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Abstract

The main focus of this thesis is using the existing spherical signal processing tech-

niques to sample and reconstruct data under different application driven scenarios.

Spin-s functions are used in cosmology and an optimal sampling scheme to sample

and reconstruct data using spin-s functions on the sphere is studied. Moreover,

the problem of reconstruction in an environment where the samples on the sphere

are inaccessible or not defined on a grid is also addressed. Lastly, the significance

of spatial filtering is discussed in the field of acoustics where an anti-aliasing filter

is designed to mitigate the effect of spatial aliasing in microphone arrays.

A sampling scheme is proposed for the representation of spin-s band-limited

functions on the sphere, which requires optimal number of samples equal to the

number of degrees of freedom. In comparison to the existing sampling designs,

which require ∼2L2 samples for the representation of spin-s functions band-limited

at L, the proposed scheme requires L2 − s2 samples for the accurate computation

of the spin-s spherical harmonic transform (s-SHT). A method is developed to

compute the s-SHT and samples are taken such that matrices involved in the

computation of s-SHT are well conditioned. In order to improve the accuracy

further, a multi-pass s-SHT method is also proposed. Geometrical properties like

sampling efficiency, minimum geodesic distance, mesh norm and mesh ratio give us

an insight of the nature of distribution of the points on the sphere. A comparative

analysis with the existing schemes show that the proposed sampling design exhibits

superior geometrical properties.

Algorithms for signal reconstruction on the sphere are developed and analysed

for two different scenarios: i) when the measurements are not taken over a pre-

defined grid and ii) when the estimation is done from incomplete measurements.

For the first one, generalized iterative residual fitting (IRF) for the computation

of the spherical harmonic transform (SHT) of band-limited signals on the sphere

is presented. The proposed method is based on the partitioning of the subspace of

vii
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band-limited signals into orthogonal subspaces. There exist sampling schemes on

the sphere which support accurate computation of SHT. The proposed IRF method

enables accurate computation of SHTs of signals with randomly distributed suffi-

cient number of samples. In order to improve the accuracy of the computation of the

SHT, multi-pass IRF is proposed which adds multiple iterative passes to the IRF.

An iterative algorithm for the extrapolation of band-limited signals from incom-

plete measurements on the sphere is proposed. The proposed algorithm improves

the accuracy of the extrapolation of band-limited signals by using the information

contained in the out-of-band harmonic coefficients of the signal to update the ex-

trapolated signal at each iteration. The proposed algorithm does not only exploit

the band-limited property of the signal at each iteration but also uses the harmonic

coefficients outside the harmonic domain to improve the accuracy of signal extrap-

olation. To demonstrate the improvement in the accuracy, numerical experiments

are conducted and a comparison is done with the results of the existing iterative

conjugate gradient method.

The signal processing technique of spatial filtering is exploited in order to design

an anti-aliasing filter for the applications in acoustics. In acoustics, the performance

of spherical microphone arrays is typically limited by spatial aliasing which intro-

duces side-lobes in the array beam pattern. In order to reduce the aliasing error,

a spatially constrained anti-aliasing filter is proposed which approximates an ideal

anti-aliasing filter used in literature as a weighted sum of concentrated eigenfunc-

tions obtained by solving the Slepian concentration problem on the sphere. Three

performance parameters namely white noise gain (WNG), directivity index (DI)

and processing loss are employed to compare the performance of proposed filter

with the ideal filter. A parameter-constrained filter design is also proposed by

maximizing WNG subject to constraints on the DI and processing loss of the pro-

posed filter.
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FFT Fast Fourier Transform
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Notations

x scalar variable

x vector variable

x̂ unit vector

X matrix variable

Xx,y element in row x and column y of X

X operator

〈f, g〉 inner product of two variables f and g

‖(·)‖ L2 norm

|(·)| absolute value of parameter (·)
(·) conjugate operation

(·)′ transpose operation on vector

(·)H Hermitian (conjugate transpose) operation of a matrix

b(·)c integer floor function

d (·) e integer ceiling function

δp,q Kronecker delta

δ(·) Dirac delta

tr(·) trace of a matrix
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Chapter 1

Introduction

1.1 Motivation and Background

Signals are defined on the sphere in a variety of fields including medical imag-

ing [1–3], geodesy and planetary studies [4–7], computer graphics and computer vi-

sion [8–11], acoustics [12], electromagnetic inverse problems [13], study and analysis

of cosmic microwave background (CMB) in cosmology [14–21], astrophysics [22], 3D

beamforming [23] and wireless channel modeling in communication systems [24,25]

to name a few. The main focus of this thesis is to develop such signal processing

techniques that allow efficient measurements and accurate reconstruction of the sig-

nals on the sphere in an application-driven environment. Spherical harmonic (SH)

functions [26] are a natural choice of basis functions for representing the signal on

the sphere in all these applications.

Signal processing techniques have been explored and thoroughly investigated

for single and multidimensional signals in the Euclidean domain, where the signals

are assumed to be defined on the real line. For the processing of signals on the

sphere, the mapping of data on the sphere to a two dimensional plane and apply-

ing signal processing methods developed in Euclidean domain is discouraged as the

procedure produces large errors [27]. However, the signal processing techniques

developed in the Euclidean domain can be extended and reformulated in order to

design suitable techniques in the spherical domain [4, 18, 19, 28–50]. These include

filtering [32, 37, 42], spectrum estimation [5, 27] and feature extraction [6, 31], con-

volution [40,51,52], Slepian concentration problem [53–56] on the sphere [5,34,57],

finite-impulse-response (FIR) filtering [33], to name a few. Signals on sphere are

1



2 Introduction

defined in both the spatial (spherical) and spectral (spherical harmonic) domains.

The transformation between the two domains is enabled by spherical harmonic

transform (SHT) [13,26,51,58,59] which is the analog of Fourier transform.

For harmonic analysis and signal representation (reconstruction), the ability to

accurately compute the SHT of a signal from its samples taken over the sphere is of

great importance. SHT must be computed numerically as in practice, only a finite

number of samples of a signal in spatial domain are available. In the literature, over

a number of decades, a number of sampling schemes on the sphere have been devised

that permit accurate computation of SHT of a band-limited signal [51,59,60,60–71].

It is desirable to design such sampling schemes that should require the minimum

possible number of samples for the accurate and efficient computation of SHT of

a band-limited signal on sphere. Such a minimum number is referred as spatial

dimensionality or optimal dimensionality—the numbers of degrees of freedom in

harmonic space.

For the computation of the SHT, sampling theorems have been constructed [51,

59,62,68] using pre-defined sampling grids on the sphere, which lead to theoretically

exact computation of the SHT. If the samples are taken arbitrary on the sphere,

other numerical approaches can be deployed, such as approximate quadrature [61,

69]), least squares [66,67] or spherical designs [72,73], which nevertheless often lead

to sufficiently accurate transform computations. Driscoll and Healy [51] developed

a sampling theorem on the sphere which exploits an equiangular sampling grid to

allow exact computation of signals band-limited to L on the sphere. The spatial

dimensionality is ∼ 4L2 as the sampling scheme requires 2L iso-latitude rings of

points, where the number of points in each ring, along longitude, are equal to

2L − 1. The well-known Gauss-Legendre (GL) quadrature on the sphere [74, 75]

allows exact computation of SHT from ∼ 2L2 samples on the sphere, as the roots of

Legendre polynomials of order L determine the non-uniformly spaced L iso-latitude

rings. The number of points in each ring remain 2L − 1. The sampling theorem

proposed by McEwen and Wiaux [59] requires 3(L− 1) fewer samples than the GL

approach and achieves spatial dimensionality ∼ 2L2. Recently a sampling scheme

that attains optimal dimensionality∼ L2 while allowing accurate computation of

the SHT has been developed [63] and allows accurate computation for SHT even

for very large values of band-limits.

For equiangular sampling schemes, least squares approaches have also been de-
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veloped for the computation of SHT [66,67] and achieve good accuracy by exploiting

2L2 samples on the sphere. However, least square methods are increasingly complex

and the accuracy and stability of the least squares approach cannot be guaranteed

for higher band-limits. Spherical designs [76], which require computation of inte-

grals over the sphere using quadrature based on uniform weighting [72,73], compute

the SHT of a band-limited signal using 4L2 samples. Spherical designs with 4L2

samples have been constructed successfully for band-limit up to only L = 100 [76].

Spherical designs using 2L2 samples may be used [60], although this is not proven.

The choice of the sampling scheme also depends on the geometrical properties

such as sampling efficiency, minimum geodesic distance, mesh norm and mesh ra-

tio, which give an insight of the nature of distribution of points on the sphere.

These geometrical properties also enable us to analyse uniform distribution, dense

sampling, regularity and flexibility in the samples placement for a given set of

sampling points. The geometrical properties of different sampling schemes on the

sphere have been analysed [60, 64] and bounds have been derived on geometrical

properties [77–79].

Slepian eigenfunctions on the sphere [34, 57] provide an alternative basis for

the reconstruction of signals on the sphere when the samples are taken over a

specific region of the sphere. Slepian functions, which are obtained by the solution

of the Slepian spatial-spectral concentration problem on the sphere, beside being

orthogonal, are also optimally concentrated within the region on the sphere where

they are defined [34,57] and hence, have been used for localized spatial and spectral

analysis [80, 81], and signal estimation from incomplete measurements [27, 82, 83].

Slepian eigenfunctions find applications in geophysics [81, 84, 85], cosmology and

planetary studies [86–88], optics [82] and computer graphics [89], to name a few.

In practice, there are applications in geophysics and acoustics where the mea-

surements cannot be taken over the whole sphere. For example, in acoustics, head

related transfer function (HRTF) measurements are not reliable in the South polar

cap region due to reflections from the ground. Another example is the problem of

polar gap in geophysics where the inclination of satellite orbit makes the satellite

measurements on poles unreliable. To address the issue of unreliable and inac-

cessible samples on the sphere in these applications, many algorithms have been

proposed for extrapolation of band-limited signals on the sphere [46,90–93].

In acoustics, specially in array signal processing, array performance is limited
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by spatial aliasing [94] as side lobes are generated in the array beam pattern. In

literature, there exists certain sampling schemes that provide aliasing free sampling

for band-limited array measurements [95], however, acoustics sound fields such as

measurements of sound pressure produced by plane waves are not band-limited on

the sphere, giving rise to spatial aliasing at higher frequencies in practice. Anti-

aliasing filters are deployed to improve the performance of the microphone arrays

in [95].

This thesis is predominantly focussed on the extension of existing spherical

signal processing techniques in order to achieve accurate reconstruction of the sig-

nals on the sphere. In particular, we extend the optimal dimensionality sampling

scheme [63] and propose a sampling scheme that requires the optimal number of

samples for the representation of spin-s functions on the sphere (described in the

next section). In addition, we analyze the iterative residual fitting (IRF) algorithm

which is a well known reconstruction method when the data is not present on a

pre-defined grid on the sphere. We also propose a new iterative extrapolation al-

gorithm when the samples are not accessible on the sphere. We use the Slepian

eigenfunctions to design a spatially constrained anti-aliasing filter in order to mit-

igate the effects of spatial aliasing in acoustics. In the remainder of this chapter,

we first review the previous work on development of signal processing techniques

for sampling and reconstructing signals on the sphere. Then we discuss the re-

search problems considered in this thesis and finally we provide the summary of

our contributions and an outline of this thesis.

1.1.1 Sampling of Spin-s Functions on the Sphere

Spin functions (generally referred to as spin-s functions) naturally arise in many

applications including cosmology [96], astrophysics [97], fluid dynamics [98], global

circulation modeling and models of stress propagation of Earth [99], to name a

few. In particular, they play a pivotal role in the statistical studies of signals

on the celestial sphere, such as cosmic microwave background (CMB) polarization

and gravitational lensing [59, 62, 70]. In these applications, harmonic analysis is

enabled through the spin-s spherical harmonic transform (s-SHT). Consequently,

the ability to compute s-SHT of signal is of significant importance. It is desirable to

design such sampling schemes that should require the minimum possible number of

samples (spatial dimensionality) for the accurate and efficient computation of the
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s-SHT of the signal and have superior geometrical properties [26,51,59,63,100–105].

For accurate computation of s-SHT of a band-limited spin-s function with band-

limit L and spin s, the spatial dimensionality, is (L2−s2) — the number of degrees

of freedom in harmonic space.

Discroll and Healy presented a sampling theorem on the sphere for an equian-

gular sampling grid of spatial dimensionality (asymptotically) ∼4L2 for the exact

reconstruction of band-limited scalar (s = 0) functions on the sphere [51]. For

the same equiangular sampling grid, algorithms for the computation of s-SHT and

signal reconstruction of band-limited spin-s functions on the sphere S2 were de-

veloped in [101]. A stable, fast and exact algorithm for equiangular sampling of

spatial dimensionality ∼4L2 for the evaluation of s-SHT of band-limited spin-s

functions with spin (s = ±2) has also been proposed in [70]. These algorithms

although enabling stable computation of s-SHT, have large pre-computation and

storage requirements. In order to reduce the pre-computation requirements, by

exploiting the relationship between the Wigner d-functions [26, 58] and the spin-

s spherical harmonics, an accurate and exact algorithm to compute s-SHT using

∼4L2 samples is proposed in [62]. To reduce the number of samples, [100] devel-

oped a sampling theorem requiring ∼2L2 samples for the (theoretically) exact and

stable computation of s-SHT. The well-known Gauss-Legendre quadrature on the

sphere [75] also supports exact computation of s-SHT using ∼2L2 samples on the

sphere. Recently, a library (Libsharp) [103,104] has been developed for the compu-

tation of s-SHT, where they reduce the number of samples of the Gauss-Legendre

grid by approximately 30% by applying so-called polar optimization to reduce the

number of samples around poles. To the best of our knowledge, none of the existing

sampling schemes requires fewer than ∼2L2 samples for the accurate computation

of s-SHT, well in excess of the optimal spatial dimensionality (L2 − s2).

1.1.2 Algorithms for Reconstruction of Band-limited Func-

tions on the Sphere

Sampling schemes have been devised in the literature for the accurate and effi-

cient computation of SHTs. However, the samples may not be available, in prac-

tice (e.g., [3,67]), over the grid defined by these sampling schemes. To support the

computation of SHTs in applications where samples or data-sets are not available

on pre-defined grid, least squares fitting (LSF) methods have been investigated
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for efficient computation of the SHTs [66–68, 106–109]. LSF methods formulate a

large linear system of basis functions and then attempt to solve it efficiently. How-

ever, due to memory overflow, it is not suitable for systems with large band-limits,

L > 1024 [110–112]. To solve this problem, an iterative residual fitting (IRF)

method has been proposed in [110] as an extension of LSF and incorporates a di-

vide and conquer technique for the computation of SHTs. The basic idea of IRF is

to divide the subspace spanned by all spherical harmonics into smaller partitions

and then perform least squares on each partition iteratively. Although IRF is fast,

it creates a less accurate reconstruction [110] as the size of the harmonic basis in-

creases for large band-limits. To improve the reconstruction accuracy, a multi-pass

IRF approach is used which includes multiple passes for fitting. This is same as

IRF but it involves multiple IRF operations rather than one. A variant of this

scheme is presented in [110], where reconstruction for 3D surfaces is carried out by

taking large number of samples.

There are also certain applications in geophysics and acoustics where the mea-

surements cannot be taken over the whole sphere. For example, in acoustics, head

related transfer function (HRTF) measurements are not reliable in the South polar

cap region due to reflections from the ground. Another example is the problem of

polar gap in geophysics where the inclination of satellite orbit makes the satellite

measurements on poles unreliable. To address the issue of unreliable and inaccessi-

ble samples on the sphere in these applications, the problem of signal extrapolation

on the sphere has been studied in literature and algorithms have been proposed

for extrapolation of band-limited signals on the sphere [46, 90–93]. An analog of

Papoulis algorithm [113] for continuous signals on the sphere exploiting the band-

limiting characteristics of the signal is proposed in [90] and its integral equation

formulation is developed in [91]. For discrete signals on the sphere, an iterative

algorithm is presented in [92], which converges to minimum norm least-squares

solution. Conjugate gradient extrapolation algorithm on the sphere has been pre-

sented in [46], which in comparison to the previously proposed algorithms, enables

more accurate and fast extrapolation. Finally, [114] uses the Slepian functions [34]

to develop an iterative algorithm for the extrapolation of band-limited signal on

the sphere in the presence of noise.
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1.1.3 Spatial Filtering on the Sphere

In acoustics, spherical microphone arrays have been used for sound field analy-

sis [115], sound field recordings [116], [117] and beamforming [118], [119]. In array

processing, the spherical harmonics transform (SHT) [26] is used to examine the

array performance [119]. At high frequencies, however, the array performance is

limited by spatial aliasing [94] as side lobes are generated in the array beam pat-

tern. In literature, there exists certain sampling schemes that provide aliasing

free sampling for band-limited array measurements [95], however, acoustics sound

fields such as measurements of sound pressure produced by plane waves are not

band-limited on the sphere, giving rise to spatial aliasing at higher frequencies in

practice. In [94], a theoretical analysis of the spherical microphone reveals spatial

aliasing as the significant factor impacting the performance of the antenna array.

