Correlation between MODIS AOT and

AERONET AOT

For the purpose of validating the accuracy of satellite data, it is important to

establish a positive correlation between the satellite and ground-based measure-

ments before conducting any research using this data. This will ensure that the

satellite data is consistent to what is observed by the sensors on ground and thus,

is suitable to use for conducting research. Although, it has already been verified in

previous studies that the MODIS AOT data is positively correlated with the AOT

measurements of AERONET ground stations, a similar study for determining the

correlation of satellite AOT with AERONET AOT was conducted in this work for

the purpose of validating MODIS data.

Correlation between two quantities is usually determined using a scatter plot.

In a scatter plot, each of the two quantities is plotted on one of the two axes. Each

point on the plot corresponds to a measurement taken at the same time-stamp

(day of year) and at the same location for both quantities.

To find correlation between MODIS AOT and AERONET AOT, MODIS AOT

value is required corresponding to every ground-based measurement by AERONET.

As discussed in the earlier chapters, MODIS dataset suffers from the problem of

data loss, due to which, ground-based measurements will not have their corre-

sponding satellite measurements on all the available time-stamps. On the days

when MODIS AOT is available on the location of the corresponding ground-based

measurement, the value of the MODIS AOT around the coordinates of AERONET

location is averaged to find the corresponding MODIS AOT value for correlation.

Using this method, correlation analysis was carried out, the relevant discussion

and results follow next.
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Results and Discussion:

In this experiment, AOT from AERONET’s daily averaged cloud screened (level

1.5) data of two years (2017-2018) was used to validate the MODIS AOT data.

This data was downloaded using the AERONET Data Download Tool [38]. Since

AERONET doesn’t measure AOT in 550 nm wavelength band, it was required to

interpolate the value of AOT550nm from AOT500nm, which is provided in the data.

This was calculated using a relationship based on power rule which is as follows

[4]:

AOD550nm = AOD500nm

(550

500

)−α
,

where α represents the Angstrom Exponent at the wavelength of 440-870 nm

measured at the AERONET station. Figure 5-2 shows scatter plots between the

Aqua MODIS AOT and the AERONET AOT for the two years. N represents

the total number of match-ups that were found, R-square is the coefficient of

determination (R2) that describes how well a linear model fits this data. From the

figures, R2 for the year 2017 doesn’t suggest a very good fit as compared to the

one for 2018. The reason for this was not explored in this work. However, the plot

for year 2018 suggests reasonable positive correlation between the two quantities,

making the result of this analysis consistent with the previous studies.

5.3.2 Analysis II: Seasonal Variations in Aerosol Optical

Thickness

This is the second analysis that was done on the AOT data to understand how

the concentration of aerosols in a region varies with time. This analysis has been

often conducted in the previous studies, as described in the introductory chapter.

In this analysis, the average value of AOT was calculated for each day using

the available data points in the region of Lahore, RL. To find the average AOT
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Figure 5-2: Correlation between MODIS AOT and AERONET AOT.

value for each season - Winter, Pre-Monsoon, Monsoon and Post-Monsoon, AOT

values were further averaged according to the months that fall in each season. The

seasons were defined in terms of months as follows:

• Winter: December, January, February

• Pre-Monsoon: April, May, June

• Monsoon: July, August, September

• Post-Monsoon: October, November

Results and Discussion:

Figure 5-3 shows the variation of AOT values found for the two years, 2017 and

2018. Clearly, Monsoon season has the highest concentration of aerosols, followed

by the two seasons of Pre and Post Monsoon, with the lowest value observed

for Winter. The reason for the highest AOT value for the Monsoon season is

usually associated with the frequent dust storms that produce dust particles in

the atmosphere, increasing the concentration of dust PM in the air. This result

also happens to be in consistency with the previous studies.
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Figure 5-3: Seasonal variation in Aerosol Optical Thickness.

This concludes the discussion on the two analyses that were conducted on

AOT data of Aqua MODIS. The analyses discussed above suggest the validity of

MODIS AOT data, and the results, being consistent with the previous studies,

propose that MODIS AOT data can be used for the purpose of research. Using

MODIS data, the experiments involving statistical modeling of AOT over Lahore

will be described next.

5.4 Statistical Modeling of AOT

In this section, experimental details of learning a statistical model of AOT over

Lahore are presented. Recall that this was the proposed solution for dealing with

the problem of missing AOT data observed by MODIS. First off, all the theoret-

ical assumptions that were made on the data will be described followed by the

methodology of learning the statistical model based on those assumptions. These

assumptions, based on Gaussian Processes Regression framework (introduced in
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Chapter 3), will be used to formulate and carry out the learning of model. All the

results and findings related to the learned model will be presented. Since, using

the learned model, inference was also carried out for the coordinates where MODIS

AOT data was missing, the inference method along with its associated results will

be shown as well.

5.4.1 Model Assumptions

To determine the statistical relationship between the coordinates of Lahore and

AOT values for a given dataset Dd, it was assumed that AOT at each location

in the region of interest RL, follows a univariate Gaussian distribution. This, in

turn means that any multiple AOT points taken together will follow a multivariate

Gaussian distribution with a certain mean vector and a covariance matrix (kernel)

defined by the coordinates xi. Moreover, if it is assumed that the observations of

AOT from MODIS are noisy, i.e., each AOT value has an identical and independent

additive Gaussian noise term ε, then the model for observations in a certain Dd

becomes exactly the one that was defined in Equation (3.4). Formally, the model

for each AOT observation can be defined as follows:

yi = AOT (xi) + ε, (5.1)

with i = 1, 2, ..., N , with all of the N data points in AOT collectively forming a

GP based on the univariate Gaussian assumption. Hence, AOT and the additive

sensor noise of ε can be represented as:

AOT ∼ GP(0,K).

ε ∼ N (0, σ2
n).
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In the learning of statistical modeling of AOT, it is this kernel K along with

its hyperparameters (depending on the choice of kernel) and the sensor noise vari-

ance σ2
n, which are required to be found. Next section is devoted to describe the

methodology of learning these components that completely define the statistical

model of AOT.

5.4.2 Learning of Statistical Model:

As elaborated in the Section 3.2.2, learning a statistical model based on the Gaus-

sian Process (GP) assumption requires the maximization of the likelihood function,

or the log-likelihood function given by the following equation:

log p(y|x,θ) = −1

2
yT (K + σ2

nI)−1y − 1

2
log |(K + σ2

nI)| − N

2
log 2π. (5.2)

Similarly, for learning the statistical model of AOT, based on the GP assump-

tion and defined in Equation (5.1), the above equation has to be maximized with

respect to all parameters θ (consisting of the kernel parameters and sensor noise

variance). This log-likelihood maximization requires the available data points y,

which were made equal to all available AOT data points from Dd for each d sepa-

rately, where as N represents the total number of available data points in Dd. It

should be noted here that some days do not contain a lot of data points making

it difficult to learn a model from it and therefore, no model was learned for those

days. As for the kernel K, all possible kernels can be searched over to see which

one of those maximize the log-likelihood function the best. This method was car-

ried out in MATLAB with K’s as all the available built-in kernels in MATLAB.

As a result of this experiment, the ARD Exponential kernel turned out to be the

one that optimized the log-likelihood function for the highest number of days.

This experiment suggests that ARD Exponential kernel could potentially ex-
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plain the relationship between coordinates of Lahore and MODIS AOT. Backed

by this result, K in the log-likelihood function was fixed as ARD Exponential and

maximization was carried out again with respect to the parameters θ, for each

dataset Dd, giving d set of parameters: θd for each day. This experiment revealed

the most potential values of parameters that can completely characterize the ker-

nel ARD Exponential and variance of sensor noise, leading to the formulation of

statistical model for AOT.

ARD Exponential Kernel:

The statistical model of AOT found in this experiment heavily relies on the ARD

Exponential (ARDE) kernel that governs the relationship of one AOT value with

another in the region RL. ARD (Automatic Relevance Determination) Exponen-

tial kernel is a stationary kernel, a function of (x − x′) and thus, invariant to

translation in the input space [30]. Interestingly, it is closely related to the well-

known Squared Exponential (SE) kernel. To gain a better understanding of the

characteristics of the ARDE kernel, comparison of the definition of SE and ARDE

kernel can be made since the structure of SE kernel is easy to interpret. The SE

kernel is defined as:

k(x,x′) = σ2
f exp

(
− 1

2
(x− x′)TΣ−1(x− x′)