Several approaches to handle the spatial aliasing such as spatial anti-aliasing fil-

ters, using sensors with high directivity and reduction of spatial resolution at higher

frequencies are presented in [120].

Anti-aliasing filters are deployed to reduce the energy content of the input

signal at high frequencies and hence, improve the performance of the microphone

arrays [95]. Anti-aliasing filtering takes place before sampling which is similar to the

conventional time domain sampling. If the sound pressure is scanned using a single

microphone array [121], [122] and the configuration of microphone is controlled in

a way that before sampling, sound pressure can be spatially integrated, then such

spatial filtering can be used for anti-aliasing [95]. In order to implement spatial

integration, if a pressure sensor is used which covers a broad area and scans position

on the same sphere, then the process of spatial filtering is equivalent to spherical

correlation [71]. In order to reduce the errors introduced by spatial aliasing in

spherical microphone arrays, the concept of spatial filtering is exploited in order to

design anti-aliasing filters, where spatial truncation is applied by first designing an

ideal filter and then applying window functions on this ideal filter in order to get

spatially constrained anti-aliasing filters.

1.2 Overview and Contribution of Thesis

The main focus of this thesis is using the existing spherical signal processing tech-

niques to sample and reconstruct data using spin-s functions on the sphere which
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are predominantly used in cosmology. Moreover, the problem of reconstruction in

an environment where the samples on the sphere are inaccessible or not defined on

a grid is also addressed. Lastly, the significance of spatial filtering is discussed in

the field of acoustics where an anti-aliasing filter is designed to mitigate the effect

of spatial aliasing in microphone arrays.

1.2.1 Questions to be Answered

Following the literature review presented in Section 1.1, we pose the following ques-

tions that are answered in this thesis:

Q1. For band-limited spin-s functions, can we design a sampling scheme on the

sphere with the optimal spatial dimensionality of L2 − s2?

Q2. Does the proposed scheme for band-limited spin-s functions enable an accurate

computation of spin-s spherical harmonic transform?

Q3. Does the proposed scheme for band-limited spin-s functions exhibit superior

geometric properties (such as mesh norm and mesh ratio) to existing schemes?

Q4. For the case where data is not present on a pre-defined grid, can we improve

the error convergence rate using Iterative Residual Fitting (IRF)?

Q5. Can we develop an efficient extrapolation algorithm for reconstruction of band-

limited signals in presence of incomplete measurements on sphere?

Q6. How can we use Slepian eigenfunction as window in order to design a spatially

constrained anti-aliasing filter?

Q7. Can we improve the performance of a spatially constrained anti-aliasing filter

so that it shows traits closer to that of the spatially unconstrained ideal filter

in literature?

1.2.2 Thesis Contributions and Organization

Fig. 1.1 depicts the flowchart of the thesis. The mathematical background is

presented in Chapter 2. The thesis develops sampling schemes for measuring signals

on the sphere and subsequently reconstructing the signals by expansion in the

spherical harmonic basis. The first original contribution in this thesis (Chapter 3)
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presents an optimal dimensionality sampling scheme on the sphere for sampling and

reconstruction of the band-limited spin-s functions on the sphere. The geometrical

properties of different sampling schemes are analysed and comparison is made with

the proposed optimal dimensionality sampling scheme. In Chapter 4, we address

the problem of reconstruction of signals on the sphere first in the absence of samples

defined on a pre-defined grid and then in the presence of incomplete measurements.

In Chapter 5, we design a spatially constrained anti-alaising filter using Slepian

eigenfunctions on the sphere and apply it to mitigate the effect of spatial aliasing in

the applications in acoustics. Finally, the conclusions and future research directions

arising from the work presented in the contribution chapters (Chapters 3-5) are

presented in Chapter 6. A more detailed summary of the contributions in each

chapter is as follows:

Chapter 3 - Optimal Dimensionality Sampling Scheme for Spin-s

functions on Sphere and Analysis of Geometrical Properties In Chap-

ter 3, we propose a sampling scheme with optimal number of samples equal to

the number of degrees of freedom of the function in harmonic space for the repre-

sentation of spin-s band-limited functions on the sphere. Following the discussion

in Section 1.1.1, we note that the existing sampling schemes on the sphere do not

meet all the practical and signal processing requirements.

To summarize, our main contributions in this work are:

1. In comparison to the existing sampling designs, which require ∼2L2 samples

for the representation of spin-s functions band-limited at L, the proposed

scheme requires L2 − s2 samples for the accurate computation of the spin-s

spherical harmonic transform (s-SHT).

2. For the proposed sampling scheme, we also develop a method to compute the

s-SHT. We place the samples in our design scheme such that the matrices

involved in the computation of s-SHT are well-conditioned.

3. We also present a multi-pass s-SHT to improve the accuracy of the transform.

4. We also show that the proposed sampling design exhibits superior geomet-

rical properties compared to existing equiangular and Gauss-Legendre sam-

pling schemes, and enables accurate computation of the s-SHT corroborated

through numerical experiments.
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The results in Chapter 3 have been presented in the following publications which

are listed again for ease of reference:

J1. U. Elahi, Z. Khalid, R. A. Kennedy, and J, D, McEwen “An Optimal-Dimensionality

Sampling for Spin-s Functions on the Sphere,” IEEE Signal Process. Lett.,

vol. 25, no. 10, pp. 1470-1474, OCT. 2018.

C1. U. Elahi, Z. Khalid, and R. A. Kennedy, “Comparative Analysis of Geometri-

cal Properties of Sampling Schemes on the Sphere,” in Proc. Int. Conf. Signal

Processing and Communication Systems ICSPCS’2016, Gold Coast, Australia,

pp. 1-7, Dec. 2016.

Chapter 4 - Signal Reconstruction on the Sphere

In Chapter 4, we pose two problems regarding reconstruction of the signals on

the sphere. In the first part of Chapter 4, we reconstruct the signals on sphere

in the absence of a pre-defined grid. We have presented the generalized itera-

tive residual fitting (IRF) method for the computation of the spherical harmonic

transform (SHT) of band-limited signals on the sphere. Proposed IRF is based

on partitioning the subspaces of band-limited signals into orthogonal spaces. In

the second part of Chapter 4, we reconstruct the signal from incomplete samples

and propose an iterative extrapolation algorithm. The main contributions of this

chapter are:

1. In order to improve the accuracy of the transform, we present a multi-pass

IRF scheme and analyse it for different sampling schemes and for four different

size partitions.

2. For different partitions and different sampling distributions, we analyse the

residual (error) and demonstrate the convergence of the residual to zero.

3. We develop an iterative algorithm for extrapolation of band-limited signals

on the sphere from limited or incomplete measurements. Existing schemes

focus on the use of the band-limited property of the signal, that is, the signal

extrapolation is carried out iteratively by forcing the harmonic coefficients

outside the band-limit of the signal to zero at each iteration.

4. In the proposed algorithm, we do not only force the harmonic coefficients to

zero but also use these to improve the extrapolation of the signal over the

inaccessible region at each iteration.
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5. We conduct numerical experiments in order to check the accuracy of the pro-

posed algorithm and use Iterative Conjugate Gradient method as benchmark

for comparison.

6. We also take HRTF measurements using synthetic head model and extrap-

olate the signal on the South pole. The numerical analysis show that the

proposed algorithm enables more accurate extrapolation than the existing

methods.

The results in Chapter 4 have been presented in the following publications which

are listed again for ease of reference:

J2. U. Elahi, Z. Khalid, and R. A. Kennedy, “Band-limited Signal Extrapolation

for inaccessible HRTF measurements on the Sphere ,” IEEE Trans. Signal

Process., 2018. (submitted)

C2. U. Elahi, Z. Khalid, R. A. Kennedy, and J, D, McEwen “Iterative Residual

Fitting for Spherical Harmonic Transform of Band-Limited Signals on the

Sphere: Generalization and Analysis,” in Proc. IEEE Int. Conf. Sampling

Theory and Applications, SampTA’2017, Tallinn, Estonia, pp. 470-440, Mar.

2017.

C3. U. Elahi, Z. Khalid, and R. A. Kennedy, “An Improved Iterative Algo-

rithm for Band-limited Signal Extrapolation on the Sphere,” in Proc. IEEE

Int. Conf. Acoustics, Speech and Signal Processing, ICASSP’2018, Calgary,

Canada, pp. 4619-4623, Apr. 2018.

Chapter 5 - Spatial filtering for Applications in Acoustics

In Chapter 5, we design a spatially constrained anti-aliasing filter as a weighted

sum of band-limited spatially (optimal) concentrated eigenfunctions obtained as the

solution of Slepian concentration problem on the sphere. The main contributions

in this chapter are:

1. Given the spatial constraints, the proposed filter approximates an ideal low-

pass filter on the sphere in the least-squares sense.

2. The filter obtained as a result of this multiple regression depends on the

value of band-limit, L and maximum concentration region known as polar

cap parameterized by its central angle θc.
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3. We examine the performance of the proposed filter by measuring parameters

like white noise gain (WNG), directivity index (DI) and processing loss (γ),

and compare the results with the ideal filter. We compare the performance

of two filters first by varying polar cap of angle θc keeping band-limit, L

constant and then varying band-limits keeping polar cap region constant.

4. By putting constraints on the directivity index and processing loss, we pro-

pose a parameter-constrained filter design and choose θc such that white noise

gain of the proposed filter is maximized.

5. Our analysis show that based on the selected design requirements, the pro-

posed spatially constrained anti-aliasing filter surpasses the ideal filter in

performance.

6. We also propose to use suitably selected Slepian eigenfunction window for

spatial truncation in order to get spatially constrained anti-aliasing filter

from ideal filter.

7. Our analysis shows that for the reduction of side lobes produced by spatial

aliasing error, anti-aliasing filter spatially truncated by the proposed eigen-

function window is a better choice than the rectangular and Hamming win-

dows.

The results in Chapter 5 have been presented in the following publications which

are listed again for ease of reference:

J3. U. Elahi, Z. Khalid, and R. A. Kennedy, “Design of a Spatially Constrained

Anti-aliasing Filter using Slepian Functions in Spherical Microphone Arrays ,”

IEEE Trans. Signal Process., 2019. (under preparation)

C4. U. Elahi, Z. Khalid, and R. A. Kennedy, “Spatially Constrained Anti-Aliasing

Filter Using Slepian Eignefunction Window on the Sphere,” in Proc. Int.

Conf. Signal Processing and Communication Systems ICSPCS’2018, Cairns,

Australia, Dec. 2018.

C5. U. Elahi, Z. Khalid, and R. A. Kennedy, “Design of Spatially Constrained

Anti-aliasing Filter using Slepian Functions on the Sphere,” in Proc. 27th

European Signal Processing Conference, EUSIPCO’2019, A Coruna, Spain,

Sep. 2019. (submitted)
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Finally, Chapter 7 draws conclusions from this thesis and provides directions

for future research work.



Chapter 2

Mathematical Preliminaries and

Sampling Schemes on Sphere

In this chapter, we, first, provide mathematical background to clarify the adopted

notation used in later chapters and then give a brief review of sampling schemes

on the sphere.

2.1 Signals on the Sphere

We consider square integrable complex functions of the form f(x̂) defined on

the unit sphere, denoted by S2 , {x̂ ∈ R3 : |x̂| = 1}. Here x̂ = x̂(θ, φ) =

(sin θ cosφ, cos θ cosφ, cos θ) ∈ S2 ⊂ R3 denotes a point on the sphere, where

θ ∈ [0, π] denotes the co-latitude and φ ∈ [0, 2π) is the longitude. The inner

product of the two functions f(θ, φ) and g(θ, φ) defined on S2 is given by [26]

〈f, g〉 ,
∫
S2
f(θ, φ)g(θ, φ) sin θ dθ dφ, (2.1)

where (·) represents the complex conjugate operation and sin θ dθ dφ is the differ-

ential area element on the sphere. The inner product given in (2.1) induces a norm

‖g‖ , 〈g, g〉1/2. We refer to the functions with finite induced norms as signals on

the sphere S2 [26]. Using the Fredholm integral equation as [26], also define a linear

integral operator D with kernel D(x̂, ŷ) as [26]

(Df)(x̂) =

∫
S2
D(x̂, ŷ) f(ŷ)ds(ŷ). (2.2)

15
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2.1.1 Spherical Harmonics

Spherical harmonics [26], Y m
` (θ, φ) of all integer degrees ` ≥ 0 and integer orders

m ≤ |`| are defined as

Y m
` (θ, φ) ,

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm
` (cos θ) eimφ, (2.3)

where Pm
` (·) are the associated Legendre functions (with Condon-Shortley phase

included) [26, 58]. The spherical harmonics are orthonormal over the sphere with〈
Y m
` , Y

q
p

〉
= δ`,pδm,q, where δm,q is the Kronecker delta function: δm,q = 1 for m = q

and is zero otherwise. Spherical harmonics form a complete orthonormal set of

basis functions, and therefore we can expand signal on sphere as

f(θ, φ) =
∞∑
`=0

∑̀
m=−`

(f)m` Y
m
` (θ, φ), (2.4)

where (g)m` is the spherical harmonic coefficient of degree ` and order m and is

given by the spherical harmonic transform (SHT) defined as

(f)m` ,
〈
f, Y m

`

〉
=

∫
S2
f(θ, φ)Y m

` (θ, φ) sin θ dθ dφ. (2.5)

2.2 Spin-s Functions on the Sphere

The spin-s functions on the sphere, denoted by sf ∈ L2(S2) with integer spin s,

are defined by their behaviour under local rotation, that is, the spin-s function

transforms as

sf
′(θ, φ) = e−isγsf(θ, φ), (2.6)

under a local rotation γ. sf
′ is the rotated function obtained by rotating sf by γ

in the tangent plane at (θ, φ).
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2.2.1 Spin-s Spherical Harmonic Transform

The spin-s spherical harmonic functions (or spin weighted spherical harmonics),

denoted by sY
m
` for degree `, order |m| ≤ ` and integer spin |s| ≤ `, are defined as

sY
m
` (θ, φ) , (−1)s

√
2`+ 1

4π
eimφdm,−s` (θ), (2.7)

where dm,m
′

` (θ) denotes the Wigner-d function [26,58]

dm,m
′

` (ϑ) =
∑
n

(−1)n−m
′+m ×

√
(`+m′)!(`−m′)!(`+m)!(`−m)!

(`+m′ − n)!(n)!(`− n−m)!(n−m′ +m)!

×

(
cos

ϑ

2

)2`−2n+m′−m(
sin

ϑ

2

)2n−m′+m

, (2.8)

where the summation over n is such that the factorial terms in the denominator

remain non-negative. Spin-s spherical harmonics form a complete set of basis for

spin-s functions on the sphere and therefore any spin-s function sf can be expanded

as

sf(θ, φ) =
∞∑
`=s

∑̀
m=−`

(sf)m` sY
m
` (θ, φ), (2.9)

where (sf)m` is the spin-s spherical harmonic coefficient of degree ` and order m

and is given by the standard inner product for functions on the sphere [26]:

(sf)m` =

∫
S2
sf(θ, φ)sY m

` (θ, φ) sin θ dθ dφ, (2.10)

where (·) denotes the complex conjugate operation. These coefficients form the

spectral (or harmonic) domain of the spin-s function and the transformation of the

spin-s function to its harmonic coefficient given in (2.10) is referred to as spin-s

spherical harmonic transform (s-SHT). Note that spin-s spherical harmonics are

equal to (scalar) spherical harmonics for s = 0.

2.3 Band-limited Signals on the Sphere

The signal f(θ, φ) is considered as band-limited at degree L if (f)m` = 0 for all

` ≥ L. For the representation of a band-limited signal using (2.4), the summation
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over degree ` is truncated at L − 1. We note that the set of bandlimited signals

forms an L2 dimensional subspace of L2(S2), which we denote by HL.

f(θ, φ) =
L−1∑
`=0

∑̀
m=−`

(f)m` Y
m
` (θ, φ). (2.11)

The number of spherical harmonic coefficients required to represent f(θ, φ),

given in (2.11), is L2, which also represents the optimal spatial dimensionality

(also referred to as the optimal dimensionality), defined as the number of samples

attainable by any sampling scheme that allows the accurate computation of the

SHT of any band-limited signal on the sphere. Similarly, the spin-s function sf is

said to be band-limited at L if (sf)m` = 0 for all ` ≥ L. Such band-limited spin-s

functions form a subspace HL ⊂ L2(S2) of dimension L2 − s2.

2.4 Sampling Schemes on the Sphere

We focus on the recently developed sampling schemes on the sphere which permit

accurate computation of SHT of a bandlimited signal from its samples. For a

signal band-limited at L, we use N to denote the spatial dimensionality, that is the

number of samples, required by each of the sampling scheme to compute SHT or

equivalently represent the band-limited signal accurately.