)
,

with Σ as the DxD covariance matrix and σ2
f is a scaling factor, present in every

kernel that determines the average distance of the function away from its mean

[39]. If Σ is made a diagonal matrix of the form diag(σ−21 σ−22 ..., σ−2D ), the SE kernel

becomes an ARDE kernel, defined as follows:

k(x,x′) = σ2
f exp

(
− 1

2

D∑
j=1

1

σ2
j

(xj − x′j)2
)
,
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In the context of statistical model of AOT, structure of ARDE kernel suggests

that the correlation between any two AOT points in data will depend on the

weighted Euclidean distance, weighted by the length scale parameters given by σ2
j ,

with j representing the dimension; as opposed to the more general Mahalanobis

distance in the SE kernel.

Based on the entire discussion above, it can be concluded that for the AOT

model in Equation (5.1), with K as the ARDE kernel, there will be a total of

four learned parameters: three hyperparameters of ARDE kernel i.e., two length

scales σ2
1 and σ2

2 corresponding to the latitude and longitude and a signal standard

deviation σ2
f , and one variance parameter σ2

n from the model equation. Recall that

the statistical model was fit for every day of the year, this will provide us with a

set of these four parameters (e.g. 365 values per each parameter for one year). The

variations seen in the values of these parameters for the year 2017 across days is

shown in the Figure 5-4. Moreover, the associated histograms for these time-series

are presented in Figure 5-5.

These plots suggest that the model is not a stationary model across time since

there is a reasonable amount of variation in the values. Similarly, parameters for

year 2018 were also found to be non-stationary with time. Interestingly, it was

observed that the lengthscale parameter was taking unreasonably larger values for

certain days. To learn more about what was causing this behavior, data belonging

to these days was explored further. As expected, this anomaly was found to

correspond to the days when small number of points were available (refer to Figure

5-6) or when data is very densely present at a particular location and missing on

all the other locations as shown in Figure 5-7. This kind of data is not suitable to

build a statistical model. Note that the figures illustrating the parameter values

were plotted after removing these outliers for the ease of data interpretation. One

possible solution to deal with this problem could be to employ a temporal model
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Figure 5-4: Time-series of parameter values (Year 2017).
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Figure 5-5: Histogram of parameter values (Year 2017).
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Figure 5-6: Scatter plot between lengthscale of longitude and number of available
AOT points.

that can use data from the previous and the next day to interpolate these missing

points. However, in this work, spatial model is proposed only and thus, this is one

limitation of the proposed model. Next section addresses about the evaluation of

this learned model.

Evaluation of the Learned Statistical Model:

To evaluate how well the learned model represents MODIS AOT data, 10-folds

cross-validation technique was used. This method splits the data into 10 folds,

considering the 9 of those parts as the training data and the last one as the test

data. This division is done 10 times, each time, generating the parts using random

data points. Each time, an ARDE kenrel-based GP model was fit on the 9 folds of

training data and the AOT values were predicted for the points in the tenth fold.
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Figure 5-7: An instance of data corresponding to large value of lengthscale param-
eters.

Since the true AOT values form the data is already known, error can be computed

by comparing the difference between the actual and predicted AOT value. An

averaged error corresponding to all the 10 divisions of data can be computed as

well which is termed as the cross validation or CV error.

Using 10-folds cross validation for the model of each day, CV error based on

two error metrics was computed which reflected the fitness of the learned model

for the data. The two metrics that were used in this work are Mean Squared Error

(MSE) and normalized MSE (nMSE). However, the second metric, nMSE, is a

better metric since it determines the error by incorporating the energy of actual

values of AOT as a normalization factor. The definition of the two evaluation

metrics follow next.

• Mean Squared Error:
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MSE =
1

N

N∑
i=1

(yi − ŷi)2.

• Normalized Mean Squared Error:

nMSE =

∑N
i=1(yi − ŷi)2∑N

i=1(yi)
2

,

where ŷi represents the predicted AOT value corresponding to the ith test

data point and yi is the actual AOT value of the ith test data point.

The cross-validation MSE and nMSE for the learned model was determined

using the above methodology. The CV errors were further averaged over the four

seasons to interpret the error values easily.
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Figure 5-8: Seasonal averaged 10-folds cross validation errors for the year 2017.
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Seasonal Average MSE (2018)
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Figure 5-9: Seasonal averaged 10-folds cross validation errors for the year 2018.

Figures 5-8 and 5-9 illustrate these errors on bar plots for each season. These

further averaged to yearly CV nMSE becomes 0.0093 and 0.0106 for 2017 and

2018 respectively. It can be easily observed that the error values are reasonably

good. Particularly the values of nMSE strongly suggest that the learned statistical

model is a potential model for AOT for the region RL, representing Lahore. As

mentioned earlier, a utility of this model is that one can infer about value of AOT

anywhere in the region RL i.e. prediction of the missing values can be done. The

next section represents the method to carry out inference using this model along

with some relevant results.

5.4.3 Inference: Predicting the Missing Values with the

Learned Statistical Model

Based on the model assumption of AOT, it is not hard to realize that the problem

of predicting the missing values in MODIS AOT data can be solved using the

Equation (3.6). The formulation of equations for inference of AOT will take the
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following form:

[
y(x1) y(x2) ... y(xN) AOT (x∗1) AOT (x∗2) ... AOT (x∗M)

]T
∼ N (0,K),

(5.3)

where

[K] =

 K + σ2
nI K∗

KT
∗ K∗∗

 .
And thus, the conditional posterior distribution for making the predictions is

given as:

AOT (x∗1), ..., AOT (x∗M)|y(x1), ..., y(xN),x1, ...,xN,x
∗
1, ...,x

∗
M ∼ N (µc,Kc),

(5.4)

where

µc = KT
∗ (K + σ2

nI)−1y.

Kc = K∗∗ −KT
∗ (K + σ2

nI)−1K∗.

Here each ith missing AOT data point for the coordinates x∗i takes the form of a

Gaussian distribution, with the predicted value given by the ith element of µc and

the uncertainty in prediction given by the ith diagonal entry of Kc, as elaborated

in the Section 3.2.2. Moreover, inference based on the Equation (5.4) was made

using the exact method, as opposed to approximation methods which are used if

the number of data points in a dataset are very large. [40].

Note that in the above formulation, K is nothing but the ARDE kernel with

the learned parameters and σ2
n is the learned variance of the additive sensor noise,

shown in Figure 5-4. One value out of the time-series will be chosen depending

on the day for which the missing value is being predicted. An important point

to note here is that inference can only be made for the data points that belong
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Figure 5-10: Missing AOT values in D19, year 2017.

to some Dd with reasonable number of points available to be used as the training

data, because models were learned only for those days.

In Figure 5-10, AOT data for the year 2017 and D19 is shown. The figure

clearly shows that there is a significant number of missing points in this data.

Figure 5-11 shows the result of using the above method of inference to predict the

AOT values for the same day. How reliable are these predictions? Figure 5-12

answers this question as it depicts the normalized uncertainties associated with

each predicted AOT value for the same day. Higher the uncertainty, less reliable

the prediction.
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Figure 5-11: Predicting missing AOT values using the learned statistical model
for D19, year 2017.
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in D19, year 2017.

In summary, it can be concluded that the problem of missing values in the
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MODIS AOT data can be potentially solved using the proposed statistical model

based on Gaussian Process.

5.5 Characterization of Aerosol Hot-spots

In this section, experiments related to the second research direction involving

characterization of Lahore’s aerosol hot-spots will be discussed. As described in the

earlier chapters, the first step in achieving this objective is to identify the locations

of aerosol hot-spots and then to quantify each of the hot-spots’ aerosol content to

obtain the complete characterization of the of the whole region. Localization, based

on the Glowworm Swarm Optimization (GSO) algorithm introduced in Chapter

4, will be discussed first followed by the quantification methods.

This experiment was performed using the same dataset of MODIS AOT de-

noted by Dd for the years 2017 and 2018 belonging to the region RL of Lahore and

its outskirts. Identification of hot-spot locations based on GSO will be presented

next.

5.5.1 Localization of Aerosol Hot-spots

For the purpose of identifying the locations in and around Lahore that persistently

show high values of AOT over time, principles governing GSO algorithm were used.