2.4.1 Gauss-Legendre Quadrature based Sampling

This sampling scheme is devised on the basis of the well known Gauss-Legendre

quadrature on the sphere [123] and is therefore referred to as Gauss-Legendre (GL)

sampling scheme. The GL quadrature is used to construct a sampling theorem such

that the SHT of a band-limited signal can be exactly computed from its samples.

For a signal band-limited at L, this scheme takes samples on L iso-latitude rings

with 2L − 1 equiangular placed samples along longitude φ, resulting in a total

requirement of NGL = L(2L − 1) samples, for the exact computation of SHT.

The location of the rings along co-latitude θ is given by the roots of the Legendre

polynomials of order L as dictated by the Gauss-Legendre quadrature to discretize

the integral given in (2.5). The variants of the Gauss-Legendre quadrature scheme

have also been proposed (e.g., [124]) that require less number of samples. However,

these sampling schemes do not support exact or sufficiently accurate computation
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of SHT. As an example, the samples on the sphere for GL sampling scheme are

shown in Fig.2.1(a) for L = 10.

2.4.2 Equiangular Sampling

For the exact computation of SHT of a signal band-limited at L, an equiangular

scheme was first proposed in [51] which requires 2L iso-latitude equiangular spaced

rings of samples with 2L equiangular samples along longitude φ. Recently, an

equiangular scheme has been developed [59] that takes samples on an equiangular

grid defined by the following sample positions:

θt =
π(2t+ 1)

(2L− 1)
, t = 0, 1, 2, ..., L− 1, (2.12)

and

φk =
2πk)

(2L− 1)
, k = 0, 1, 2, ..., 2L− 2, (2.13)

that is, it requires L − 1 iso-latitude rings with 2L − 1 samples along longitude

in each ring and a sample at one of the poles (θ = 0 or θ = π) and therefore

reduces the number of equiangular samples required for the computation of SHT

by a factor of two. In total, the number of samples required by equiangular scheme

are NE = (L− 1)(2L− 1) + 1, that is, 3(L− 1) fewer samples in comparison to the

GL scheme. As an example, the samples on the sphere for equiangular sampling

scheme are shown in Fig.2.1(b) for L = 10.

2.4.3 Optimal-Dimensionality Sampling Scheme

The spatial dimensionality of both GL and equiangular sampling schemes is twice

the optimal spatial dimensionality given by the dimensionality of HL, that is, the

degree of freedom in harmonic space to represent a signal band-limited at spherical

harmonic degree L. Recently, an optimal-dimensionality sampling scheme [63] has

been proposed that requires L2 points to compute the accurate SHT for signals

band-limited at L and therefore the scheme has optimal spatial dimensionality.

Although the SHT associated with the optimal dimensionality sampling is not

theoretically exact, the accuracy of the SHT has been demonstrated for band-

limits up to L = 2048 with errors on the order of numerical precision. Like GL
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and equiangular sampling schemes, it is also an iso-latitude sampling scheme of the

sphere and takes L rings along each latitude. Let θk, k = 0, 1, · · · , L − 1 denotes

the sample position of the ring along latitude, where these sample locations are

chosen such that the accuracy of the computation of SHT is maximized. For a ring

placed at θk, the samples in the ring along φ are given by

φkn =
2πn

2k + 1
, n = 0, 1, . . . , 2k (2.14)

that is 2k + 1 equiangular samples. In total, the number of samples required by

optimal-dimensionality sampling scheme is

NO =
L−1∑
k=0

(2k + 1) = L2. (2.15)

As an example, the samples on the sphere for optimal dimensionality sampling

scheme are shown in Fig.2.1(c) for L = 10.

2.4.4 Spherical Designs

A set of points on the sphere is called a spherical design such that the integral of the

signal of maximum spherical polynomial degree t or maximum band-limit t+1 over

the sphere can be evaluated as an average value over the samples of the signal [60].

Since the spherical design is parameterized by t, the set of points is often referred

to as spherical t-design. Spherical t-designs, by definition, enable exact evaluation

of the integral of polynomial of maximum degree t. For the computation of SHT

using the points given by spherical design, we first note that the SHT requires to

evaluate the integral given in (2.5), where the integrand is the product of a signal

band-limited at L and spherical harmonic Y m
` (θ, φ). Since we require to evaluate

the integral for all ` < L, |m| ≤ `, the maximum polynomial degree of integrand

is 2L − 2. Consequently, we require (2L − 2)-spherical design for the sampling of

band-limited signal such that the SHT can be computed accurately. In our work,

we choose the spherical t-designs1 [60] which takes t2/2 + t + O(1) samples. We

use NSD to denote the number of samples of (2L − 2)-spherical design. Due to

high computational cost associated with the computation of spherical design, we

1The spherical designs are available at http://web.maths.unsw.edu.au/~rsw/Sphere/

EffSphDes/index.html.
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note that the spherical t-designs have been proposed for maximum t = 180 and

therefore the SHT can be computed for band-limits up to L = 91. As an example,

the samples of the (2L− 2)-spherical design are shown in Fig.2.1(d) for L = 10.

2.4.5 Extremal Points on the Sphere

For a given band-limit L, the extremal (maximum determinant) systems are sets of

L2 extremal points on the sphere which, by definition, maximize the determinant of

a basis matrix (see [64] for details). For spherical harmonic basis, extremal points

are supported by interpolatory cubature rule with positive weights and therefore

enables the accurate computation of SHT of a signal band-limited at L using NES =

L2 sampling points of extremal system. The sampling scheme based on the points2

of the extremal system will be referred to as extremal system sampling scheme. As

an example, the extremal points on the sphere are shown in Fig.2.1(e) for L = 10.

2.5 Summary

In this chapter, we have introduced the required mathematical background. The

notation adopted in this chapter is used throughout this thesis. However, new

notation or formulation, will be defined in later chapters as required. Also, a brief

review of the sampling schemes on the sphere is given.

2We use the the points of extremal systems publicly available at http://web.maths.unsw.

edu.au/~rsw/Sphere/Extremal/New/extremal1.html.
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(a) Gauss-Legendre sampling (b) Equiangular sampling

(c) Optimal-dimensionality sampling (d) Spherical design sampling

(e) Samples of extremal points

Figure 2.1: The sampling schemes on the sphere, (a) Gauss-Legendre quadrature
based sampling, (b) equiangular sampling, (c) optimal dimensionality sampling
scheme, (d) spherical desings and (e) extremal points, presented in Section III for
the representation of the signal band-limited at L = 10.



Chapter 3

Optimal Dimensionality Sampling

Scheme for Spin-s functions on

Sphere and Analysis of

Geometrical Properties

In this chapter, we propose a sampling scheme with optimal number of samples

equal to the number of degrees of freedom of the function in harmonic space for

the representation of spin-s band-limited functions on the sphere. In comparison to

the existing sampling designs, which require ∼2L2 samples for the representation

of spin-s functions band-limited at L, the proposed scheme requires No = L2 − s2

samples for the accurate computation of the spin-s spherical harmonic transform (s-

SHT). For the proposed sampling scheme, we also develop a method to compute the

s-SHT. We place the samples in our design scheme such that the matrices involved

in the computation of s-SHT are well-conditioned. We also present a multi-pass s-

SHT to improve the accuracy of the transform. We analyse geometrical properties

like sampling efficiency, minimum geodesic distance, mesh norm and mesh ratio

for the sampling schemes defined in the first part of this chapter and carry out

the comparative analysis of the geometrical properties of the proposed sampling

scheme on the sphere for spin-s functions and different values of integer spin, s. We

show that the proposed sampling design exhibits superior geometrical properties

compared to existing equiangular and Gauss-Legendre sampling schemes.

This chapter is organized as follows. In Section 3.1, existing sampling schemes in

23
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literature and the importance of geometrical properties are discussed. The proposed

optimal dimensionality sampling scheme and s-SHT is presented in Section 3.2. In

Section 3.3, we define the geometrical properties and compare these properties for

the proposed scheme with existing schemes in literature for different values of

integer spin, s. Section 3.4 discusses the summary of the main contribution of this

chapter.

3.1 Prior Work

Spin functions (generally referred to as spin-s functions) naturally arise in many

applications including cosmology [96], astrophysics [97], fluid dynamics [98], global

circulation modeling and models of stress propagation of earth [99], to name a

few. In particular, they play a pivotal role in the statistical studies of signals

on the celestial sphere, such as cosmic microwave background (CMB) polarization

and gravitational lensing [59, 62, 70]. In these applications, harmonic analysis is

enabled through the spin-s spherical harmonic transform (s-SHT). Consequently,

the ability to compute s-SHT of signal is of significant importance. It is desirable to

design such sampling schemes that should require the minimum possible number of

samples (spatial dimensionality) for the accurate and efficient computation of the

s-SHT of the signal and have superior geometrical properties [26,51,59,63,100–105].

For accurate computation of s-SHT of a band-limited spin-s function with band-

limit L and spin s, the spatial dimensionality, denoted by No, is (L2 − s2) — the

number of degrees of freedom in harmonic space.

Discroll and Healy presented a sampling theorem on the sphere for an equian-

gular sampling grid of spatial dimensionality (asymptotically) ∼4L2 for the exact

reconstruction of band-limited scalar (s = 0) functions on the sphere [51]. For

the same equiangular sampling grid, algorithms for the computation of s-SHT and

signal reconstruction of band-limited spin-s functions on the sphere S2 were de-

veloped in [101]. A stable, fast and exact algorithm for equiangular sampling of

spatial dimensionality ∼4L2 for the evaluation of s-SHT of band-limited spin-s

functions with spin (s = ±2) has also been proposed in [70]. These algorithms

although enabling stable computation of s-SHT, have large pre-computation and

storage requirements. In order to reduce the pre-computation requirements, by

exploiting the relationship between the Wigner d-functions [26, 58] and the spin-
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s spherical harmonics, an accurate and exact algorithm to compute s-SHT using

∼4L2 samples is proposed in [62]. To reduce the number of samples, Jason [100]

developed a sampling theorem requiring ∼2L2 samples for the (theoretically) exact

and stable computation of s-SHT. The well-known Gauss-Legendre quadrature on

the sphere [75] also supports exact computation of s-SHT using ∼2L2 samples on

the sphere. Recently, a library (Libsharp) [103, 104] has been developed for the

computation of s-SHT, where they reduce the number of samples of the Gauss-

Legendre grid by approximately 30% by applying so-called polar optimization to

reduce the number of samples around poles.

Geometric properties such as sampling efficiency, minimum geodesic distance,

mesh norm and mesh ratio of the set of sampling points give an insight of the

nature of distribution of points on the sphere [60, 64, 77–79]. These geometrical

properties also enable us to analyse uniform distribution, dense sampling, regu-

larity and flexibility in the samples placement for a given set of sampling points.

The geometrical properties of different sampling schemes on the sphere have been

analysed [60,64] and bounds have been derived on geometrical properties [77–79].

3.1.1 Research Questions

To the best of our knowledge, none of the existing sampling schemes requires fewer

than ∼2L2 samples for the accurate computation of s-SHT, well in excess of the

optimal spatial dimensionality. In this context, we address the following questions

in this chapter:

• What information do geometrical properties provide about a certain sampling

scheme?

• For band-limited spin-s functions, how can we design a sampling scheme on

the sphere with optimal spatial dimensionality of No = L2 − s2?

• Does the proposed scheme enable accurate computation of spin-s spherical

harmonic transform and exhibit superior geometric properties (such as mesh

norm and mesh ratio) to existing schemes?
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3.2 Optimal-Dimensionality Sampling and Spin-

s Spherical Harmonic Transform

3.2.1 Sampling Scheme

We define an iso-latitude sampling scheme, denoted by SL
s , on the sphere as

SL
s =

{
(θt,

2πp

2t+ 1
)
∣∣ t = |s|, |s| + 1, . . . , L − 1, p = 0, 1, . . . , 2t

}
, (3.1)

which is comprised of L−|s| iso-latitude rings of samples placed at θt , t = |s|, |s|+
1, . . . , L− 1 with 2t+ 1 equally spaced sampling points along φ in the ring placed

at θt. We discuss the location of iso-latitude rings later in this section. Since the

sampling scheme takes No sample points on the sphere in total, equal to the number

of degrees of freedom of the spin-s function band-limited at L, it is referred to as

optimal-dimensionality sampling.

3.2.2 Spin-s Spherical Harmonic Transform – Formulation

We define the iso-latitude Fourier transform of the signal sf(θ, φ) along φ given by

Gm(θ) ,
∫ 2π

0
sf(θ, φ)e−imφdφ

= (−1)s 2π
L−1∑
`=∆

√
2`+ 1

4π
(sf)m` d

m,−s
` (θ), (3.2)

where ∆ = max(|m|, |s|) and we have employed (2.7), (2.9) and orthogonality

of complex exponentials in obtaining the second equality. Also define a vector of

length L−∆ containing Gm(θ) evaluated at sample points of the proposed sampling

scheme as

sgm , [Gm(θ∆), Gm(θ∆+1), . . . , Gm(θL−1)], (3.3)

which can be equivalently expressed using (3.2) as

sgm = (−1)s sDm sfm. (3.4)
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where sDm ,
a0d

m,−s
∆ (θ∆) a1d

m,−s
∆+1 (θ∆) · · · aL−1d

m,−s
L−1 (θ∆)

a0d
m,−s
∆ (θ∆+1) a1d

m,−s
∆+1 (θ∆+1) · · · aL−1d

m,−s
L−1 (θ∆+1)

...
...

. . .
...

a0d
m,−s
∆ (θL−1) a1d

m,−s
∆+1 (θL−1) · · · aL−1d

m,−s
L−1 (θL−1)

 , (3.5)

with aβ =
√
π(2β + 1) and

sfm =
[
(sf)m∆, (sf)m∆+1, . . . , (sf)mL−1

]T
, (3.6)

is a vector of spin-s spherical harmonic coefficients of order |m| < L and integer

spin s.

Remark 3.1 (Requirements for the Computation of s-SHT) The spherical

harmonic coefficients contained in a vector sfm for each |m| < L can be recovered

by inverting the system in (3.4) provided (Requirement 1:) sgm is known and (Re-

quirement 2:) sDm is invertible.

3.2.3 Spin-s Spherical Harmonic Transform – Computation

By changing the order of summations in (2.9) and using (2.7) and (3.2), we re-write

(2.9) for a band-limited spin-s function as

sf(θ, φ) =
1

2π

L−1∑
m=−(L−1)

Gm(θ)eimφ, (3.7)

which indicates that sf(θ, φ) is a linear sum of 2L− 1 complex exponentials along

φ. Due to this fact, the existing iso-latitude schemes require 2L − 1 samples in

each of the iso-latitude rings in order to compute Gm(θt) and consequently sgm

correctly and serve the requirement 1 (see Remark 3.1). However, if we know the

spherical harmonic coefficients of all degrees (and orders) greater than given ∆′,

we can remove their contributions from the signal which consequently reduces the

band-limit along φ and enable the computation of Gm(θt) by taking an FFT over

2∆′ + 1 samples (instead of 2L − 1 samples) in a ring placed at θt. We further

elaborate on this idea below.

We first compute the spin-s spherical harmonic coefficients of orders |m| =
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L−1, which can be determined by computing sgL−1 = sGL−1(θL−1) and sg−(L−1) =

sG−(L−1)(θL−1) in (3.4) using an FFT over only one ring of 2L− 1 samples along φ

placed at θL−1. Once (sf)L−1
L−1 is computed, we update the signal at the samples in

the rings placed at θt, t = |s|, |s|+ 1, . . . , L− 2 as

sf(θt, φ)← sf(θt, φ)− sf̃L−1(θt, φ) (3.8)

where

sf̃m(θ, φ) ,
L−1∑
`=∆

(
sf)m` sY

m
` (θ, φ) + (sf)−m` sY

−m
` (θ, φ)

)
=

1

2π

(
eimφGm(θ) + e−imφG−m(θ)

)
(3.9)

denotes the part of the signal sf(θ, φ) composed of contribution of spherical har-

monics of order m and −m and all degrees ∆ ≤ ` ≤ (L − 1) for integer spin s.

Once the signal is updated as given in (3.8), 2L−3 samples are required instead of

2L − 1 to compute Gm(θt). For computing spin spherical harmonic coefficients of

order L− 2 and −(L− 2), we only need 2L− 3 samples along the φ-ring placed at

θL−2. After computation, these can be used to update the signal at other sample

positions. In this manner, we continue to evaluate the spin spherical harmonic

coefficients for all degrees ` ≥ |s| and all orders |m| ≤ `. This proposed s-SHT is

summarized in the form of procedure below.