Recall that GSO algorithm is useful in finding the local maxima of a multi-modal

function. MODIS AOT data for each day also possesses some local maxima i.e.

regions with high AOT values, which are required to be found. These local maxima

were found for each day separately and their locations were overlaid on one plot

to identify the potential locations in Lahore with high aerosol concentration.

Based on the working principles developed in Section 4.2.2, the algorithm that

was used for carrying out localization of aerosol hot-spots is as follows:
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1: Initialization

Each AOT data point from a day’s dataset Dd, was considered a glowworm and

a default Luciferin-level l0 was assigned to each of the point. Recall that in the

GSO algorithm, glowworms interact with each other and the environment, ending

up converging to the local maxima giving the solution of the problem. Indeed, for

the AOT data, it will be the AOT points that will move and converge to the local

maxima i.e. the aerosol hot-spot locations of each day. The parameters of the

algorithm were initialized with the recommended values given in the Table 4.2.2,

with only ρ and l0 taking different values as suggested in [27]. Initialized values of

parameters are tabulated below.

ρ γ β nt s l0

0.2 0.6 0.08 5 0.03 2

The next three steps of the algorithm were repeated for 200 iterations, which

were enough to ensure that the glowworms converged to the local maxima in Dd.

Moreover, value of rs was chosen to be equal to 0.2 based on multiple experimental

trials.

2: Iterative Steps of Algorithm

As described earlier in Chapter 4, Luciferin-level of each glowworm represents the

closeness of that glowworm to a local maxima. Since the objective function is

the two-dimensional MODIS AOT data for a day, the glowworms at the coordi-

nates with high AOT value will get a higher Luciferin-level based on the following

principle:

li(t+ 1) = (1− ρ)li(t) + γyi(t+ 1), (5.5)
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where yi is the ith AOT value of from the Dd, replacing the objective function in

Equation (4.1). t is the iteration number. Next, the algorithm will follow the steps

outlined in the Section 4.2.2. Essentially, the movement of AOT points towards the

local solution will be governed by the Equations (4.2) and (4.3) with xi(t) ∈ R2,

representing the coordinates of ith AOT data point at iteration t. Before acquiring

a new luciferin value, neighborhood range will be updated based on Equation (4.4).

When the above algorithm is completed, AOT data points that were spread

across the whole region RL form a few clusters. The centroid of these clusters

happen to be the local maxima of the AOT data. Therefore, the local maxima or

the locations of the aerosol hot-spots were found by calculating the coordinates

of these cluster centroids. When this method of localization was repeated for all

days of the two years separately and the coordinates of the identified locations

were overlaid, several aerosol hot-spots were discovered around Lahore. Based on

the information from geographical map of RL, shown in the Figure 5-1, these hot-

spots were mapped to geographical locations manually. The hot-spots found using

GSO algorithm along with the mapping (in different colors) are shown in Figure

5-13 and 5-14 for the two years. Note that the points in black were not mapped

to any aerosol hot-spot.

The regions that fall within the 11 labeled hot-spots shown in the figures are

listed below:

1. Fields and industries near Manga Mandi

2. Sundar Industrial Estate and Raiwind

3. Industrial Area near Valencia and Bahria Town

4. Industries near Mandi Faizabad and Mirzapur

5. Shekhupura-Sharaqpur Road

6. Industrial area of Lahore-Sheikhupura Road

7. Kala Shah Kaaku
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Figure 5-13: Aerosol hot-spot locations found using GSO algorithm on MODIS
AOT data for year 2017.

8. Field area

9. Industrial area near Attu Asal and Mustafabad and surrounding field area

10. Lahore-Jaranwala Road (Burj Attari to Sharaqpur)

11. Field area

5.5.2 Quantification of Aerosol in Hot-spots

After having found the locations of the hot-spots, quantification of aerosol concen-

tration within these hot-spots was also carried out based on AOT data. For the

purpose of this quantification, an average value of AOT was found in the vicin-

ity of each local maxima found. This vicinity was characterized by a radius 0.05

around each AOT point. These values are shown in Figure 5-15 and 5-16. This

quantification revealed interesting results that led to a comparison of air pollu-
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Figure 5-14: Aerosol Hot-spot locations found using GSO algorithm on MODIS
AOT data for year 2018.

tion contribution made by each of these hot-spot locations. These give a fair idea

about the concentration of aerosols at the local maxima that were found using

GSO algorithm. To further get an estimate of aerosol content of the identified

hot-spots that is easier to interpret, each of these values taken up by the points

shown in the Figure 5-15 and 5-16 were averaged for each hot-spot. This led to

the quantification of aerosol content of each hot-spot, the result of which is shown

in Figure 5-17.