Procedure 1 s-SHT

Require: (sf)m` , ∀ |m| < L, ∆ ≤ ` < L, given sf(θ, φ)
1: procedure Spin SHT(sf(θ, φ))
2: for m = L− 1, L− 2, . . . , 0 do
3: compute sgm and sg−m by evaluating Gm(θt)

for t = ∆,∆ + 1, . . . , L− 1

4: compute sfm and sf−m by inverting (3.4)

5: update sf(θt, φ)← sf(θt, φ)−s f̃m(θt, φ) for all
t = |s|, |s|+ 1, . . . ,∆− 1 and all associated
sampling points along φ

6: end for
7: return (sf)m`
8: end procedure
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3.2.4 Placement of Samples along Co-latitude

We yet need to determine the sampling points along co-latitude for the placement

of iso-latitude rings. To serve the requirement 2 (see Remark 3.1), we propose a

method, referred to as condition number minimization [63], to determine L − |s|
co-latitude sample points θt, t = {|s|, |s| + 1, . . . , L − 1} such that each matrix

sDm, given in (3.5), which depends on last L − ∆ samples along co-latitude, is

well-conditioned. Our method consider a set of M � L equiangular samples (with

uniform measure along θ) given by Θ(M) =
{

t π
M+1

}
, t = 1, 2, . . . ,M to choose

sampling points θt, t = |s|, |s|+ 1, . . . , L− 1 using the following steps:

• Choose θL =
πdM

2
e

M+1
, that is, farthest from the poles in the set Θ(M), which is

a natural choice for the ring of 2L− 1 samples along φ.

• For each m = L − 2, L − 3, . . . , |s|, choose θm from the set Θ(M) which

minimizes the condition number of the matrix sDm.

Such placement of iso-latitude rings ensures that each matrix sDm for at least each

|m| = |s|, |s| + 1, . . . , L − 1 is well-conditioned and therefore enables the accurate

computation of s-SHT. We note that the proposed condition number minimization

method, although computationally intensive, is only required to be used once for

each s and band-limit L to determine sample positions along co-latitude.

3.2.5 Multi-pass s-SHT

The s-SHT presented here computes the spherical harmonic coefficients for each

order m in a sequence |m| = L−1, L−2, . . . , 0. Since the error in the computation

of m-th order coefficients contributes to the error in the computation of coefficients

of order m − 1, there tends to be error accumulation in the inherent sequential

computation of s-SHT. We propose a multi-pass s-SHT which iteratively minimizes

the building-up of error and therefore improves the accuracy of the s-SHT.

For a spin-s function band-limited at L and discretized over the sampling scheme

SL
s , we compute its spherical harmonic coefficients, denoted by (sf̆1)m` using pro-

posed s-SHT and define the residual as

rk(θ, φ) = sf(θ, φ)−
L−1∑
`=s

∑̀
m=−`

(sf̆k)
m
` sY

m
` (θ, φ) (3.10)
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that is, an error between the signal sf and the signal synthesized from the spherical

harmonic coefficients. Here k = 1, 2, . . . , indicates the iteration number. We carry

out s-SHT of the residual to compute its spherical harmonic coefficients, denoted

by (rk)
m
` and update (sf̆k)

m
` as

(sf̆k+1)m` = (sf̆k)
m
` + (rk)

m
` . (3.11)

In multi-pass s-SHT, we propose to use (3.10) and (3.11) iteratively to compute

(sf̆k)
m
` for k = 1, 2, . . . , until the following stopping criterion is met

max
(θ,φ∈SL

s )

∣∣rk+1(θ, φ)
∣∣ > max

(θ,φ∈SL
s )

∣∣rk(θ, φ)
∣∣. (3.12)

Later, we illustrate, through numerical experiments, that the multi-pass s-SHT

improves the accuracy over the (single-pass) s-SHT.

3.2.6 Numerical Accuracy

In our experiment to evaluate the accuracy of the proposed spin-s SHT, we generate

the spin spherical harmonic coefficients (sfa)m` of our test signal for |s| < ` < L,

|m| ≤ ` with real and imaginary parts uniformly distributed in the interval [−1, 1]

and then use (2.9) to obtain the signal over samples of the proposed scheme SL
s .

We then apply the proposed s-SHT and multi-pass s-SHT to reconstruct the spin-s

spherical harmonic coefficients denoted by (sfr)
m
` . For each L = 8, 16, 32, 64 and

s = 1, 2, 4, we repeat this experiment 10 times to obtain the average value of the

maximum and mean errors, defined as

εmax , max
∣∣
sfa(θ, φ)− sfr(θ, φ)

∣∣, (3.13)

εmean ,
1

No

∑
(θ,φ)

∣∣
sfa(θ, φ)− sfr(θ, φ)

∣∣, (3.14)

which are plotted in Fig. 3.1 that illustrates that the proposed transforms enable

accurate computation of s-SHT and multi-pass s-SHT improves the reconstruction

accuracy. It is observed that the reconstruction errors grow with the increase in

integer spin s, which is due to the fact that matrix sDm defined in (3.5) becomes ill-

conditioned as s increases irrespective of the placement of samples by the condition

number minimization method.
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3.3 Analysis of Geometrical Properties

For each of the sampling scheme on the sphere presented in chapter 2, we here

analyse the geometrical properties of the sampling scheme and review the accuracy

and computational complexity of the s-SHT associated with each of the sampling

scheme. In this section, we first define the geometrical properties: sampling effi-

ciency, minimum geodesic distance, mesh norm and mesh ratio for the scalar spin-s

functions (s = 0) and shows the significance of the geometrical properties in the

nalysis of the sampling schemes and then compare geometrical properties of the

proposed sampling scheme with those for the the existing equiangular [59] and

Gauss-Legendre sampling schemes [75,103].

3.3.1 Sampling Efficiency

The sampling efficiency, defined as a ratio of the dimensionality of the subspace

formed by the band-limited signals, that is the number of coefficients required to

represent a band-limited signal in the harmonic domain, to the number of samples

required to accurately compute s-SHT, is the fundamental property of any sampling

scheme. For a band-limit L, we define the sampling efficiency, denoted by sEL, of

any sampling scheme as the ratio of the dimensionality (No) of subspace formed

by band-limited spin-s functions to the number of samples required to accurately

compute s-SHT.

3.3.2 Minimum Geodesic Distance and Packing Radius

For a set of sampling points on the sphere, the minimum geodesic distance is defined

as the minimum distance between any two points in the set. It is also defined as

twice the packing radius on the sphere. It is desirable to design a sampling scheme

on the sphere such that the minimum geodesic distance is maximized (well-known

sphere packing problem). For points of an extremal system for a band-limit L,

the minimum geodesic distance is lower bounded by π/2(L − 1) [78]. For a set

of sampling points on the sphere denoted by ζ, the minimum geodesic distance is

defined as
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sσ(ζ) , min
x̂, ŷ∈ζ

dS(x̂, ŷ), (3.15)

where dS(x̂, ŷ) denotes the geodesic (great circle or spherical) distance between

two points x̂(θx, φx) and ŷ(θy, φy) and is given by

dS(x̂, ŷ) = cos−1(x̂ · ŷ)

= cos−1
(

cos θx cos θy + sin θx sin θy cos(φx − φy)
)
. (3.16)

Since the sampling schemes under consideration do not have the same sampling

efficiency, we need to incorporate sampling efficiency in defining the minimum

geodesic distance for a meaningful comparison of different sampling schemes. We

define the normalized minimum geodesic distance as

sσn(ζ) ,
1

sEL
σ(ζ) =

1

sEL
min
x̂, ŷ∈ζ

dS(x̂, ŷ), (3.17)

3.3.3 Mesh Norm

For a set ζ of points on the sphere, mesh norm is defined as the largest geodesic

distance from a point x̂ ∈ S2 to the nearest point in the set ζ. For a set ζ of

sampling points of the sampling scheme parameterized by L, we define the mesh

norm as

sλ(ζ) ,
1

sEL
max
x̂∈S2

min
ŷ∈ζ

dS(x̂, ŷ). (3.18)

where sEL is the sampling efficiency of the sampling scheme and dS(x̂, ŷ) is given

in (3.16). We note that the mesh norm is also referred to as the covering radius as

the spherical caps of radius equal to mesh norm and centered at sampling points

covering the whole sphere. It is desirable to design a sampling scheme that min-

imizes the mesh norm [64]. For points of an extremal system for a band-limit L,

Reimer [79] obtained an upper bound on the mesh norm of any system of points

associated with positive weight cubature rule for a band-limit L. The upper bound

is λ(ζ) ≤ 2jo/(L − 1) ≈ 4.8097/(L − 1), where jo is the smallest positive zero of

the Bessel function Jo.
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3.3.4 Mesh Ratio

Mesh ratio is the ratio of the covering to the packing radius of the identical spherical

caps on the surface of a sphere. For a set ζ of sampling points on the sphere, we

define the mesh ratio as

sΓ(ζ) =
2sλ(ζ)

sσn(ζ)
> 1, (3.19)

where we have used normalized geodesic distance in the formulation of mesh ratio

as we also normalize the mesh norm with the sampling efficiency. Since the mesh

ratio serves as a good measure of the quality of the uniform distribution of points,

the sampling schemes should have smaller mesh norm.

Analysis

For each of the sampling schemes presented in chapter 2, we plot the normalized

minimum geodesic sσn(ζ) for different band-limits 10 ≤ L ≤ 50 and integer spin

s = 0 in Fig. 3.2(a), where it can be observed that extremal system of points,

spherical design and optimal dimensionality, all have well separated points on the

sphere. The nomralized minimum geodesic distance curves, obtained by using the

points of equiangular and Gauss-Legendre quadrature based sampling schemes, are

well below the lower bound values for all degrees 10 ≤ L ≤ 50. It is because, these

sampling schemes exhibit dense sampling near the poles. For each of the sampling

schemes, we numerically compute the mesh norm by 1) randomly taking the M

number of uniformly distributed number of points on the sphere, 2) taking the

minimum distance between the sampling points and the randomly chosen points

on the sphere and 3) then obtaining the maximum over the minimum distances. We

choose M such that the numerically computed mesh norms by taking M random

points and 2M random points do not differ more than 1%.

We plot the mesh norm for different sampling schemes in Fig. 3.2(b). It is evi-

dent that extremal system of points has the smallest mesh norm. As compared to

equiangular and GL sampling schemes, spherical designs and optimal dimension-

ality sampling schemes have smaller mesh norm. In Fig. 3.2(c), we plot the mesh

ratio for different sampling schemes and different band-limits, where we observe

that the mesh ratio for equiangular and GL sampling schemes increase with the
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band-limit, whereas the mesh ratio remains (almost) constant with the increase in

band-limit. It can also be observed that the extremal system sampling scheme has

the smallest mesh ratio.

Among the geometrical properties analysed for different sampling schemes, sam-

pling efficiency and mesh norm encapsulates the other properties and therefore serve

as the measures of the uniform distribution of sampling points. Analysis of geo-

metrical properties of the sampling scheme reveals that the mesh ratio grow with

the band-limit for the equiangular and Gauss-Legendre sampling schemes which is

a consequence of the fact that these sampling schemes require dense sampling at

the poles. In contrast, the optimal dimensionality, spherical design and extremal

systems sampling schemes exhibit desired geometrical properties. Furthermore, the

optimal dimensionality and extremal system sampling schemes have almost twice

of the sampling efficiency attained by equiangular, Gauss-Legendre and spherical

design sampling schemes. The mesh ratio achieved by optimal dimensionality is a

little higher than extremal system, yet, it is very small compared to the equiangular

schemes.

In Fig. 3.3, we plot these properties for proposed sampling scheme and compare

results with equiangular sampling and Gauss-Legendre sampling schemes for band-

limits 8 ≤ L ≤ 64 and integer spin s = 1, 2, 4, where it can observed that the

proposed optimal dimensionality scheme exhibit superior geometrical properties

primarily due to the dense sampling near the poles required by the existing schemes.

3.4 Summary of Contributions

In this chapter, we have proposed an optimal-dimensionality sampling scheme for

the accurate reconstruction of band-limited spin-s functions on the sphere and

developed a method to compute s-SHT associated with the proposed sampling

scheme. We have placed the samples such that the linear system of equations

involved in the computation of s-SHT are well-conditioned. For the accurate com-

putation of s-SHT of the spin-s function band-limited at L, the proposed sampling

scheme requires optimal No = L2 − s2 samples equal to the number of degrees

of freedom of the signal in harmonic space. In comparison, the existing schemes

require ∼2L2 samples. We have also developed a multi-pass s-SHT that iteratively

improves the accuracy of the transform, demonstrated the accuracy of the s-SHT.
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We show that the proposed sampling scheme is superior to existing schemes in

terms of geometrical properties such as geodesic distance, mesh norm and mesh

ratio.

Addressing Q1 posed in Section 1.2.1:

• For the accurate computation of s-SHT of the spin-s function band-limited

at L, the proposed sampling scheme requires optimal No = L2 − s2 samples

equal to the number of degrees of freedom of the signal in harmonic space.

In comparison, the existing schemes require ∼2L2 samples.

Addressing Q2 posed in Section 1.2.1:

• We have also developed a multi-pass s-SHT that iteratively improves the

accuracy of the transform, demonstrated the accuracy of the s-SHT.

• Numerical experiments show the accuracy of the proposed s-SHT and multi-

pass s-SHT.

Addressing Q3 posed in Section 1.2.1:

• We have done analysis and show that the proposed sampling scheme is supe-

rior to existing schemes in terms of geometrical properties such as geodesic

distance, mesh norm and mesh ratio.

Note that in the later chapters, we will only consider the scalar functions (i.e.,

s = 0) on the sphere, so for ease, notation SHT will be used instead of s-SHT

(s = 0).
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Figure 3.1: Numerical accuracy of the proposed s-SHT: the maximum error εmax

and the mean error εmean for band-limits L = (8, 16, 32, 64) and integer spin s =
(1, 2, 4).
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Figure 3.2: The geometrical properties: (a) Minimum Geodesic Distance sσ(ζ), (b)
Mesh norm sλ(ζ) and (c) Mesh Ratio sΓ(ζ) for band-limits 10 ≤ L ≤ 50, integer
spin s = 0 and different sampling schemes.



38 Optimal Dimensionality Sampling Scheme for Spin-s functions on Sphere

8 16 24 32 40 48 56 64

Band-limit, L

10-2

10-1

100

s

Optimal Dimensionality s=1
Optimal Dimensionality s=2
Optimal Dimensionality s=4
Equiangular
Gauss-Legendre

(a)

8 16 24 32 40 48 56 64

Band-limit, L

10-1

100

s

Optimal Dimensionality s=1
Optimal Dimensionality s=2
Optimal Dimensionality s=4
Equiangular
Gauss-Legendre

(b)

8 16 24 32 40 48 56 64

Band-limit, L

101

102

103

s

Optimal Dimensionality s=1
Optimal Dimensionality s=2
Optimal Dimensionality s=4
Equiangular
Gauss-Legendre

(c)

Figure 3.3: The geometrical properties: (a) Minimum Geodesic Distance sσ(ζ),
(b) Mesh norm sλ(ζ) and (c) Mesh Ratio sΓ(ζ) for proposed, equiangular and
Gauss-Legendre sampling schemes.



Chapter 4

Signal Reconstruction on the

Sphere

In this chapter, we study two scenarios for the reconstruction of the signal on

the sphere: i) when the measurements are not taken on a pre-defined grid on

the sphere (first part of the chapter) and ii) when the estimation is done from

incomplete measurements (second part of the chapter).

In the first part of this chapter, we present the generalized iterative residual

fitting (IRF) for the computation of the spherical harmonic transform (SHT) of

band-limited signals on the sphere. The proposed method is based on the parti-

tioning of the subspace of band-limited signals into orthogonal subspaces. There

exist sampling schemes on the sphere which support accurate computation of SHT.

However, there are applications where samples (or measurements) are not taken

over the predefined grid due to nature of the signal and/or acquisition set-up. To

support such applications, the proposed IRF method enables accurate computa-

tion of SHTs of signals with randomly distributed sufficient number of samples.

In order to improve the accuracy of the computation of the SHT, we also present

the so-called multi-pass IRF which adds multiple iterative passes to the IRF. We

analyse the multi-pass IRF for different sampling schemes and for different size

partitions. Furthermore, we conduct numerical experiments to illustrate that the

multi-pass IRF allows sufficiently accurate computation of SHTs.

In the second part of the chapter, we develop an algorithm for the extrapolation

of band-limited signals on the sphere. The proposed algorithm improves the accu-

racy of the extrapolation of band-limited signal by using the information contained

in the out-of-band harmonic coefficients of the signal to update the extrapolated

39
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signal at each iteration. The estimation of signals on the sphere from incomplete

measurements finds applications in acoustics, cosmology and geophysics. The pro-

posed algorithm does not only exploit the band-limited property of the signal, that

is, force the harmonic coefficients outside the band-limit to zero, at each iteration

as carried out in the existing algorithms but also uses the harmonic coefficients

outside the harmonic domain to improve the accuracy of signal extrapolation. To

demonstrate the improvement in the accuracy enabled by the proposed algorithm,

we conduct numerical experiments and compare the results of the proposed algo-

rithm with the existing iterative conjugate gradient method.