From this quantization, conclusions can be drawn about the severity of air

pollution within each hot-spot. Moreover, temporal trend of aerosol concentration

associated with each hot-spot can be inferred by comparing the values for the two

years. For example, the aerosol concentration of hot-spot 4, the region around

Mandi Faizabad and Mirzapur has a significant amount of increase in the value

with time. This could reflect a new pollution source that was not present in the
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Figure 5-15: Quantification of average AOT in the vicinity of each local maxima
for year 2017.

year 2017 in that region.

Discussion:

The above characterization has revealed the regions around Lahore that could

be potential air pollution sources along with an estimate of each region’s aerosol

content. However, due to the unavailability of the ground-based sensors on these

locations, it is hard to draw conclusions about the accuracy of the quantification

method. The localization method seem to have worked reasonably well since the

local maxima tend to map to the regions that could be potential pollution sources

(e.g. industrial areas). For the purpose of evaluation of the quantification analysis,

it is proposed that the relevant organizations deploy air quality sensors in these

locations. Measurements from these ground-based sensors can be correlated with

the estimated values to evaluate the performance of the proposed method. This will
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Figure 5-16: Quantification of average AOT in the vicinity of each local maxima
for year 2018.

be an important step in developing a more sophisticated aerosol characterization

method which is the foremost analysis to be carried out before beginning with the

efforts to control the air pollution crisis.
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Figure 5-17: Quantification of average AOT of each hot-spot.
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Chapter 6

Conclusions and Future Work

In conclusion, there were two main objectives of this work i.e., learning of a spatial

statistical model for Aerosol Optical Thickness (AOT) and characterization of

aerosol concentration, both for the region of Lahore and its outskirts which was

carried out using satellite data of Aqua MODIS AOT 3 km data product for

the years 2017-2018. To ensure the validity of MODIS data for the purpose of

conducting research, positive correlation was established between MODIS AOT

and ground-based AERONET AOT data.

To achieve the first objective which resolves the problem of spatial coverage

holes in MODIS AOT data, a spatial statistical model based on Gaussian Processes

(GP) with an ARD Exponential kernel was proposed for each day, which when

validated, showed a promising cross-validation error based on normalized MSE

of 0.0093 and 0.0106 for 2017 and 2018 respectively. An attractive feature of

this model is that it can predict the AOT values at any location with a certain

confidence level. One limitation of this part is that one cannot find a statistical

model for the days when very few data points are available. Sparsity of the data

points can lead to unreasonably high values of kernel hyperparameters. As a future

direction, it is proposed that a spatio-temporal statistical model should be worked
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out that could potentially mitigate the limitations of the current solution. This in

addition to spatial, will incorporate temporal information present in the data as

well.

Aerosol hot-spot characterization for Lahore, the second objective of this work,

was achieved using Glowworm Swarm Optimization (GSO) algorithm, which is a

meta-heuristic algorithm to locate local maxima in a multi-modal function. Ap-

plication of GSO revealed several aerosol hot-spots in the region of study. Most

of these hot-spots turned out to be consisting of industrial areas around Lahore,

e.g. Sundar Industrial Estate and Lahore-Sheikhupura Road belonged to two of

the identified hot-spots (both of which have a good number of industries). For

further characterization, aerosol content in each of the identified hot-spot was es-

timated using a quantification metric based on a radial distance from each local

maxima’s center. This analysis led to a comparison of aerosol content of the hot-

spots. However, it was not feasible to draw conclusions about evaluation of the

proposed quantification method due to the unavailability of ground-based sensors

on the hot-spot locations, using which, one can conduct correlation analysis and

gauge the performance of the proposed method. Hence, it is proposed to the rel-

evant organizations to deploy air quality sensors in these locations so the aerosol

characterization method can be improved to be made more sophisticated. This

could be a potential future research direction for this part of the thesis that can

provide an extremely useful analysis for air quality management in the region of

study.
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