This chapter is organized as follows. We present the necessary literature review

for signal reconstruction on sphere in Section 4.1. In Section 4.2, we state the first

problem under consideration in this chapter and formulate IRF and multi-pass

IRF methods. Analysis of different partitions is also done. The second problem of

extrapolation (reconstruction of signals from incomplete measurement)is discussed

in detail in Section 4.3 and an iterative algorithm is proposed and formulated for

signal extrapolation on the sphere. We then analyse the methods discussed in

the two parts of this chapter and evaluate reconstruction errors under different

experimental settings in Section 4.4.

4.1 Prior Work

Sampling schemes have been devised in the literature for the accurate and effi-

cient computation of SHTs [51,59,63] which require samples on the whole sphere..

However, the samples may not be available, in practice (e.g., [3,67]), over the grid

defined by these sampling schemes. To support the computation of SHTs in appli-

cations where samples or data-sets are not available on the pre-defined grid, least

squares fitting (LSF) methods have been investigated for efficient computation of

the SHTs [66–68, 106–109]. LSF methods formulate a large linear system of basis

functions and then attempt to solve it efficiently. However, due to memory over-

flow, it is not suitable for systems with large band-limits, L > 1024 [110–112]. To

solve this problem, an iterative residual fitting (IRF) method has been proposed

in [110] as an extension of LSF and incorporates a divide and conquer technique for

the computation of SHTs. The basic idea of IRF is to divide the subspace spanned

by all spherical harmonics into smaller partitions and then perform least squares



4.2 Part I — Generalized Iterative Residual Fitting 41

on each partition iteratively. Although IRF is fast, it creates a less accurate recon-

struction [110] as the size of the harmonic basis increases for large band-limits. To

improve the reconstruction accuracy, a multi-pass IRF approach is used which in-

cludes multiple passes for fitting. This is same as IRF but it involves multiple IRF

operations rather than one. A variant of this scheme is presented in [110], where

reconstruction for 3D surfaces is carried out by taking large number of samples.

There are applications in geophysics and acoustics where the measurements can-

not be taken over the whole sphere. For example, in acoustics, head related transfer

function (HRTF) measurements are not reliable in the South polar cap region due

to reflections from the ground. Another example is the problem of polar gap in geo-

physics where the inclination of satellite orbit makes the satellite measurements on

poles unreliable. To address the issue of unreliable and inaccessible samples on the

sphere in these applications, we consider the problem of signal extrapolation on the

sphere in the second part of this chapter. In literature, many algorithms have been

proposed for extrapolation of band-limited signals on the sphere [46, 90–93]. An

analog of Papoulis algorithm [113] for continuous signals on the sphere exploiting

the band-limiting characteristics of the signal is proposed in [90] and its integral

equation formulation is developed in [91]. For discrete signals on the sphere, an

iterative algorithm is presented in [92], which converges to minimum norm least-

squares solution. Conjugate gradient extrapolation algorithm on the sphere has

been presented in [46], which in comparison to the previously proposed algorithms,

enables more accurate and fast extrapolation. [114] uses the slepian functions [34]

to develop an iterative algorithm for the extrapolation of band-limited signal on

the sphere in the presence of noise.

4.2 Part I — Generalized Iterative Residual Fit-

ting

In the first part of the chapter, we present an IRF method for the computation

of the SHT of a band-limited signal in a general setting that partitions the sub-

space of band-limited signals into orthogonal subspaces, where each orthogonal

subspace can be spanned by different numbers of basis functions. We also formu-

late multi-pass IRF to improve the accuracy of computation of the SHT. We analyze

multi-pass IRF for different choices of partitioning of the subspace and sampling
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Figure 4.1: Spherical harmonic domain representation of a band-limited signal in
HL.

schemes [59,63,110,125] and show that the computation of the SHT converges in all

cases. We also show that the convergence is fast for the partition choice considered

in this work. Here we present the generalization of the IRF method [3,110] for the

computation of the SHT of the band-limited signal g ∈ HL from its samples.

4.2.1 Iterative Residual Fitting (IRF) – Formulation

The IRF method is based on the idea to partition the subspace HL into smaller

subspaces and carry out least-squares estimation on these partitions iteratively. In

this way, a large linear problem is divided into manageable small subsets of lin-

ear problems. The subspace HL has graphical representation of the form shown

in Fig. 4.1, which also represents the SH (spectral) domain formed by the SH co-

efficients of the band-limited signal in HL. We partition HL into K orthogonal

subspaces Hk
L, k = 1, 2, · · · , K, each of dimension Nk. We analyse different choices

for partitioning later in the chapter. We index the SH functions that span the

subspace Hk
L as Ykj, j = 1, 2, · · · , Nk. We also define (g)kj =

〈
g, Ykj

〉
.

Given M samples (measurements) of the band-limited signal g ∈ HL, we wish

to compute SH coefficients. By defining a vector

G ,
[
g(x̂1), . . . , g(x̂M)]T , (4.1)
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of M measurements (samples) of the signal g ∈ HL on the sphere and the matrix

Yk, with entries {Yk}p,q = Ykq(θp, φq), of size M × Nk containing SH functions

that span the subspace Hk
L evaluated at M sampling points, the vector gk =

[gk1, gk2, · · · , gkNk
]T of SH coefficients can be iteratively computed (estimated) in

the least-squares sense as

g̃k = (YH
k Yk)

−1 YH
k rk, (4.2)

where (.)H represents the Hermitian of a matrix and

rk = G−
k−1∑
k′=1

Yk′ g̃k′ , r0 = G (4.3)

is the residual between the samples of the signal and the signal obtained by using the

coefficients g̃k′ for k′ = 1, 2, . . . , k − 1 and the estimation of coefficients is carried

out iteratively for k = 1, 2, . . . , K. We note that the computational complexity

for (4.2) for each k would be of the order of max(O(MN2
k ),O(N3

k )) = O(MN2
k ).

The computational complexity to compute (4.3) is O(ML2). We later analyse the

estimation accuracy of the IRF method for different sampling schemes on the sphere

and different partitions of the subspace HL of band-limited signals. For a special

case of partitioning the subspace HL into L subspaces Hk
L based on the degree of

spherical harmonics ` = 0, 1, . . . , L−1, it has been shown that the iterative residual

fitting allows sufficiently accurate estimation of SH coefficients [110].

The proposed IRF method enables accurate computation of the SHT of signals

with a sufficient number of randomly distributed samples. The IRF algorithm finds

significance use in applications where samples on the sphere are not taken over a

predefined grid. For example, the samples are taken over the cortical surface in

medical imaging [3], where IRF allows sufficient accurate parametric modeling of

cortical surfaces.

4.2.2 Multi-Pass IRF and Residual Formulation

To improve the estimation accuracy, we employ the so-called multi-pass IRF [110]

which is based on the use of IRF method in an iterative manner. In multi-pass

IRF, the IRF algorithm is run for a number of iterations, denoted by i = 1, 2, . . ..

To clarify the concept, we incorporate the iteration index i in the formulation in
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(4.2) and (4.3) as

g̃k(i) = (YH
k Yk)

−1 YH
k rk(i), (4.4)

rk(i) = G−
i−1∑
i′=1

k−1∑
k′=1

Yk′ g̃k′(i
′),

r0(i) = rK(i− 1), r0(1) = G. (4.5)

After i-th iteration, g̃k can be computed for each k = 1, 2, . . . , K as

g̃k(i) =
i∑

i′=1

g̃k(i
′). (4.6)

By defining

Ak , (YH
k Yk)

−1
YH
k , Ck , Yk Ak, (4.7)

the residual after the i-th iteration is given by

rK(i) =

(
K∏
k=1

(1−Ck)

)i

G. (4.8)

In general, the residual in (4.8) depends on the distribution of sampling points

and nature of partitioning of HL. In the next section, we show that the residual

converges to zero for a variety of sampling schemes and different partitions.

4.2.3 Partition Choices

In order to understand the partitioning of HL, we refer to the graphical represen-

tation of HL shown in Fig. 4.1, which describes the position of spherical harmonic

coefficients with respect to degree ` ∈ (0, 1, . . . , L− 1) and order m ≤ |`|. We give

numbers to the spectral harmonic coefficients (basis functions) shown in Fig. 4.1

from 1 to L2 in a way that we start the domain from ` = 0,m = 0 and then traverse

the whole domain by m = −` to m = ` for increasing values of `. In a similar way,

we can also traverse the whole domain by fixing m for all values of `. We analyse

four different type of partitions, whose sizes vary with the increasing or decreasing
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values of degrees ` and orders m. The size of each partition is denoted by Nk. In

all the partitions, the generalized IRF is run for all values of k and for a fixed value

of i.

Partition Choice 1

We first consider the partitioning of HL based on the spherical harmonic de-

gree [110]. We take K = L partitions Hk
L each for degree ` = k − 1 such that

the subspace Hk
L is spanned by spherical harmonics of degree k− 1. Consequently,

the dimension of each subspace is Nk = 2k− 1. As mentioned earlier, the IRF has

been applied already for this choice of partition [110]. We show through numerical

experiments that alternative choices for partitioning result in faster convergence

and more accurate computation of the SHT.

Partition Choice 2

For partition choice 2, we combine the k-th partition choice 1 and K − k + 1-th

partition choice 1, to obtain L
2

or L+1
2

partitions for even or odd band-limit L

respectively. For even L, each partition 2 Hk
L is of size Nk = 2L for k = 1, 2, . . . , L

2
.

For odd L, we have L+1
2

partitions with Nk = 2L for k = 1, 2, . . . , L−1
2

and one

partition of size NL+1
2
L.

Partition Choice 3

Here, we consider partitioning with respect to each order |m| < L (see Fig. 4.1).

Consequently, we have 2L− 1 partitions, one for each order |m| < L and spanned

by SH functions of order m.

Partition Choice 4

Partition choice 4 is obtained by combining the partitions in partition choice 3.

We obtain L partitions by combining partition choice 3 for m and −(L −m) for

m = 1, 2, . . . L− 1. With such combining, we have L partitions of HL each of size

L. We defer the analysis until Section 4.4.
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4.3 Part II — Signal Extrapolation

In the second part of the chapter, we develop an iterative algorithm for the signal

extrapolation over the inaccessible region on the sphere. The proposed method

takes samples according to the equiangular sampling scheme which supports exact

computation of SHT on the sphere. Existing schemes focus on the use of the

band-limited property of the signal, that is, the signal extrapolation is carried out

iteratively by forcing the harmonic coefficients outside the band-limit of the signal

to zero at each iteration. In the proposed algorithm, we do not only force the

harmonic coefficients to zero but also use these to improve the extrapolation of

the signal over the inaccessible region at each iteration. We conduct numerical

experiments and compare the accuracy of the proposed algorithm with iterative

conjugate gradient algorithm proposed in [46]. We also take HRTF measurements

using synthetic head model [126], extrapolate the signal on the South pole and

show that the proposed algorithm enables more accurate extrapolation than the

existing methods.

4.3.1 Proposed Extrapolation Algorithm - Preliminaries

Samples are taken over the whole sphere for the accurate computation of SHT or

signal reconstruction. However, in some applications, samples over some region of

the sphere cannot be taken due to practical limitations [90,93]. These applications

require signal processing methods or algorithms to extrapolate the signal over the

inaccessible region [46, 90–93]. We consider the same problem in this work and

propose an iterative algorithm for signal extrapolation which, in comparison with

the existing methods, enables more accurate extrapolation.

For a band-limited signal f ∈ L2(S2) with maximum spherical harmonic degree

L, we assume that the measurements or samples are available over some region

R ⊂ S2. We assume that the measurements are not available over inaccessible

region Rc = S2\R ⊂ S2. For a spatial region R, we define a space-limiting operator

DR with kernel given by

DR(, ŷ) , IR(x̂)δ(x̂, ŷ), (4.9)
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where δ(x, y) denotes the Dirac delta function [26] and

IR(x̂) ,

1 x̂ ∈ R,

0 x̂ ∈ Rc,
(4.10)

is an indicator function of the region R. Using the operator DR, we define the

problem under consideration is to extrapolate the signal f ∈ HL when only fR(x̂) ,

(DRf)(x̂) is known and fRc(x̂) , (DRcf)(x̂) is unreliable or not known. With

these definitions, we can express f as

f(x̂) = fR(x̂) + fRc(x̂), (4.11)

with representation in harmonic domain given by

(
f
)
m
` =

(
fR
)
m
` +

(
fRc

)
m
` . (4.12)

We note that the signals fR and fRc are not band-limited due to the space-limiting

operation.

4.3.2 Proposed Signal Extrapolation - Formulation

To reconstruct the original signal f(x̂), we assume that the signal is sampled over

the sampling grid ΩM where we assume M > L1. Since the original signal f is

band-limited at L, we have
(
f
)
m
` = 0 for all ` ≥ L, equation (4.12) implies

(
fRc

)
m
` = −

(
fR
)
m
` , L ≤ ` < M, |m| ≤ `. (4.13)

We also define function h(x̂) as

h(x̂) , fRc(x̂)IR(x̂), (4.14)

which can be written in the harmonic domain as

(
h
)
m
` =

M−1∑
`′m′

(
fRc

)
m′

`′

(
Z
)
m′,m
`′,` , (4.15)

1Due to the fact that the known signal fR is not band-limited.
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where
∑M−1

`′m′ ,
∑M−1

`′
∑`

m′=−`′ and

(
Z
)
m′,m
`′,` =

(
IR(x̂)Y m′

`′ (x̂)
)
m
` ,

=
M−1∑
`′′m′′

(
IRc

)
m′′

`′′ T
`′,m′,`′′,m′′

`,m . (4.16)

Here

T `
′,m′,`′′,m′′

`,m =

∫
S2
Y m′

`′ (x̂)Y m′′

`′′ (x̂)Y m
` (x̂) ds(x̂). (4.17)

4.3.3 Proposed Signal Extrapolation - Algorithm

Since fRc = 0 on R by definition, we have h(x̂) = 0 as defined in (4.14), which

implies
(
h
)
m
` = 0. Consequently, we have the following system

M−1∑
`′m′

(
fRc

)
m′

`′

(
Z
)
m′,m
`′,` = 0, (4.18)

which can be equivalently expressed as

Zf = 0, (4.19)

where Z is an M2×M2 matrix containing all the spherical harmonic coefficients of

the expression derived in (4.16) and f is vector of length M2 containing spherical

harmonic coefficients
(
f
)
m
` . During the construction of f in our proposed algorithm,

we use (4.13) to replace the unknown coefficients with the negative of the known

coefficients in each iteration. In order to solve the system in (4.19), we divide the

matrix Z and vector f into two partitions of different sizes namely Za,Zb and fa, fb

respectively. The system now is

[Za|Zb]

[
fa
fb

]
= 0. (4.20)

Note that we ensure the system proposed in (4.20) is always overdetermined by

selecting a suitable band-limit which is M = d
√

2Le. Using (4.13) and (4.20), the

unknown coefficients can be determined by

fa = Λfb, (4.21)
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where Λ = (−1)(ZT
aZa)

−1ZT
aZb. In our algorithm, we take samples of f over the

equiangular sampling grid ΩM where M > L. We first pre-compute
(
Z
)
m′,m
`′,` using

(4.16) and form matrix Z to determine Λ. We apply the space limiting operator

defined in (4.9) to get space-limited function f̂(x̂). In order to find the vector f in

(4.19), we take the SHT of space-limited function f̂(x̂), first modify it using (4.13)

and then modify it again by updating fa after computing fa using (4.21). We take

the inverse SHT of f and update the space-limited function. We use the same

procedure iteratively for K number of iterations and summarize the evaluation of

the unknown coefficients in the form of procedure 2 given below2.

Procedure 2 Iterative Extrapolation

Require:
(
f
)
m
` , ∀ 0 ≤ ` < L, |m| ≤ `

1: procedure Iterative extrapolation(fR(x̂))

2: f̂(x̂) = fR(x̂)

3: compute Z using (4.16) and evaluate Λ

4: for k = 1, 2, . . . , K do
5: compute f from f̂(x̂) using SHT

6: update f using (4.13)

7: compute fa using (4.21)

8: update f with fa

9: compute ĝ(x̂) as inverse SHT of f
10: update f̂(x̂)← f̂(x̂) + (DRc ĝ)(x̂)
11: end for

12: evaluate
(
f
)
m
` by taking SHT of f̂(x̂)

13: return
(
f
)
m
`

14: end procedure

4.4 Analysis

4.4.1 Analysis of Multi-Pass IRF

Here we analyse the accuracy of the computation of the SHT, that is, the com-

putation of SH coefficients, of the band-limited signal sampled over different sam-

pling schemes. For the distribution of samples on sphere, we consider equiangular

sampling [127] and optimal-dimensionality sampling [63] in our analysis as these

schemes support the accurate computation of the SHT for band-limited signals.

2We represent the inverse SHT of f as ĝ(x̂).



50 Signal Reconstruction on the Sphere

Among the sampling schemes on the sphere, which do not support the highly

accurate computation of the SHT, we consider the HEALPix sampling scheme [125]

and random samples with uniform distribution with respect to the differential mea-

sure sin θdθdφ. In order to analyse accuracy, we take a test signal g ∈ HL by first

generating the spherical harmonic coefficients
(
g
)
m
` with real and imaginary part

uniformly distributed in [−1, 1] and using (2.4) to obtain the signal over the samples

for each sampling scheme. For a meaningful comparison, we take approximately

the same number of points for each sampling scheme. We apply the proposed

multi-pass IRF for each choice of partition and each sampling scheme to com-

pute the estimate of SH coefficients
(
g̃
)
m
` and record the maximum error between

reconstructed and original SH coefficients given by

εmax , max
`<L, |m|≤`

|
(
g
)
m
` −

(
g̃
)
m
` |, (4.22)

which is plotted in logarithmic scale in Fig. 4.2 for band-limit L = 15. Different

partition choices and different sampling schemes (see caption for number of samples

for each sampling scheme) against the number of iterations of the proposed multi-

pass IRF are plotted, where it can be observed that 1) the error converges to

zero (10−16, double precision) for all partition choices and sampling schemes, and

2) the error converges quickly for partition choice 4.

We also validate the formulation of the residual in (4.8) by computing after

each iteration of the multi-pass IRF. To illustrate the effect of the number of sam-

ples on the accuracy of the proposed multi-pass IRF, we have taken 2L2, 4L2 and

6L2 samples of optimal dimensionality sampling [63] and plot the error εmax in

Fig. 4.2(d)-(f), where it is evident that the error converges quickly for a greater

number of samples. The convergence of the error is in agreement with the for-

mulation of the residual in (4.8), however, convergence changes with the sampling

scheme and nature of the partition of the subspace of band-limited signals.

4.4.2 Analysis of the Proposed Extrapolation Algorithm

In this section, we conduct two numerical experiments to illustrate the accuracy of

the proposed iterative extrapolation method. We compare the proposed algorithm

with the the iterative conjugate gradient method [46]. In both the experiments, we
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consider the accessible region as

R =
{
x̂(θ, φ) ∈ S2|0 ≤ θ ≤ π − θc

}
, (4.23)

where θc represents the excluded polar cap region, that is, it represents the region

where the measurements are unreliable or unaccessible. In both the experiments,

we compute the mean extrapolation error defined as

εmean ,
1

L2

L−1∑
`,m

|
(
f
)
m
` −

(
f̂
)
m
` |, (4.24)

where we take the mean of the absolute difference between actual
(
f
)
m
` and the

extrapolated values
(
f̂
)
m
` in the harmonic domain.

Experiment 1 : In the first experiment, we consider random complex valued

band-limited test signal with band-limit L = 30. We generate such test signal first

randomly selecting
(
f
)
m
` with real and imaginary parts uniformly distributed in

the interval [−1, 1] and then synthesizing signal over ΩM using (2.4). For different

values of θc = π/8, π/6, and M = 60, we apply the proposed algortihm and iterative

conjugate gradient method to extrapolate the signal in region Rc and compute the

error as defined in (4.24). We run both the algorithms for K = 100 number of

iterations and plot the mean error in Fig. 4.3, where it is evident that the proposed

algorithm enables more accurate extrapolation.

Experiment 2 : In the second experiment, we apply the proposed method to

extrapolate the head related transfer function (HRTF) on the sphere. We use

spherical head model [126] to obtain synthetic HRTF data for the following pa-

rameters: head radius, a = 0.09 m, distance from head, r = 1 m, audible frequency

range, fr = [5, 20] kHz, and speed of sound, c = 340 ms−1. The effective HRTF

band-limit is estimated by L(λ) = d eπafr
c
e + 1, where λ is a wave number and is

directly proportional to the frequency fr. HRTF measurements are not reliable

in South polar cap region due to the reflections from the ground and hence the

samples cannot be taken near the South pole. For a given frequency, fr, we obtain

the HRTF measurements, h(x̂) over the sampling grid ΩM and compute spherical

harmonic coefficients,
(
h
)
m
` using (2.5). We then apply the proposed algorithm to

extrapolate the signal in the region beyond θc = π/6 and compute the mean error as

defined in (4.24). The results of extrapolation of HRTF measurements of different
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frequencies fr = 5 kHz,10 kHz, effective band-limits, L = 15, 27 and M = 40, 70 for

K = 100 using the proposed and iterative conjugate gradient method are plotted

in Fig. 4.4. Again the numerical analysis reveals that the proposed method gives

more accurate result than the well-known iterative conjugate gradient method.

4.5 Summary of Contributions

In this chapter, we pose two problems regarding reconstruction of the signals on the

sphere. In the first part, we present the generalized iterative residual fitting (IRF)

method for the computation of the spherical harmonic transform (SHT) of band-

limited signals on the sphere. Proposed IRF is based on partitioning the subspace

of band-limited signals into orthogonal spaces. In order to improve the accuracy of

the transform, we have also presented a multi-pass IRF scheme and analysed it for

different sampling schemes and for four different size partitions. We have performed

numerical experiments to show that accurate computation of the SHT is achieved

by multi-pass IRF. For different partitions and different sampling distributions, we

have analysed the residual (error) and demonstrated the convergence of the residual

to zero. It has been demonstrated that the rate of convergence of error depends on

the sampling scheme and choice of partition.

In the second part of this chapter, we develop an iterative algorithm for ex-

trapolation of band-limited signals on the sphere from limited or incomplete mea-

surements. Existing schemes focus on the use of the band-limited property of the

signal, that is, the signal extrapolation is carried out iteratively by forcing the

harmonic coefficients outside the band-limit of the signal to zero at each iteration.

In the proposed algorithm, we do not only force the harmonic coefficients to zero

but also use these to improve the extrapolation of the signal over the inaccessible

region at each iteration. We conduct numerical experiments in order to check the

accuracy of the proposed algorithm and use Iterative Conjugate Gradient method

as benchmark for comparison. We also take HRTF measurements using synthetic

head model and extrapolate the signal on the South pole. The numerical analysis

show that the proposed algorithm enables more accurate extrapolation than the

existing methods.

Addressing Q4 posed in Section 1.2.1:

• It has been demonstrated that the rate of convergence of error depends on
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the sampling scheme and choice of partition. For different partitions and

different sampling distributions, we have analysed the residual (error) and

demonstrated the convergence of the residual to zero.

Addressing Q5 posed in Section 1.2.1:

• We develop an iterative algorithm for extrapolation of band-limited signals on

the sphere from limited or incomplete measurements. We conduct numerical

experiments in order to check the accuracy of the proposed algorithm and

use Iterative Conjugate Gradient method as benchmark for comparison. We

also take HRTF measurements using synthetic head model and extrapolate

the signal on the South pole. The numerical analysis show that the proposed

algorithm enables more accurate extrapolation than the existing methods.
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Figure 4.2: Maximum reconstruction error εmax, given in (4.22), between the orig-
inal and reconstructed SH coefficients of a band-limited signal with L = 15. Re-
constructed SH coefficients are obtained using the proposed multi-pass IRF, where
the samples of the signal are taken as (a) 991 samples of the Equiangular sampling
scheme, (b) 972 samples of the HEALpix sampling scheme, (c) 900 random sam-
ples (d) 450 (e) 900 and (f) 1350 samples of the optimal dimensionality sampling
scheme.
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Figure 4.3: Mean extrapolation error εmean given in (4.24), for Experiment 1, for a
random signal, band-limited at L = 30 and sampled over ΩM with M = 60 for (a)
θc = π/8 and (b) θc = π/6 .
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Figure 4.4: Mean extrapolation error εmean given in (4.24), for Experiment 2, for
HRTF measurements over R with θc = π/6 taken at (a) frequency fa = 5kHz,
effective band-limit L = 15 and M = 40 and (b) frequency fr=10kHz, effective
band-limit L = 27 and M = 70.





Chapter 5

Spatial Filtering for Applications

in Acoustics

Spherical microphone arrays sample the sound field on the sphere in both space

and time. The performance of spherical microphone arrays is typically limited by

spatial aliasing which introduces side-lobes in the array beam pattern. In order to

reduce the aliasing error, anti-aliasing filters, both ideal and spatially constrained,

have been presented in the literature. In this chapter, we propose the design of

spatially constrained filter which approximates an ideal anti-aliasing filter used in

literature as a weighted sum of concentrated eigenfunctions obtained by solving

the Slepian concentration problem on the sphere. Three performance parameters

namely white noise gain (WNG), directivity index (DI) and processing loss are

employed to compare the performance of proposed filter with the ideal filter. We

propose a parameter-constrained filter design by maximizing WNG subject to con-

straints on the directivity index and processing loss of the proposed filter. We also

propose a Slepian eigenfunction window which spatially truncates the ideal anti-

aliasing filter used in literature to design a spatially constrained anti-aliasing filter.

For windowing, we provide an illustration to show that the aliasing on the beam

pattern is reduced by the use of the proposed anti-aliaisng filter and compare the

results with the spatially constrained filters obtained by applying rectangular and

Hamming windows.

The chapter is organised as follows. The problem under question is posed by

reviewing literature in Section 5.1. Sampling scheme used, aliasing function and

spatial filtering are reviewed in detail in Section 5.2. The proposed constrained

filter designs are discussed in Section 5.3, where we also analyse the performance

57
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of the filter based on WNG, DI and processing loss. Construction of the eigen-

function window and use of window functions in producing spatially constrained

anti-aliasing filters are also discussed in detail. An array example is also provided

to see the effect of aliasing and benefit of anti-aliasing filter. In Section 5.3 the

research contributions are discussed.

5.1 Prior Work

In many real world applications, signals are naturally defined on the sphere. Par-

ticularly, in acoustics, spherical microphone arrays have been used for sound field

analysis [115], sound field recordings [116], [117] and beamforming [118], [119]. In

array processing, the spherical harmonics transform (SHT) [26] is used to examine

the array performance [119]. At high frequencies, however, the array performance

is limited by spatial aliasing [94] as side lobes are generated in the array beam

pattern. In literature, there exists certain sampling schemes that provide aliasing

free sampling for band-limited array measurements [95], however, acoustics sound

fields such as measurements of sound pressure produced by plane waves are not

band-limited on the sphere, giving rise to spatial aliasing at higher frequencies in

practice.

In [94], a theoretical analysis of the spherical microphone reveals spatial alias-

ing as the significant factor impacting the performance of the antenna array. Sev-

eral approaches to handle the spatial aliasing such as spatial anti-aliasing filters,

using sensors with high directivity and reduction of spatial resolution at higher

frequencies are presented in [120]. Anti-aliasing filters are deployed to improve the

performance of the microphone arrays in [95], where spatial truncation is applied

by first designing an ideal filter and then applying window functions on ideal fil-

ter in order to get spatially constrained anti-aliasing filters. In [128], a spatially

constrained anti-aliasing filter based on spatial truncation of ideal filter by Slepian

eigenfunction window obtained as a solution of Slepian concentration problem on

the sphere [38], [34] is proposed.
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5.2 Spatial Aliasing and Filtering on the sphere

5.2.1 Aliasing Function

Spatial aliasing affects the performance of spherical microphone arrays at high

frequencies. In the literature, there are sampling schemes which provide aliasing

free sampling for band-limited functions on the sphere. The sound pressure, how-

ever is not a band-limited function on sphere and hence measurements are affected

by spatial aliasing at higher frequencies [117]. A detailed analysis of the nature of

aliasing error in spherical microphone arrays is given in [94]. We adopt equiangular

sampling scheme proposed in [59] as it requires least number of samples for exact

computation of SHT defined in (2.5) of a band-limited signal on the sphere and

use ΩM to denote the set of equiangular sampling points taken on L iso-latitude

rings. We sample the function (such as sound pressure) by N microphone arrays

at positions Ωj and its spherical coefficients are estimated by using (2.4) as

(
f̂
)
m
` =

N∑
j=1

ωjf(θj, φj)Y m
` (θj, φj),

=
∞∑
`′=0

`′∑
m′=−`′

(
f
)
m′

`′

N∑
j=1

ωjY
m′

`′ (θ′j, φ
′
j)Y

m
` (θj, φj), (5.1)

where ωj are the weights which depend on the sampling scheme chosen and

N∑
j=1

ωjY
m′

`′ (θ′j, φ
′
j)Y

m
` (θj, φj) =

δ``′δmm′ `, `′ ≤ L,

ε`,m,`′,m′ ` ≤ L < `′,
(5.2)

where δ``′δmm′ represent the Kronecker delta function and ε`,m,`′,m′ is the aliasing

error.

5.2.2 Spatial Filtering and Ideal Anti-Aliasing Filter

Let f represents the sound pressure and the measurements are taken by rotating

the microphone around the sphere. The spatial filtering can be obtained by using

spherical correlation of pressure function f and a azimuthally symmetric spatial
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filter, denoted by h as [71]

F (α, β, γ) =

∫
S2
f(Ω)Λ(α, β, γ)h(Ω) sin θdθdφ, (5.3)

where Ω ∈ S2 represents the position on the sphere and Λ(α, β, γ) is the rotation

operator in SO(3), where α and γ represents rotation along the z-axis and β

rotation along the y-axis. The spherical correlation in (5.3) can be re-written

as [71]

F (Λ) =
∞∑
`=0

∑̀
m=−`

∑̀
m′=−`

(
f
)
m
`

(
h
)
m
` D

mm′
`′ (Λ), (5.4)

where Dmm′

` (Λ) are the wigner-D functions [26], which are basis functions for the

fourier transform on the rotation group SO(3). Because of azimuthal symmetry, h

is invariant under rotation along the z-axis (γ = 0), that is, Λ(α, β, γ) = Λ(α, β),

F is mapped to S2 as

F (α, β) =
∞∑
`=0

∑̀
m=−`

(
f
)
m
`

(
h
)

0
`D

m0
` (α, β, 0),

=
∞∑
`=0

∑̀
m=−`

(
f
)
m
`

(
h
)

0
`

√
4π

2`+ 1
Y m
` (α, β),

=
∞∑
`=0

∑̀
m=−`

(
F
)
m
` Y

m
` (α, β), (5.5)

where

(
F
)
m
` =

(
f
)
m
`

(
h
)

0
`

√
4π

2`+ 1
. (5.6)

It can be seen that aliasing error will diminish if such a filter h can be designed

which has low or zero values at high frequencies in the harmonic domain. Following

(5.5), an ideal anti-aliasing filter can be designed as

(
h
)

0
` =


√

2`+1
4π

0 ≤ ` ≤ L,

0 ` > L,
(5.7)
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Figure 5.1: Magnitude of the ideal anti-aliasing filter as a function of elevation
angle θ for various values of L.

and the spatial filter h can be obtained by taking inverse SHT as

h(θ, φ) =
L∑
`=0

√
2`+ 1

4π
Y 0
` (θ, φ),

=
L

4π(cos θ − 1)
[PL(cos θ)− PL−1(cos θ)]. (5.8)

Fig. 5.1 shows the magnitude of the ideal anti-aliasing filter as a function of the

elevation angle θ , for different band-limits L , normalized to have a unity gain at

θ = 0.

5.3 Spatially Constrained Anti-aliasing Filter

Using an ideal filter means building such a microphone which has a sensing surface

covering the entire sphere which is not cost efficient. Practically, we want such a

sensor which is more spatially constrained and cover only a small section of the

sphere. In order to experience minimum possible aliasing, it is desirable to design

such a spatially constrained filter whose performance matches an ideal filter. In

this chapter, we use eigenfunctions obtained by solving the Slepian concentration

problem on the sphere [34, 38, 129] to design spatially constrained anti-aliasing fil-

ter. We also use the highest energy eigenfunction as window and obtain spatially
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constrained anti-aliasing filter. The proposed eigenfunction filter and use of eigen-

function as window to design spatially constrained anti-aliasing filter are discussed

in the following parts of this chapter.

5.3.1 Slepian Concentration Problem - Band-limited Eigen-

functions

As a solution of the eigenvalue problem associated with the Slepian concentration

problem on the sphere [34,38,129], we obtain band-limited functions on the sphere

that maximizes the ratio of the energy in the desired polar cap region (parameter-

ized by angle θc and is defined as Rθc = {(θ, φ) ∈ S2, 0 ≤ θ ≤ θc}) to the energy

over the whole sphere. The azimuthally symmetric eigenfunctions g with band-

limit L and energy concentration within the polar cap of angle θc are obtained as

a solution of the following algebraic eigenvalue problem [34]

Kg = λg, (5.9)

where g = [
(
g
)

0
0,
(
g
)

0
1, · · · ,

(
g
)

0
L] is a column vector of size (L + 1) containing

spherical harmonic coefficients of zero order of g and K is real and symmetric

matrix with dimensions (L+ 1)× (L+ 1) with entries given by

K`,`′ = 2π

∫ θc

0

Y 0
` (θ, 0)Y 0

`′ (θ, 0) sin θdθ,

=

√
(2`+ 1)(2`′ + 1)

2

n=`+`′∑
n=`−`′

(
` n `′

0 0 0

)2

× [Pn−1(cos θ)− Pn+1(cos θ)], (5.10)

where the term in the parenthesis are Wigner-3j symbols which are required to be

evaluated for the computation of K. The eigenvalue problem in (5.9) can also be

solved by eigen decomposition of a matrix S of size (L+ 1)× (L+ 1) commuting it

with K, that is, KS = SK. S is a tridiagonal matrix having the following entries

[34,129]

S`,`+1 =
(`+ 1)(`(`+ 2)− (L)(L+ 2))√

(2`+ 1)(2`+ 3)
,
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S`,` = −`(`+ 1) cos(θc), S`,`′ = 0. (5.11)

The eigen decomposition of S gives L + 1 eigenvectors of the form gα. Since the

eigenvalue problem in (5.9) is formulated in the spectral domain, each eigenvector

represents the spectral domain (spherical harmonic coefficients) of the associated

azimuthally symmetric eigenfunction gα(θ) in the spatial domain. We have the

following orthonormality and orthogonality relations for the eigenfunctions

g′Tα gα = 〈gα, g′α〉 = δαα′ , g′Tα Kgα = λδαα′ , (5.12)

where (·)T represents the transpose operation and 0 ≤ λα ≤ 1 associated with the

eigenfunction represents a measure of energy concentration of the eigenfunction in

the polar cap region Rθc .

5.3.1.1 Proposed Filter Design

In order to design the proposed spatially constrained anti-aliasing filter, we take the

most Nt concentrated eigenfunctions obtain as a solution of Slepian concentration

problem for band-limit L and polar cap region Rθc . We note that the sum of

eigenvalues Nt = d (L+1)θc
π
e serves as a good measure to approximate the number of

concentrated eigenfunctions [80]. We propose to design the band-limited filter h̃,

parameterized by band-limit L and θc defining the polar cap region, as a weighted

sum of Nt eigenfunctions. We formulate this construction in the harmonic domain

as

(
h̃
)

0
` = β1

(
g1

)
0
` + β2

(
g2

)
0
` + · · ·+ βNt

(
gNt

)
0
` , (5.13)

where β represents the corresponding weights and are evaluated such that the pro-

posed filter approximates the ideal filter in the least-squares sense. Since we use

the eigenfunctions that are characterized by both L and θc, we note that the pro-

posed filter depends on L and θc, that is, h̃ = h̃(L, θc). The rationale behind the

proposed construction is to use spatially concentrated eigenfunctions to approxi-

mate the band-limited filter and enabling the control on the spatial resolution θc

of the filter. We note that we recover the ideal filter, that is, h̃(L, π) = h, when

θc = π (the polar cap region is whole sphere Rπ = S2).
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5.3.1.2 Parameter constrained Filter Design and Analysis

Using the proposed construction of the filter, we also present a parameter con-

strained filter design taking into account the array performance parameters. The

performance parameters under study are white noise gain (WNG), directivity index

(DI) [130] and processing loss [131]. To maintain consistency in the analysis, we

normalise the harmonic coefficients of both the ideal and the proposed filter to have

unit energy, that is, ||h|| = ||h̃|| = 1. Here we define the performance parameters

and compare the performance of the ideal and proposed filter based on these param-

eters under certain settings. Later, we apply constraints on the proposed spatially

constrained anti-aliasing filter and design an optimal parameter-constrained filter

that maximizes WNG.

White Noise Gain (WNG): WNG is a measure of the improvement in signal to

noise ratio at the array output compared to the array input. Assume an array of

band-limit L with P ≥ L2 microphones, the WNG with the array looking at the

arrival direction (θi, φi) of the plane wave can be written as [130]

WNG =
P

4π2

|
L∑̀
=0

c` (2`+ 1)|2

L∑̀
=0

|c`|2
|b`|2

(2`+ 1)

, (5.14)

where c` is equal to
(
h̃
)

0
`

√
4π

2`+1
and b` for the rigid sphere is calculated from [94].

Directivity Index (DI): The directivity index (DI) gives a measure to improved

directivity of the array compared to an omnidirectional microphone [130] and can

be written as the ratio of the array output in the look direction and the array

output integrated over all directions. Assume that the array look direction is ,

(θi, φi)=(0,0), that is, the z-axis direction, and the directive index can be written

as

DI =

|
L∑̀
=0

c` (2`+ 1)|2∑L
`=0 |c`|2 (2`+ 1)

. (5.15)

Processing Loss (γ): A certain amount of the signal is lost when a field is filtered.
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We quantify such processing loss, γ, as

γ = 1− ζ, ζ =
L−1∑
`

c2
`

L
, (5.16)

where ζ is the damping factor which provide information about the extent of damp-

ness in amplitude in the filtering.

Analysis — Proposed Filter

Based on three performance parameters defined previously, we compare the per-

formance of the proposed spatially constrained filter with the ideal filter under two

experimental settings in Fig. 5.2 and Fig. 5.3. Fig. 5.2 compares the performance

of the ideal filter and the proposed filter designed for band-limit L = 20 and polar

cap regions, where θc is chosen in the range π/18 ≤ θc ≤ 2π/3. It can be seen that

WNG of the proposed filter is better than the ideal filter for selected values of θc.

The directivity index of the proposed filter approaches the value attained by the

ideal filter as θc increases from 0 to π. Processing loss (γ) of the ideal filter is zero

and it can be seen that processing loss approaches the ideal filter for some values

of θc. To analyse the impact of changing band-limits of the filter while keeping the

same polar cap region in the design, we compare the performance parameters in

Fig. 5.3 for θc = π/4 and band-limit 5 ≤ L ≤ 40.

Constrained Filter Design

In constrained design of the filter, h̃(L, θc), we find θc by formulating the following

optimization problem

maximize
h̃

WNG

subject to ζ ≥ 0.99,

DI = δL,

(5.17)

where δL denotes the directivity index of ideal filter for a band-limit, L. Since the

optimization problem in (5.17) is intractable, we solve it numerically and choose
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such θc for which

|
L−1∑
`=0

c`proposed (2`+ 1)|2 > (0.99L),

δL

L−1∑
`=0

|c`proposed|2 (2`+ 1) > |
L−1∑
`=0

c`ideal (2`+ 1)|2. (5.18)

where we put constraints on the processing loss and take the directivity index of the

proposed filter to be equal to that of the ideal filter as our design requirements are

limited to maximizing the WNG. After putting constraints and optimizing WNG,

we have a filter which has a better WNG compared to the spatially unconstrained

ideal filter for any band-limit L and the optimized polar cap, θ̂c as shown in Fig. 5.4.

5.3.2 Spatially Constrained Anti-Aliasing Filters — Win-

dowing

Another way to design a spatially constrained anti-aliaisng filter is to spatially

truncate the ideal filter by applying a window of width θc. In the following, we will

study three type of windows namely rectangular window, Hamming window and

the Slepian eigenfunction window [95,129].

5.3.2.1 Rectangular Window

The rectangular window performs spectral truncation upto a certain band-limit, L

and its spectral form is given by

(
h
)

0
` =

1 0 ≤ ` ≤ L,

0 otherwise.
(5.19)

5.3.2.2 Hamming Window

The Hamming window in Eucledian domain [132] is defined in terms of the width

of the main lobe θc as follows
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h(θ, θc) =

0.54 + 0.46 cos(πθ/θc) 0 ≤ θ ≤ θc,

0 otherwise.
(5.20)

5.3.2.3 Slepian Eigenfunction Window

The eigen decomposition of S gives L+1 eigen vectors of the form gα and one

with the largest eigenvalue gives the spectral domain representation, (h)0
` = g0

` of

desired eigenfunction window, that is for Nt = 1. For L = 5, it is observed from

Fig. 5.1 that ideal filter designed in (5.8) has significant values below the first zero

at θ = 44◦. In order to design spatially constrained filter, we apply rectangular,

Hamming and proposed eigenfunction windows of width θc = 44◦ to the ideal filter

in (5.8). Fig. 5.5 shows the magnitude of the spherical harmonic coefficients of

these spatially constrained windows plotted against degrees ` and for comparison

the coefficients of ideal filter are also plotted. It can be seen that eigenfunction

windows out-performs rectangular and Hamming windows attenuating most of the

higher frequency harmonics above ` = L. Note that increasing the window width

will further improve the attenuation and reduce the overall aliasing error.

Array Processing Analysis — Windowing

In this example, we consider a spherical microphone array which samples the sound

pressure, p(kr,Ω) of a plane wave sound field on the sphere, where k is the wave

number and r is the radius of the rigid sphere [130]. A single unit amplitude plane

wave is assumed to be arriving from direction Ωo = (π/2, 0) and the plane wave

decomposition is analysed in directions, Ωt ∈ (π/2, [0, 2π]). In array processing,

aliasing errors are produced at high frequencies, particularly for kr > 7 [95]. In

this example, significant aliasing errors are expected as a fourth order array with

frequency kr = 7 is analysed. The array output for a practical array of order ` ≤ L

is calculated as

y =

∫
S2
p(kr,Ω)w(Ω) sin θ dθ dφ,

=
L−1∑
`=0

∑̀
m=−`

(
p
)
m
` (kr)wm` (kr), (5.21)
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where
(
p
)
m
` (kr) = b`(kr)Y

m
` (Ωo) are the estimated spherical harmonic coefficients

of sound pressure, p and wm` (kr,Ωt) = Y m
` (Ωt)/b`(kr) are the Fourier coefficients of

plane wave decomposition weights, w. Note that b` for the rigid sphere is calculated

from [94]. The estimated pressure coefficients include aliasing and to remove the

aliasing error, the coefficients are filtered by anti-aliasing filters described in section

III-C using (5.6). The array directivity for various array look directions Ωt is then

calculated as

y(Ωt) =
L−1∑
`=0

∑̀
m=−`

(
p̃
)
m
` (kr)wm` (kr,Ωt), (5.22)

where
(
p̃
)
m
` (kr) are the estimated pressure coefficients obtained after low pass effect

of anti-aliasing filters. In Fig. 5.6, we plot the array directivity for five different

cases in form of polar plots. Fig. 5.6(a) shows array directivity when there is no

aliasing error, that is,
(
p̃
)
m
` =

(
p
)
m
` . Directivity including aliasing error without

using any anti-aliasing filter is shown in Fig. 5.6(b) where it is seen that there

is a significant increase in the sidelobes due to the spatial aliasing introduced by

significant high frequency harmonics. Fig. 5.6(c), Fig. 5.6(d) and Fig. 5.6(e) shows

array directivity pattern when we perform spatial truncation of the ideal filter by

using rectangular window, Hamming window and eigenfunction window of width

θo = 44◦, respectively. It is observed from the polar plots obtained by applying

sptaially constrained anti-alisaing filters that there is a significant reduction in

the sidelobes introduced by aliasing errors in Fig. 5.6(b). Also, the spatially

constrained anti-aliasing filter obtained by applying eigenfunction window provides

higher attenuation and better results than the rectangular and Hamming windows

based spatially constrained anti-aliasing filters.

5.4 Summary of Research Contribution

In this chapter, we design a spatially constrained anti-aliasing filter as a weighted

sum of band-limited spatially (optimal) concentrated functions. Given the spatial

constraints, the proposed filter approximates an ideal low-pass filter on the sphere

in the least-squares sense. The weights are applied to the band-limited eigenvectors

or eigenfunctions obtained by the solution of the Slepian concentration problem on

the sphere. The filter obtained as a result of this multiple regression depends on
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the value of band-limit, L and maximum concentration region known as polar cap

parameterized by its central angle θc. We choose Nt < L + 1 maximally concen-

trated eigenvectors where we choose Nt such that we only use spatially concen-

trated functions in the design. We examine the performance of the proposed filter

by measuring parameters like white noise gain (WNG), directivity index (DI)and

processing loss (γ), and compare the results with the ideal filter. We compare

the performance of two filters first by varying polar cap of angle θc keeping the

band-limit L constant and then varying band-limits keeping the polar cap region

constant. By putting constraints on the directivity index and processing loss, we

propose a parameter-constrained filter design and choose θc such that white noise

gain of the proposed filter is maximized. Our analysis show that based on the

selected design requirements, the proposed spatially constrained anti-aliasing filter

surpasses the ideal filter in performance. We also propose to use suitably selected

Slepian eigenfunction window (Nt = 1) for spatial truncation in order to get spa-

tially constrained anti-aliasing filter from ideal filter and compare the results with

the rectangular and Hamming windows proposed in literature. Our analysis shows

that for the reduction of side lobes produced by spatial aliasing error, anti-aliasing

filter spatially truncated by the proposed eigenfunction window is a better choice

than the rectangular and Hamming windows.

Addressing Q6 posed in Section 1.2.1:

• We have designed a spatially constrained anti-aliasing filter by spatially trun-

cating ideal filter applying Slepian eigenfunction window of certain width

θc = 44◦ and compare the result using array processing example with the

rectangular and Hamming windows proposed in literature. Our analysis show

that the anti-aliasing filter design using the proposed Slepian eigenfunction

window reduces the side lobes significantly as compared to other filters.

Addressing Q7 posed in Section 1.2.1:

• We design a spatially constrained anti-aliasing filter as a weighted sum of

band-limited spatially (optimal) concentrated functions. Given the spatial

constraints, the proposed filter approximates an ideal low-pass filter on the

sphere in the least-squares sense. We choose Nt < L + 1 maximally con-

centrated eigenvectors where we choose Nt such that we only use spatially

concentrated functions in the design. By putting constraints on the direc-

tivity index and processing loss, we propose a parameter-constrained filter
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design and choose θc such that white noise gain of the proposed filter is max-

imized. Our analysis show that based on the selected design requirements,

the proposed spatially constrained anti-aliasing filter surpasses the ideal filter

in performance.
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Figure 5.2: Performance parameters, (a) white noise gain (WNG), (b) directivity
index (DI) and (c) processing loss (γ), of ideal and proposed spatially constrained
filter having fixed band-limit, L = 20 and plotted for random polar cap regions of
angle, π/18 ≤ θc ≤ 2π/3.
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Figure 5.3: Performance parameters, (a) white noise gain (WNG), (b) directivity
index (DI) and (c) processing loss (γ), of ideal and proposed spatially constrained
for band-limit, 5 ≤ L ≤ 40 and θc = π/4.
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Figure 5.4: The optimized WNG of the proposed eigen filter against ideal filter,
plotted for chosen optimized polar cap, (θ̂c) for 5 ≤ L ≤ 40.
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strained filters using rectangular window, Hamming window and proposed Slepian
eigenfunction window of width θc = 44◦.
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Figure 5.6: Magnitude of the fourth order plane wave decomposition array direc-
tivity with (a) ideal sampling, no aliasing error (b) sampling without anti-aliasing
filter (c) sampling with rectangular window spatially constrained anti-aliasing fil-
ter (d) sampling with Hamming window spatially constrained anti-aliasing filter
(e) sampling with proposed Slepian eigenfunction window spatially constrained
anti-aliasing filter.



Chapter 6

Conclusions and Future Research

Directions

In this chapter, general conclusions have been drawn from the thesis. The specific

contribution of each chapter and its summary can be found at the end of each

chapter, thus are not repeated here. We also outline some future research directions

arising from this work.

6.1 Conclusions

The main focus of this thesis is the extension of existing spherical signal processing

techniques in order to achieve accurate reconstruction of the signals on the sphere

and use the current techniques to devise methods which are useful in practical

applications.

In Chapter 3, we proposed an optimal-dimensionality sampling scheme for

the accurate reconstruction of band-limited spin-s functions on the sphere and

developed a method to compute s-SHT associated with the proposed sampling

scheme. We placed samples such that the system under consideration remains well-

conditioned. We showed that the accurate computation of s-SHT can be achieved

by using optimal L2 − s2 samples. In order to improve the accuracy, a multi-pass

s-SHT algorithm has been proposed. We show that the proposed sampling scheme

is superior to existing schemes in terms of geometrical properties such as geodesic

distance, mesh norm and mesh ratio.

In Chapter 4, we discuss two problems regarding reconstruction of the signals

on the sphere. In the first part, we present the generalized iterative residual fit-

75
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ting (IRF) method for the computation of the spherical harmonic transform (SHT)

of band-limited signals on the sphere. In order to improve the accuracy of the trans-

form, we have also presented a multi-pass IRF scheme and analysed it for different

sampling schemes and for four different size partitions. For different partitions and

different sampling distributions, we have analysed the residual (error) and demon-

strated the convergence of the residual to zero. In the second part of that chapter,

we develop an iterative algorithm for extrapolation of band-limited signals on the

sphere from limited or incomplete measurements. Existing schemes focus on the

use of the band-limited property of the signal, that is, the signal extrapolation is

carried out iteratively by forcing the harmonic coefficients outside the band-limit of

the signal to zero at each iteration. In the proposed algorithm, we do not only force

the harmonic coefficients to zero but also use these to improve the extrapolation

of the signal over the inaccessible region at each iteration. The numerical analysis

show that the proposed algorithm enables more accurate extrapolation than the

existing methods.

In Chapter 5, we design a spatially constrained anti-aliasing filter as a weighted

sum of band-limited spatially (optimal) concentrated functions. Given the spatial

constraints, the proposed filter approximates an ideal low-pass filter on the sphere

in the least-squares sense. We choose Nt < L + 1 maximally concentrated eigen-

vectors where we choose Nt such that we only use spatially concentrated functions

in the design. We examine the performance of the proposed filter by measuring

parameters like white noise gain (WNG), directivity index (DI) and processing loss

(γ), and compare the results with the ideal filter. By putting constraints on the

directivity index and processing loss, we propose a parameter-constrained filter de-

sign and choose θc such that white noise gain of the proposed filter is maximized.

Our analysis show that based on the selected design requirements, the proposed

spatially constrained anti-aliasing filter surpasses the ideal filter in performance.

We also propose to use suitably selected Slepian eigenfunction window (Nt = 1) for

spatial truncation in order to get spatially constrained anti-aliasing filter from ideal

filter. Our analysis shows that for the reduction of side lobes produced by spatial

aliasing error, anti-aliasing filter spatially truncated by the proposed eigenfunction

window is a better choice than the rectangular and Hamming windows.
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6.2 Future Research Directions

A number of interesting future research directions arise from the work presented

in this thesis.

• In Chapter 3, the proposed sampling scheme attain an optimal number of

samples and have the lowest attainable reconstruction error. We have also

observed the variation of reconstruction error by varying the integer spin, s.

As integer spin, s increases, the condition number of the inverting matrix sDm

becomes very large and hence the systems becomes ill-conditioned. Future

research should consider pre-conditioning techniques in order to maintain the

well-conditioned state of the under determined system.

• Signals in some real world applications are not band-limited and hence future

research related to sampling schemes on the sphere should consider signals

that are not band-limited. We need to devise methods and model sampling

schemes with more relaxed assumptions.

• Geometrical properties give us an insight into the nature of the distribution of

the points of a sampling scheme. Future work should involve taking samples

considering perfect geometrical distribution in mind, for example, samples on

a sphere can be taken by keeping the minimum geodesic distance the same

between the two points on the sphere.

• In Chapter 4, we analysed multi-pass IRF by dividing the subspace into

different partitions. We observe that the residual error converges to zero

faster for some partitions. Future research work should analyse this feature.

• Following the work done in Chapter 4, we can devise similar methods to

achieve interpolation or extrapolation on the sphere. One such example is

sinc interpolation in the Euclidian domian. To the best of our knowledge,

sinc interpolation algorithm has not been devised in spherical settings.

• In acoustics, work can be done in the spherical settings, for example we should

devise methods to improve the complexity (O(L6)) of the algorithms used to

detect the direction of arrival (DOA) from a source.
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[9] P. Schröder and W. Sweldens, “Spherical wavelets: Efficiently representing

functions on a sphere,” in Wavelets in the Geosciences, Roland Klees and

Roger Haagmans, Eds., vol. 90 of Lecture Notes in Earth Sciences, pp. 158–

188. Springer, Berlin Heidelberg, 2000, (Reprinted from Computer Graphics

Proceedings, 1995, 161-172, ACM Siggraph.).

[10] C. H. Brechbühler, G. Gerig, and O. Kübler, “Parametrization of closed sur-
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[69] K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Rei-

necke, , and M. Bartelmann, “HEALPix: A framework for high-resolution

discretization and fast analysis of data distributed on the sphere,” Astro-

physical J., vol. 622, no. 2, pp. 759–771, Apr. 2005.

[70] Y. Wiaux, L. Jacques, and P. Vandergheynst, “Fast spin 2 spherical harmon-

ics transforms and application in cosmology,” J. Comput, Phys., vol. 226,

no. 2, pp. 2359–2371, 2005.

[71] P. J. Kostelec and D. N. Rockmore, “FFTs on the rotation group,” J. Fourier

Anal. and Appl., vol. 14, pp. 145–179, 2008.

[72] C. AN, X. Chen, I. H. Sloan, and R. S. Womersley, “Well conditioned spher-

ical designs for integration and interpolation on the two-sphere,” SIAM J.

Numer. Anal., vol. 48, no. 6, pp. 2135–2157, Dec. 2010.



Bibliography 87

[73] E. Bannai and E. Bannai, “A survey on spherical designs and algebraic

combinatorics on spheres,” Eur. J. Comb., vol. 30, no. 6, pp. 1392–1425,

Aug. 2009.

[74] W. Skukowsky, “A quadrature formula over the sphere with application to

high resolution spherical harmonic analysis,” J. Geodesy, vol. 60, no. 1, pp.

1–14, Mar. 1986.

[75] A. G. Doroshkevich, P. D. Naselsky, O. V. Verkhodanov, D. I. Novikov, V. I.

Turchaninov, I. D. Novikov, P. R. Christensen, and Chiang, “Gauss Legendre

Sky Pixelization (GLESP) for CMB maps,” Int. J. Mod. Phys. D., vol. 14,

no. 02, pp. 275–290, Feb. 2005.

[76] X. Chen, A. Frommer, and B. Lang, “Computational existence proofs for

spherical t-designs,” Numer. Math., vol. 117, no. 2, pp. 289–305, Feb. 2011.

[77] X. Chen, A. Frommer, and B. Lang, “Computational existence proofs for

spherical t-designs,” Numer. Math., vol. 117, no. 2, pp. 289–305, Feb. 2011.

[78] M. Reimer, Constructive theory of multivariate functions: with an application

to tomography, BI-Wissenschaftverlag, 1990.

[79] M. Reimer, “Spherical polynomial approximations: a survey,” MATH RES,

vol. 107, pp. 231–252, Nov. 1999.

[80] M. A. Wieczorek and F. J. Simons, “Localized spectral analysis on the

sphere,” Geophys. J. Int., vol. 162, no. 3, pp. 655–675, Sept. 2005.

[81] M. A. Sharifi and S. Farzaneh, “Regional TEC dynamic modeling based on

Slepian functions,” Adv. Space Res, vol. 56, no. 5, pp. 907–915, Sept. 2015.

[82] K. Jahn and N. Bokor, “Vector Slepian basis functions with optimal energy

concentration in high numerical aperture focusing,” Opt. Commun, vol. 285,

no. 8, pp. 2028–2038, Nov. 2012.

[83] A. P. Bates, Z. Khalid, and R. A. Kennedy, “Efficient computation of Slepian

functions for arbitrary regions on the sphere,” ArXiv preprint 1608.05479,

Aug. 2016.



88 Bibliography

[84] A. Albertella and N. Sneeuw, “The analysis of gradiometric data with Slepian

functions,” Phys. Chem. Earth Pt. A, vol. 25, no. 9, pp. 667–672, Dec. 2000.

[85] C. Harig and F. J. Simons, “Ice mass loss in Greenland, the Gulf of Alaska,

and the Canadian Archipelago: Seasonal cycles and decadal trends,” Geo-

phys. Res. Lett., vol. 43, no. 7, pp. 3150–3159, Apr. 2016.

[86] F. A. Dahlen and F. J. Simons, “Spectral estimation on a sphere in geophysics

and cosmology,” Geophys. J. Int., vol. 174, pp. 774–807, 2008.

[87] A. Plattner and F. J. Simons, “High-resolution local magnetic field models

for the Martian South Pole from Mars Global Surveyor data,” J. Geophys.

Res. Planets, vol. 120, no. 9, pp. 1543–1566, Sept. 2015.

[88] A. P. Bates, Z. Khalid, and R. A. Kennedy, “Slepian spatial-spectral concen-

tration problem on the sphere: Analytical formulation for limited colatitude-

longitude spatial region,” IEEE Trans. Signal Process., vol. 65, no. 6, pp.

1527–1537, Mar. 2017.

[89] C. Lessig and E. Fiume, “On the effective dimension of light transport,” in

Proc. Eurographics Symposium on Rendering 2010, Saarbrücken, Germany,

June 2010, vol. 29, pp. 1399–1403.

[90] W. Zhang, R. A. Kennedy, and T. D. Abhayapala, “Signal estimation from

incomplete data on the sphere,” in 2008 Australian Communications Theory

Workshop, Jan 2008, pp. 39–44.

[91] R. A. Kennedy, W. Zhang, and T. D. Abhayapala, “Spherical harmonic

analysis and model-limited extrapolation on the sphere: Integral equation

formulation,” in 2008 2nd International Conference on Signal Processing

and Communication Systems, Dec 2008, pp. 1–6.

[92] W. Zhang, R. A. Kennedy, and T. D. Abhayapala, “Iterative extrapola-

tion algorithm for data reconstruction over sphere,” in 2008 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing, March 2008,

pp. 3733–3736.

[93] L. S. Zhou, C. C. Bao, M. S. Jia, and B. Bu, “Range extrapolation of head-

related transfer function using improved higher order ambisonics,” in Sig-



Bibliography 89

nal and Information Processing Association Annual Summit and Conference

(APSIPA), 2014 Asia-Pacific, Dec 2014, pp. 1–4.

[94] B. Rafaely, “Analysis and design of spherical microphone arrays,” IEEE

Transactions on speech and audio processing, vol. 13, no. 1, pp. 135–143,

2005.

[95] B. Rafaely, B. Weiss, and E. Bachmat, “Spatial aliasing in spherical micro-

phone arrays,” IEEE Transactions on Signal Processing, vol. 55, no. 3, pp.

1003–1010, 2007.

[96] M. Zaldarriaga and U. Seljak, “All-sky analysis of polarization in the mi-

crowave background,” Phys. Rev. D, vol. 55, pp. 1830–1840, Feb 1997.

[97] A. K. Pradhan and S. N. Nahar, “Atomic astrophysics and spectroscopy,”

2011.

[98] C. A. J Fletcher, Computational techniques for fluid dynamics, New York,

USA, 1988.

[99] F. A. Gilbert, “Inverse problems for the earth’s normal modes, mathemat-

ical problems in the geophysical sciences,” American Mathematical Society,

Providence, vol. 1, 1971.

[100] J. D. McEwen, “Fast, exact (but unstable) spin spherical harmonic trans-

forms,” All Res. J. Phys., vol. 1, no. 1, 2011.

[101] P. J. Kostelec, D. K. Maslen, D. M. Healy, and D. N. Rockmore, “Compu-

tational harmonic analysis for tensor fields on the two-sphere,” J. Comput.

Phys., vol. 162, no. 2, pp. 514–535, Aug. 2000.

[102] K. M. Huffenberger and B. D. Wandelt, “Fast and exact spin-s spherical

harmonic transforms,” The Astrophysical Journal Supplement Series, vol.

189, no. 2, pp. 255, 2010.

[103] M. Reinecke, “libsharp: Library for spherical harmonic transforms,” Astro-

physics Source Code Library, Feb. 2014.

[104] M. Reinecke and D. S. Seljebotn, “Libsharp - spherical harmonic transforms

revisited,” Astron. & Astrophys., vol. 554, pp. A112, 2013.



90 Bibliography

[105] U. Elahi, Z. Khalid, and R. A. Kennedy, “Comparative analysis of geometri-

cal properties of sampling schemes on the sphere,” in 2016 10th International

Conference on Signal Processing and Communication Systems (ICSPCS), pp.

1–7, Dec 2016.

[106] K. Ivanov and P. Petrushev, “Irregular sampling of band-limited functions

on the sphere,” Appl Comput Harmon Anal., vol. 37, no. 3, pp. 545 – 562,

Nov. 2014.

[107] J. Keiner, S. Kunis, and D. Potts, “Efficient reconstruction of functions on

the sphere from scattered data,” J. Fourier Anal. Appl., vol. 13, no. 4, pp.

435–458, May 2007.

[108] S. Kunis and D. Potts, “Fast spherical fourier algorithms,” J. Comput. Appl.

Math., vol. 161, no. 1, pp. 75 – 98, Dec. 2003.

[109] S. Kunis and D. Potts, “Stability results for scattered data interpolation

by trigonometric polynomials,” SIAM J. Sci. Comput., vol. 29, no. 4, pp.

1403–1419, Feb. 2007.

[110] L. Shen and M. K. Chung, “Large-scale modeling of parametric surfaces using

spherical harmonics,” in 3D Data Processing, Visualization, and Transmis-

sion, Third International Symposium on, June 2006, pp. 294–301.

[111] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, Society

for Industrial and Applied Mathematics, 1995.

[112] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Ei-

jkhout, R. Pozo, C. Romine, and H. van der Vorst, Templates for the Solution

of Linear Systems: Building Blocks for Iterative Methods, Society for Indus-

trial and Applied Mathematics, 1994.

[113] A. Papoulis, “A new algorithm in spectral analysis and band-limited extrap-

olation,” IEEE Transactions on Circuits and Systems, vol. 22, no. 9, pp.

735–742, September 1975.

[114] Y. F. Alem, Z. Khalid, and R. A. Kennedy, “Band-limited extrapolation

on the sphere for signal reconstruction in the presence of noise,” in 2014

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), May 2014, pp. 4141–4145.



Bibliography 91

[115] J. Meyer and T. Agnello, “Spherical microphone array for spatial sound

recording,” in Audio Engineering Society Convention 115. Audio Engineering

Society, 2003.

[116] G. Weinreich and E. B. Arnold, “Method for measuring acoustic radiation

fields,” The Journal of the Acoustical Society of America, vol. 68, no. 2, pp.

404–411, 1980.

[117] T. D. Abhayapala and D. B. Ward, “Theory and design of high order sound

field microphones using spherical microphone array,” in 2002 IEEE Inter-

national Conference on Acoustics, Speech, and Signal Processing, May 2002,

vol. 2, pp. II–1949–II–1952.

[118] J. Meyer and G. Elko, “A highly scalable spherical microphone array based on

an orthonormal decomposition of the soundfield,” in 2002 IEEE International

Conference on Acoustics, Speech, and Signal Processing, May 2002, vol. 2,

pp. II–1781–II–1784.

[119] D. L. Alon and B. Rafaely, “Beamforming with optimal aliasing cancellation

in spherical microphone arrays,” IEEE/ACM Transactions on Audio, Speech,

and Language Processing, vol. 24, no. 1, pp. 196–210, Jan 2016.

[120] J. Meyer and G. W. Elko, “Handling spatial aliasing in spherical array

applications,” in Hands-Free Speech Communication and Microphone Arrays,

2008. HSCMA 2008. IEEE, 2008, pp. 1–4.

[121] G. Weinreich and E. B. Arnold, “Method for measuring acoustic radiation

fields,” The Journal of the Acoustical Society of America, vol. 68, no. 2, pp.

404–411, 1980.

[122] M. Park and B. Rafaely, “Sound-field analysis by plane-wave decomposition

using spherical microphone array,” The Journal of the Acoustical Society of

America, vol. 118, no. 5, pp. 3094–3103, 2005.

[123] A. G. Doroshkevich, P. D. Naselsky, O. V. Verkhodanov, D. I. Novikov, V. I.

Turchaninov, I. D. Novikov, P. R. Christensen, and Chiang, “Gauss Legendre

Sky Pixelization (GLESP) for CMB maps,” Int. J. Mod. Phys. D., vol. 14,

no. 02, pp. 275–290, Feb. 2005.



92 Bibliography

[124] D. S. Seljebotn and H. K. Eriksen, “Sympix: A spherical grid for efficient

sampling of rotationally invariant operators,” Astrophys. J., Suppl. Ser., vol.

222, no. 2, pp. 17, Apr. 2015.

[125] K. M. Grski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Rei-

necke, and M. Bartelmann, “Healpix: A framework for high-resolution dis-

cretization and fast analysis of data distributed on the sphere,” Astrophys.

J., vol. 622, no. 2, pp. 759, Apr. 2005.

[126] R. O. Duda and W. L. Martens, “Range-dependence of the hrtf for a spherical

head,” in Proceedings of 1997 Workshop on Applications of Signal Processing

to Audio and Acoustics, Oct 1997, pp. 5 pp.–.

[127] J. D. McEwen and Y. Wiaux, “A novel sampling theorem on the sphere,”

IEEE Trans. Signal Process., vol. 59, no. 12, pp. 5876–5887, Dec 2011.

[128] U. Elahi, Z. Khalid, and R. A. Kennedy, “Spatially constrained anti-aliasing

filter using slepian eigenfunction window on the sphere,” in 2018 12th In-

ternational Conference on Signal Processing and Communication Systems

(ICSPCS), Dec. 2018.

[129] Z. Khalid, R. A. Kennedy, and S. Durrani, “On the choice of window for

spatial smoothing of spherical data,” in Acoustics, Speech and Signal Pro-

cessing (ICASSP), 2014 IEEE International Conference on. IEEE, 2014, pp.

2644–2648.

[130] B. Rafaely, “Phase-mode versus delay-and-sum spherical microphone array

processing,” IEEE signal processing Letters, vol. 12, no. 10, pp. 713–716,

2005.

[131] B. Devaraju, Understanding filtering on the sphere: experiences from filtering

GRACE data, 2015.

[132] F. J. Harris, “On the use of windows for harmonic analysis with the discrete

fourier transform,” Proceedings of the IEEE, vol. 66, no. 1, pp. 51–83, 1978.


